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Diffuse large B cell lymphoma (DLBCL) is an aggressive blood cancer known for its rapid progression
and high incidence. The growing use of immunohistochemistry (IHC) has significantly contributed to
the detailed cell characterization, thereby playing a crucial role in guiding treatment strategies for
DLBCL. In this study, we developed an AI-based image analysis approach for assessing PD-L1
expression in DLBCL patients. PD-L1 expression represents as a major biomarker for screening
patients who can benefit from targeted immunotherapy interventions. In particular, we performed
large-scale cell annotations in IHC slides, encompassing over 5101 tissue regions and 146,439 live
cells. Extensive experiments in primary and validation cohorts demonstrated the defined quantitative
rule helped overcome the difficulty of identifying specific cell types. In assessing data obtained from
fine needle biopsies, experiments revealed that there was a higher level of agreement in the
quantitative results between Artificial Intelligence (AI) algorithms and pathologists, as well as among
pathologists themselves, in comparison to the data obtained from surgical specimens. We highlight
that the AI-enabled analytics enhance the objectivity and interpretability of PD-L1 quantification to
improve the targeted immunotherapy development in DLBCL patients.

Diffuse large B cell lymphoma (DLBCL) is an aggressive blood cancer
characterized by rapid progression andhigh incidence1. Tobetter capture its
tumor environment, immunohistochemistry (IHC)2–4 has beenwidely used
to visualize the distribution of disease-specific proteins (e.g., PD-L1, Ki67,
and CD3). In particular, assessing the programmed death ligand-1 (PD-L1)
expression from IHC images is increasingly recognized as a predictive
biomarker5–8. The significance of PD-L1 expression in solid cancers is well-
documented for guiding the immune therapy, however, its impact in lym-
phoma is not fully explored. Emerging evidence suggests that PD-L1
checkpoint inhibitors have shown promising performance in treating
lymphoma9. Therefore, a systematic evaluation of PD-L1 expression in
DLBCL is crucial for measuring cell characterization10, targeted
treatment11–13 and patient prognosis14,15.

The tumorproportion score (TPS)16 calculates theproportionof tumor
cells in IHC, which is a key quantitative indicator reflecting PD-L1
expressions. Through the use of TPS, manual counting PD-L1 positive
tumor cells can be time-consuming with the inter-reader variability from
pathologists. Furthermore, the heterogeneous expression of PD-L1 and
intrinsic characteristics of lymphoma pose significant challenges in identi-
fying cell types and their correlations (Supplementary Section 1.1). For
instance, tumor B-cells and non-malignant immune cells can co-express
PD-L1 in the microenvironment. As a result, cells under positive regions
(i.e., PD-L1+) may not always belong to tumor cells17,18. In contrast to solid
tumors such as lung cancer19–24 and breast cancer25,26, where tumor regions
can be deferentially identified to aid in the detection of tumor cells, PD-L1
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stained whole slide images (WSIs) of DLBCL do not exhibit detectable
differences between notable tumor cells and normal cells.

Growing research efforts have been made to quantify PD-L1 expres-
sion in pathology27,28, with its capacity to characterize non-small cell lung
cancer19–24,29, breast cancer25,26, as well as head and neck squamous cell
carcinoma30. These studies are primarily focused on well-defined tumor
regions and cell traits, leading to ease theprocess of tumor segmentation and
cell detection. These related works can be grouped into the joint analysis of
HE and IHC6,24,31, tumor cells (TC) or immune cells (IC) scores calculation
based on color threshold10,21,25,26, and counting tumor cells19,22,23,29,30,32,33.

In this study, we proposed an AI-based PD-L1 expression assess-
ment for DLBCL patients using IHC slides (Fig. 1). To address afore-
mentioned challenges, we made multifaceted contributions. First, we
developed a PD-L1 expression scoring framework for lymphoma that
accurately quantified the widely-known TPS. Second, we proposed a
PD-L1 digital quantification rule, addressing the daunting challenge of
digitally screening tumor cells in IHC slides for DLBCL. Finally, we
constructed primary and validation cohorts with large-scale available
annotations, encompassing over 5101 tissue regions and 146,439 live
cells. Our study demonstrates its usefulness in quantifying the complex
PD-L1 expressions, highlighting its potential to facilitate critical
immunotherapies for DLBCL patients.

Results
Data cohorts and annotations
We collected 220 patients with DLBCL diagnosed or treated in Shanghai
Ruijin Hospital from June 2019 to June 2020. Three hematopathologists
diagnosed all specimens as DLBCL, germinal center B-cell subtype (GCB),
or activated B-cell subtype (ABC) according to the 2016 World Health
Organization Classification of Tumors in Hematopoietic and Lymphoid
Tissues34.

Sample staining was performed in the Pathology Department of
Shanghai Ruijin Hospital. All 220 WSIs underwent immunohistochemical
staining of PD-L1 (22C3, DAKO), with quality control and evaluation
conducted by pathologists. The WSIs were acquired and digitized on the
SQS-600P digital slide scanner at 40 ×magnification. The study resulted in
220 PD-L1 stained WSIs from 30 parts of the human body, including 88
surgical specimens and 132 fine needle biopsies (Fig. 2 and Supplementary
Section 1.3).

Three senior clinical pathologists (Q.D, S.J.D and Y.T.L with 15, 5, and
3 years’ experiences) scored TPS in 220 PD-L1 stained WSIs in a double-
blind condition to allow the correlationmeasurement between pathologists
and the proposedAI algorithm and the stability among pathologists. Next, a
medically relevant labeling expert with 7 years’ experiences in pathology
annotated the non-regions of interest (Non-ROIs) which mean non-
relevant regions (Supplementary Section 1.2) for PD-L1 quantification in
220PD-L1 stainedWSIs usingASAPsoftware35. These annotations resulted
in a total of 4101 tissue regions from the primary cohort, encompassing
areas with extrusion, burn, carbon foam, inflammation, fat, blood cells,
interstitial cells, necrotic cells or debris, and other non-tumor cells. The
reason for conducting this annotation step is that quantifying PD-L1
expression within regions of interest (ROIs) which mean effective regions
for PD-L1 quantification is more efficient compared to analyzing the entire
WSI. This is because by excluding Non-ROIs, we can reduce interference
during the cell detection stage and eliminate the interference of unrelated
cells in non-relevant areas. But accurately defining ROIs in PD-L1 slides for
DLBCL is challenging, because blood cancer typically does not have tumor
regions traditionally, primarily affecting fluid tissues as blood and bone
marrow, and does not form distinct, fixed masses like solid tumors. In
contrast, identifying Non-ROIs is relatively more straightforward for
annotators. Since the quantitative analysis of PD-L1 expression is based on
tumor regions, we applied an inversion operation to the annotated areas,
thereby delineating ROIs for algorithms. Additionally, two individuals (F.Y
and M.F) with medical training labeled cell center points for PD-L1 by
LabelMe software36 and SenseCare37 for the iteration of the cell detection

algorithm.We identifiedandextractedROIs forPD-L1quantitative analysis
from each WSI, and then randomly cropped patches of size 256 × 256 at a
magnification of 40×, ensuring that eachpatch containsmore than 100 cells.
We performed a uniform distribution of PD-L1 expression at the patch
level, including negative, weakly positive, positive, and strongly positive
areas. We also ensured that the number of patches selected from each
patient’s WSI was equivalent, and there were no overlapping areas among
patches. We finally obtained a total of 498 patches used for annotations of
cell center points for PD-L1.

For the external validation, a total of 61 PD-L1 stainedWSIs with each
from a unique patient, were collected from the North Branch of Shanghai
Ruijin Hospital. The patient statistics are consistent across datasets. The
annotation settings of this validation cohort were aligned with those of the
primary cohort (Fig. 2 and Supplementary Section 1.4). Ultimately, we
obtained 61 TPS from each of the three pathologists, annotated 1000 tissue
regions as Non-ROIs, and marked 475 patches for cell center points.

Correlation and interpretability
Wedemonstrated the correlation between theAI algorithmic outcomes and
pathologists’ results, along with vital results in PD-L1 scoring, including the
performance of cell detection, segmentation and positive cell recognition.

Correlation analysis. Figures 3a, b and 4g demonstrated that the algo-
rithm consistently provided stable quantitative findings, which were
closely aligned with the mean or median scores of pathologists. Also, we
observed that subjective variations in PD-L1 quantification can result in
fluctuations in pathologists’ scores (Supplementary Sections
2.1.8 and 2.1.9). To mimic real-world scenarios, particularly in the
relation to suggest treatment decisions, Fig. 3b categorized TPS into three
stages with cutoff levels of 5% and 50% based on supported
guidelines38–40, respectively. Furthermore, we evaluated the intraclass
correlations between human raters and the algorithm using the intraclass
correlation coefficient (ICC) (Fig. 4g). We recognized positive results
with an intra-pathologist concordance with ICC at 0.94 (95% CI, 0.92,
0.95), while the correlation between the automated and manual scores
was higher with ICC at 0.96 (95% CI, 0.94, 0.97).

Outcome explainability. Figure 1b presented visualization at the
thumbnail level to clarify the process of digital PD-L1 quantification. Our
strategy not only allowed for the precise calculation of the TPS but also
provided detailed explanations. Specifically, it illustrated the area dis-
tribution of each detected cell within the ROIs, as well as the exact number
of tumor cells and positive tumor cells selected for TPS calculation based
on our designed PD-L1 digital quantification rules for DLBCL.

Figure 5 showed the performance of an integrated cell detection, seg-
mentation and PD-L1+ cell classification framework designed for
membrane-positive IHC slides. Given the impressive zero-shot perfor-
mance of the image segmentation foundation model SAM (Segment Any-
thing Model)41 on natural images and its vast data annotation scale of 1
billion,we also conducted experiments anddiscussions on the applicationof
SAM for cell segmentation tasks in PD-L1 images (details in Supplementary
Section 2.1).

Figure 6 illustrated the impact of the proposed PD-L1 digital
quantification rule (Eq. (2)) for DLBCL on the recognition of positive
cells in the scoring stage. We found the MSE metric exhibited a slight
fluctuation trendwith the variation of the parameter of cells removedm%
(the firstm% cells with the largest area), whereby a highm value affected
the selection of tumor cells, whereas a low m value failed to adequately
filter out large non-tumor cells (see the set of color bars associated with
each subplot in Fig. 6, and more results in Supplementary Section 2.1.7).
Figure 7 revealed that the parameter of threshold t (the threshold for
positive or negative classification) played a key role in the proposed
immunohistochemical quantitative rule, particularly on cells displaying
weak or moderate PD-L1 expression (e.g., Samples 2–5 in Fig. 7). In
addition, the impact of the t was less pronounced on cells displaying
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strong or no expression (e.g., Samples 1 and 6 in Fig. 7). When the t
value was large (e.g., 0.5), the proportion of positive cells decreased,
leading to a low quantitative score. Conversely, when the t value was
small (e.g., 0.01), the proportion of positive cells increased, resulting in a
high quantitative score.

Concordance between surgical specimens and fine needle
biopsies
Figures 4a–c showed the interclass ICC for PD-L1 expression between fine
needle biopsies and surgical specimens. From the perspectives of both
pathologists and AI models, the overall performance of PD-L1 expression

Fig. 1 | Overview and demonstration of the proposed digital PD-L1 scoring
approach. aThe pipeline includesmodules for ROI segmentation, cell detection and
segmentation, parameter selection, cell sorting, and PD-L1 scoring.

bDemonstration of quantitative results and visualization depicting the distribution
of cells using the proposed immunohistochemical quantitative rule.
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scoring in fine needle biopsies is superior to that in surgical specimens (Fig.
4b–c). Specifically, for surgical specimens (Fig. 4b, the intra-pathologist
concordancewas found to be 0.91 (95%CI, 0.87, 0.94). The ICCbetween the
mean scores of pathologists and the algorithm’s results was 0.95 (95% CI,
0.93, 0.97). Similarly, the ICCbetween themedian scoresof pathologists and
the algorithm’s resultswas 0.96 (95%CI, 0.94, 0.98). In the case offineneedle
biopsy (Fig. 4c), the intra-pathologist concordance was around 0.96 (95%
CI, 0.94, 0.97). Moreover, the ICC between the mean scores of pathologists

and the algorithm’s results was 0.96 (95% CI, 0.95, 0.97), and the ICC
between the median scores of pathologists and the algorithm’s results was
around 0.95 (95% CI, 0.93, 0.97), further supporting the strong agreement
between pathologists and the algorithm’s assessment.

External validation
We extend to evaluate themodel performance on the external validation
cohort, which presents notable variations in terms of image quality

Fig. 2 | Characterization of PD-L1 Cohorts. a Examples of PD-L1 slide visualizations at multiple magnifications. b Dataset characteristics, including the mean TPS
annotated by three senior pathologists under cutoffs. c The distribution of body parts for data collection. d The statistical information of PD-L1 data and annotations.
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derived from scanners and DAB staining. We show the results of the
algorithm’s comparison with the ratings of pathologists in PD-L1
quantification (Figs. 3c, d and 4d–f). While the algorithm’s results are
slightly lower than those of pathological experts for surgical specimens

(Fig. 4e), they remain relatively stable in the challenging setting with fine
needle biopsies (Fig. 4f). Compared to the ratings of pathologists on TPS
fluctuate, the algorithm’s results are relatively stable. In detail, the dis-
tribution is mainly around the mean or median value of pathologists’

Fig. 3 | Evaluation of Model Performance in PD-L1 Quantification.
a, c Correlations between the TPS values generated by the proposed algorithm and
mean (or median) scores as assessed by pathologists. b, d PD-L1 expression scores

were grouped into three intervals, enabling the observation of correlations between
the algorithm and pathologists.
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ratings (details of cell detection and segmentation in Supplementary
Section 2.2).

We further confirm that theAI algorithm exhibited higher consistency
with pathologists in the evaluation of samples obtained through fine needle
biopsies compared to surgical specimens. This observation is in linewith the
findings from the primary cohorts. Results (Fig. 4d, g) showed that the intra-
pathologist concordancewas 0.97 (95%CI, 0.95, 0.98). The ICCbetween the
mean andmedian score of pathologists and the algorithm’s resultswere 0.96
(95% CI, 0.93, 0.98) and 0.96 (95% CI, 0.93, 0.97), suggesting a significant
level of concordance. For surgical specimens (Fig. 4e), results showed that
the intra-pathologist concordance was 0.96 (95% CI, 0.92, 0.98). The ICC
between the mean and median scores of pathologists and the algorithm’s
results were around 0.94 (95% CI, 0.87, 0.97) and 0.94 (95% CI, 0.88, 0.97).
For fine needle biopsies (Fig. 4f), results showed that the intra-pathologist
concordancewas around 0.98 (95%CI, 0.96, 0.99). In addition,wehave seen
a strong correlation outcomesbetweenAI andpathologists’ inputs. The ICC
between the mean and median scores of pathologists and the algorithm’s
results were 0.98 (95% CI, 0.95, 0.99) and around 0.97 (95% CI, 0.95, 0.99).

Discussion
The precise assessment and evaluation of PD-L1 biomarker is crucial in the
triage of cancer patients for the targeted immunotherapy. In this study, we
developed anAI-enabled approach to achieve the high-level performance of
characterizing PD-L1 expression in DLBCL patients. Recognizing the
importance of identifying tumor cells in PD-L1 of lymphoma and counting
membrane-positive cells, we proposed a new PD-L1 digital quantification
rule for DLBCL to address the difficulty of tumor cell identification in
expression quantification. This major discovery provides pathologists with
an objective and interpretable tool for quantifying and visualizing detailed
PD-L1 expression in DLBCL patients.

Our experiments demonstrated that AI-based models can provide
explainable and quantitative results (Figs. 1 and 4). It is known that
pathologists face limitations in accurate cell counting and calculations,
especially when dealing with excessive amounts of cells. Misclassifying
patients who are genuinely positive as negative could deprive them of the
advantages of receiving immunotherapy. Conversely, misclassifying
patients who are truly negative as positive may lead to unwarranted, costly,

Fig. 4 | Inter-rater reliabilitymetrics for pathological evaluations under different
sampling forms. a–c Comparisons for human versus algorithm scoring in the
primary cohort, across surgical specimens and fine needle biopsies. d–f The similar

comparisons for the validation cohort. g Statistical results for PD-L1 expression
between fine needle biopsies and surgical specimens.
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and potentially harmful treatments. The graded stratification (such as cutoff
refers to 5% or 50%) can determine whether patients receive immu-
notherapy, which is in line with clinical practice andmedication guidelines.
Our AI-enabled analytics is able to maintain a stable and consistent per-
formance under different cutoffs (Supplementary Sections 2.1.9 and 2.2.6).

Clinicalfindings42–46 arewell documentedon the taskofmeasuringPD-
L1 related surgical specimens and fine-needle biopsies, yet there is a lack of
quantitative research in the field of AI. Our investigation provides deeper
insights into optimizing clinical practice of specimen assessment on PD-L1
expression. Comprising fine needle biopsies and surgical specimens from

Fig. 5 | Visualizations of the cell detection, segmentation and PD-L1+ cell classification. * Two-stage segmentation result overlay, # SAM (Segment Anything) result
overlay.
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two separated cohorts, our experiments identified the influence of sampling
on PD-L1 quantization concordance.When examining data obtained from
fine needle biopsies, there is a higher level of agreement between algorithms
and pathologists, as well as among pathologists themselves, in comparison
to the data obtained from surgical specimens. Importantly, the major dis-
crepancy in our results between different samples could be attributed to the
limited information provided by fine needle biopsies, whereas surgical
specimens contain more noisy information (e.g., Non-ROIs) which may
hinder the calculation of PD-L1 quantification.

A key contribution of our study is that the proposed framework pro-
vides an integrative pipeline involving cell detection and segmentation,
resulting in highly correlated quantitative results as compared to the sub-
jective assessment from pathologists. The two-stage cell segmentation
model could streamline the process of cell sequencing and qualitative dis-
crimination in DLBCL. In the module of cell area sequencing and quanti-
fication, our approach addresses the challenge of distinguishingmembrane-
positive tumor cells based on the key hypothesis that tumor cells generally
exhibit larger morphologies.

Our analysis remarkably differs from prior works6,10,21,24–26,31 in four
primary perspectives. First, unlike the joint analysis6,31,47 requiring the rig-
orous alignment of HE and PD-L1 or other IHC slides, our focus does not
rely on HE slides paired with PD-L1, simplifying the workflow by reducing
the high demand on whole slide preparation. Second, our analysis is well
aligned with the routine diagnostic workflow for quantifying protein
expression in PD-L1 images, offering a clinically-relevant and interpretable
tool for pathologists. This diverges from approaches that simply relied on
color threshold10,21,25,26 to calculate the percentage of positive area in WSI.
Third, our immunohistochemical quantitative rule is specifically tailored for
DLBCL as opposed to other solid tumors19,21–26,29,30. Finally, our experiment
conducted automatic quantification on entire WSIs, rather than being
limited to manually selected specific regions22,25,29. Using this whole-slide
strategy can mimic the clinical evaluation process towards a more com-
prehensive and unbiased characterization of the overall PD-L1 expression.

This study has several limitations. Although showing promise of our
findings, it remains necessary for prospective trial testing to validate its
clinical utility for PD-L1 expression analytics with more diverse and

expansive datasets. In addition,we continue to see the lack of available large-
scale IHC image cell datasets. Building upon ourmajor effort on the dataset
curation, we plan to advance our investigation by constructing the high-
quality, annotation-ready cell cohort derived from immunohistochemistry
images. Alternatively, the use of synthetic image samples48 could add the
potential robustness of AImodels.Meanwhile, the use of foundationmodel
evaluation could be a promising direction to improve prediction
performance49,50. Finally, this study is limited to the development of AI
models for PD-L1 expression quantification in DLBCL. New IHC quanti-
fication rules and the joint training with other immunohistochemical bio-
markers, such as CD3, CD20, CD5, BCL2, BCL6, Ki67, andMUM1, would
be valuable to provide more insights into diagnosis and treatment deter-
mination of lymphoma patients.

We developed an artificial intelligence-assisted framework focusing on
the accurate quantification of PD-L1 expressions staining on IHC whole
slide images. The digital PD-L1 quantification method we proposed sig-
nificantly enhances the objectivity and interpretability of AI-based models
in DLBCL patient analysis. It also ensures a high level of consistency
between AI-generated insights and pathologists’ evaluations. Taken toge-
ther, ourfindings show that pathologists of different levels of experience can
potentially benefit from the AI-assisted model to enhance the immu-
notherapy decision making for DLBCL patients.

Methods
We proposed an automated framework for PD-L1 expression quantification
in DLBCL, along with a designed PD-L1 digital quantification rule for
DLBCL to address the challenge of accurately identifying tumor cells in
quantifying PD-L1 expression of lymphoma. Illustrated in Fig. 1a, the
expression scoring framework comprises four major components, which
includes: (1) Segmenting the regions of interest that significantly impact
PD-L1 expression quantification. (2) Detecting and precisely segmenting
individual cells. (3)Classifying positive andnegativePD-L1 cells. (4)Utilizing
the proposed PD-L1 digital quantification rule for DLBCL to facilitate
automatedPD-L1scoringanalysis (moredetails inSupplementarySection3).

The proposed approach is founded upon a critical morphological
characteristic of DLBCL cells, which is the typical presentation of B

Fig. 6 | Parameter selection for proposed new PD-L1 digital quantification rules
in DLBCL. Between different boxplots, each represents the impact on the MSE of
selecting k cells. Each boxplot shows the MSE changes in logarithmic scale between
the algorithm and themeanTPS assessed by pathologists under distinct thresholds (t

%). Each bar in the boxplot at a fixed threshold represents the impact on MSE when
removing the topm%of cells. (kmeans the selection of top cells with the largest area,
t%means proportion of brown area in a single cell area,m%means the exclusion of
the largest cells based on area percentage).

https://doi.org/10.1038/s41698-024-00577-y Article

npj Precision Oncology |            (2024) 8:76 8



lymphocytes inDLBCL as having amedium to large size. Thenuclei of these
lymphocytes are either equal to or larger than the size of normal macro-
phages, or more than twice the size of normal lymphocytes1. Conversely,
smaller cells may be indicative of normal lymphocytes or smaller
tumor cells.

The study was conducted in accordance with the Declaration of Hel-
sinki, and was approved by the Committees on Human Research of
Shanghai Ruijin Hospital. Informed consent was obtained for each patient.

ROI segmentation
Wedeveloped aROI segmentation framework that treated the task as binary
classification at the patch level. Each patch was generated through sliding
cropping of WSIs. We partitioned each WSI into multiple patchesand the
algorithm processed all cropped patches, assigning each as inside and out-
side of ROIs. The patches cropped from eachWSI can be reassembled back
into a completeWSI slide based on their spatial coordinatemappings.With
each patch carrying a binary classification label, we effectively delineated
ROIs at theWSI level. We fine-tuned a series of classification models using
pre-trained models, including Densenet12151, Resnet1852, and Vision
Transformer (ViT)53. Given their performance (as detailed in Supplemen-
tary Section 2.1.2), we opted for the fine-tuned ViT model as our primary
choice for ROI segmentation. This model is capable of identifying ROIs in
DLBCL disease within PD-L1 slides. Subsequently, our focus shifted
towards cell detection and segmentation.

Cell detection and segmentation
Our primary objective was to acquire the detailed cell instance information
(e.g., location, area and shape of cells), essential for building a new PD-L1
digital quantification rule for DLBCL. However, there is a lack of publicly
available datasets containing positive cellmembrane immunohistochemical
data, especially for the PD-L1 biomarker. Additionally, directly employing
HE slides for PD-L1 slide segmentation proved impractical due to the
substantial interference from positive cell membranes. To address these
challenges, we employed a two-step approach. Initially, we employed
automated cell detection for efficient annotations of cell center points.
Subsequently, we incorporated a point-to-mask segmentation network for
each cell. This network model facilitated the generation of detailed cell
masks, providing crucial information regarding cell shape and area.

We used the AuxCNN54 model as a robust cell detection backbone
based on a concatenated fully convolutional regression network
(C-FCRN)55. AuxCNN refers to auxiliary convolutional neural networks
employed to assist in the training of intermediate layers of a density
regression model designed for automatic cell counting in microscopy
images andHE. By utilizingmanually annotated PD-L1 cell center points as
the reference ground truth, we retrained a model for detecting PD-L1 cell
center points, using the AuxCNN framework.

Following cell detection results obtained from AuxCNN (visible in the
second column of Fig. 5 and Supplementary Section 2.1.5), we utilized these
detected cell center point locations as input for the pre-trained cell

Fig. 7 | Visualizations of negative and positive cell classification across varying thresholds (t%). Samples 1–6 show an increasing level of PD-L1 positive expression.
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segmentation model. Our primary objective was to enhance the precision of
PD-L1 cell segmentation while mitigating interference from the positive cell
membrane. Specifically, we employed NuClick56 as an interactive point-to-
mask instance segmentation model. To facilitate comparative segmentation
analysis and exploring foundationmodels, we integrated SAM41 with PD-L1.
SAM is a foundationmodel57–60 for image segmentation adaptable to various
scenarios61,62. It offers prompt customization such as points, boxes, masks,
and text, eliminating the need for additional training across various natural
visual segmentation tasks. Although neither NuClick nor SAM has been
explicitly fine-tuned for PD-L1 data analysis, the HE dataset named
MoNuSeg63,64 used in NuClick shares the hematoxylin staining channel with
PD-L1.This ismedically instructive for cell nuclei segmentation, leadingus to
ultimately choose NuClick as our cell segmentation method.

Following the segmentation of cell nuclei, we applied a dilation
operation to the segmentation mask of these nuclei to identify positive and
negative cells in the subsequent step (Supplementary Section 3.3). The
objective was to expand the coverage area of the masks to encompass more
than an individual size of membrane whenever possible. This approach
offers the advantage of more accurately conforming to the actual cell shape,
thereby enhancing the accuracy of positive cell identification.

Positive and negative cell classification
The identification of positive and negative cells is a crucial step in quantifying
PD-L1 expression. We here define cells with a brownish membrane after
DAB staining as positive cells (PD-L1+ cells). However, due to the dense
arrangement of cells in actual images, complete membrane enclosures for
individual cells are often not observed. Instead, we encounter notable cases of
both intact and incomplete membranes, as well as cells displaying strong
positive,moderate positive,weakpositive, andnegative states.To enhance the
accuracy of cell classification, we focus on the cell segmentation contours
rather than relying onfixed-size regions (e.g., rectangles or circles) around the
cell’s center point. By dilating a specific outward region, we calculated the
ratio of the brown areawithin the dilated cellularmembrane boundary to the
total areawithin this boundary.This approachhelps inbetter determining the
positive or negative status of cells. Next, our objective is to identify PD-L1+
tumor cells among the identified positive and negative cells.

New PD-L1 digital quantification rules for DLBCL
Weproposed anewmethod for calculatingPD-L1digital quantification rules
forDLBCL based on three factors: (1)Not all cells within the ROIs are tumor
cells, there are also cells such as macrophages. (2) The difficulty in deter-
mining certain cell categories in PD-L1 slides. (3) Identifying the cell category
of a specified area interval based on the nature of the large nucleus of tumor
cells. Our primary goal is to identify live tumor cells and PD-L1+ tumor cells
at a certain ratio through the cell screening process, for the calculation ofTPS.

Specifically, we divided all cells within ROIs from a WSI and sorted
thembased on areas of the cell nucleus.However, as the cellswith the largest
areasmight be non-tumor cells such asmacrophages or vascular endothelial
cells, we removed the topm% of cells with the largest areas. The remaining
cells were then sorted by the number of top-k PD-L1+ tumor cells, which
were identified as the tumor cells.

Using the strategies mentioned above, the traditional TPS was calcu-
lated using Eq. (1), and the TPS* after applying the new PD-L1 digital
quantification rule for DLBCL was shown in Eq. (2).

TPS ¼ Number of PD-L1 stained tumor cells
Number of viable tumor cells

× 100% ð1Þ

TPS� ¼ Number of PD-L1 stained tumor cells in top-k cells=k × 100%

ð2Þ

Experimental settings
Evaluative criteria. For correlation analysis, ICC3kwas used to reflect the
means of a fixed set of k raters for each target. The F statistic, numerator

degrees of freedom (df1), denominator degrees of freedom (df2), p-value
(pval), and 95% confidence intervals (95% CI) were reported.

Given that 6 slides from the primary cohort exhibited insufficient cell
counts for TPS calculation, a total of 214 slides were ultimately incorporated
into the outcome assessment, although the whole pipeline was applied to all
220 slides. Moreover, 61 slides from the validation cohort were fully
involved in all calculations.

Parameters in PD-L1 scoring. The three major parameters were m, k,
and t (Eq. (1)), which corresponded to the exclusion of the firstm% cells
with the largest area, the selection of the top-k cells with the largest area
for each WSI, and the proportion of brown area in a single cell area,
represented as t%. These parameters determined the degree of PD-L1
expression detected in cells and the final TPS output produced by the
algorithm. To determine the appropriate parameters, we compared the
results of quantification and visualization with the mean scores of
pathologists and then selected parameters that provided satisfactory
performance. Specifically, we selected m of 0.06, k of 3000, and t of 0.1.

Training configurations. In the process of segmenting ROIs and iden-
tifying cells, we employed a five-fold, cross-validation strategy. For cell
segmentation, we utilized a pretrained model for inference as there was
no available ground truth data on cell annotations. The data split settings
with validation, training, test, or external sets were shown in Supple-
mentary Sections 1.3 and 1.4. We always used the same hyperparameters
in all internal and external experiments. We trained the ROI segmenta-
tion model based on ViT of tiny version with a batch size of 256 and a
learning rate at the beginning of 3e−4, for a total of 30 epochs. We trained
the cell-point detectionmodel based on a batch size of 256 and a learning
rate at the beginning of 3e−4, for a total of 90 epochs.

Hardware and software. All data were stored and processed on our in-
hourse computing servers with graphics processing units (GPUs), and
central processing units (CPUs). There is a cluster of 96 Inter Xeon CPUs
and 8 A100 GPUs scheduled by a Slurm system with NAS storage. We
used Python 3.9 with Pytorch 1.8 to train and test the models. All code
was developed using open-source tools and packages.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The datasets used in this study are not publicly available at thismoment due
to data usage agreement restrictions. The de-identification process and
usage of slides have been approved by Shanghai Artificial Intelligence
Laboratory and Shanghai Ruijin Hospital. The datasets are available upon
reasonable request and in order to use the data, qualified researchers should
be approved by the institutional review boards of both institutions.

Code availability
The code can be used only for non-commercial purpose and under the
permission of the corresponding authors. Source code used in this study can
be found at https://github.com/yanfang-research/Digital-PD-L1-Scoring.
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