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Deep learning approaches for clinical predictions based on magnetic resonance imaging data have
shown great promise as a translational technology for diagnosis and prognosis in neurological
disorders, but its clinical impact has been limited. This is partially attributed to the opaqueness of deep
learning models, causing insufficient understanding of what underlies their decisions. To overcome
this, we trained convolutional neural networks on structural brain scans to differentiate dementia
patients from healthy controls, and applied layerwise relevance propagation to procure individual-
level explanations of the model predictions. Through extensive validations we demonstrate that
deviations recognized by the model corroborate existing knowledge of structural brain aberrations in
dementia. By employing the explainable dementia classifier in a longitudinal dataset of patients with
mild cognitive impairment, we show that the spatially rich explanations complement the model
prediction when forecasting transition to dementia and help characterize the biological manifestation
of disease in the individual brain. Overall, our work exemplifies the clinical potential of explainable
artificial intelligence in precision medicine.

Since its invention in the 1970s, magnetic resonance imaging (MRI) has
provided an opportunity to non-invasively examine the inside of the body.
In neuroscience, images acquired with MRI scanners have been used to
identify how the brains of patients with various neurological disorders differ
from their healthy counterparts. Stereotypically, this has been done by
collecting data from a group of patients with a given disorder and a com-
parable groupofhealthy controls, onwhich traditional statistical inference is

applied to identify spatial locations of the brain where the groups differ1.
Typically, these locations are not atomic locations identified by spatial
coordinates, but rather morphological regions defined by an atlas, derived
from empirical or theoretical insights of how the brain is structured. Dif-
ferences between groups are described using morphometric properties like
thickness or volume of these prespecified regions. A major benefit of this
approach is the innate interpretability of the results: on average, patients
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with a given disorder deviate in a specific region of the brain in a compre-
hensible manner. Furthermore, the high degree of localization offered by
modern brain scans allows for accurate characterization of where and how
the brain of an individual deviates from an expected, typically healthy,
norm2.However, the effectswhich are foundare typically small3with limited
predictive power at the individual level4,5, which in turn has raised questions
about whether these analytical methods are expressive enough to model
complex mental or clinical phenomena6. As an alternative, new conceptual
approaches are proposed, advocating modeling frameworks with increased
expressive power that allow for group differences through complex, non-
linear interactions betweenmultiple, potentially distant, parts of the brain7,
with a focus on prediction8. Such modeling flexibility is naturally achieved
with artificial neural networks (ANNs), a class of statistical learning
methods that combines aspects of data at multiple levels of abstraction, to
accurately solve a predictive task9. However, while this often yields high
predictive performance, e.g., by demonstrating clinically sufficient case-
control classification accuracy for certain conditions, it comes at the cost of
interpretation, as the models employ decision rules not trivially under-
standable by humans10. When the goal of the analysis is clinical, supporting
the diagnosis and treatment of someone affected by a potential disorder, this
opaqueness presents a substantial limitation. Thus, development and
empirical validation of new methods within clinical neuroimaging that
combine predictive efficacy with individual-level interpretability is
imperative, to facilitate trust in how the system isworking, and to accurately
describe inter-individual heterogeneity.

With more than 55 million individuals afflicted worldwide11, over 25
million disability-adjusted life years lost12,13 and a cost exceeding one trillion
USD yearly14, dementia is a prime example of a neurological disorders that
incur a monumental global burden. Due to the global aging population the
prevalence is expected to nearly triple by 205015, inciting a demand for
technological solutions to facilitate handling the upcoming surge of patients.
Dementia is a complex and progressive clinical condition16 with multiple
causal determinants and moderators. Alzheimer’s disease (AD) is the most
common form and accounts for 60–80% of all cases11. However, the brain
pathologies underlying different subtypes of dementia are not disjoint, but
often co-occur17–19, and have neuropathological commonalities20. The most
prominent is neurodegeneration, occurring in both specific regions like the
hippocampus, and globally across the brain21, and inter-individual varia-
tions in the localization of atrophy has been associated with impairments in
specific cognitive domains22,23. Thus, the biological manifestation of
dementia in the brain is heterogeneous24, resulting in distinctive cognitive
and functional deficits20, highlighting the need for precise and personalized
approaches to diagnosis. For patients with mild cognitive impairment
(MCI), a potential clinical precursor to dementia, providing individualized
characterizations of the underlying etiological disease at an early stage could
widen the window for early interventions25, alleviate uncertainty about the
condition, and help with planning for the future26.

In dementia, ANNs, and particularly convolutional neural networks
(CNNs), have been applied to brain MRIs to differentiate patients from
controls27,28, prognosticate outcomes29, and differentially diagnose
subtypes30. However, while research utilizing this technology has been
influential, clinical translations are scarce31. Where techniques for seg-
menting brain tumors or detecting lesions typically produce segmentation
masks that are innately interpretable, predicting a complex diagnosis would
entail compressing all information contained in a high-dimensional brain
scan into a singlenumber.Usingdeep learning, thedecisionsunderlying this
immense reduction are obfuscated, both from the developer of the system,
the clinical personnel using it, and the patient ultimately impacted by the
decision. This black box nature is broadly credited for the low levels of
adoption in safety-critical domains like medicine32. Responding to this
limitation, explainable artificial intelligence (XAI) providesmethodology to
explain the behavior ofANNs33. Thenature of these explanations varies, e.g.,
by what type of model is to be explained, what conceptual level the expla-
nation is at, and who it is tailored for34,35. In computer vision, XAI typically
aims for post-hoc explanations of individual decisions, explaining why a

model arrived at a givenprediction for a given image. Explanations are often
provided in a visual format, as a heatmap indicating howdifferent regions of
the image contribute to the prediction36. Layerwise Relevance Propagation
(LRP) is a variant of such a method, based on propagating relevance from
the prediction-space, backwards through all layers of the model to the
image-space, to form a relevance map37. A major advantage of LRP is its
intuitive interpretation: by construction, the total amount of relevance
which denotes contribution to the prediction is kept fixed between layers.
Thus, the relevance propagated back to an input voxel is directly indicative
of the influence of that exact voxel to theprediction. Recently, several studies
have applied both LRP and other explainable AI methods to dementia38,
finding that the heatmaps generally highlight regions known to change in
dementia39–42. However, the possibility of utilizing the fine-grained, indivi-
dual, heatmaps produced by LRP to accurately characterize individualized
disease manifestations has not been explored, despite its potential for sup-
porting clinical decisions towards precision medicine38,41.

In the present study, we applied techniques from deep learning and
XAI on MRI scans of the brain to make explainable and clinically relevant
predictions for dementia at the individual level (Fig. 1). Using a state-of-the-
art architecture for neuroimaging data, we trained CNNs to differentiate
patients diagnosed with dementia from healthy controls based on T1-
weighted structural MRIs. We implemented LRP on top of the trained
models to form a computational pipeline producing individual-level
explanations in the form of relevance maps alongside the model predic-
tions. The relevance maps were validated in a subset of dementia patients,
both in a qualitative comparison with existing knowledge of the anatomical
distribution of structural aberrations, and in a quantitative, predictive
context. Next, we applied the pipeline to a large, longitudinal dataset ofMCI
patients to create individualmorphological records, a proposed data format
for tracking and visualizing disease progression. Finally, we investigated the
clinical utility of these records for stratifying patients, both in terms of their
specific clinical profile, and progression of the disease. To facilitate repro-
ducibility and improve the translational value of our work, the trained
models and the complete explainable pipeline ismade accessible onGitHub.

Results
WecompiledMRIdata frommultiple sources (SupplementaryTable 1) into
a dataset of heterogeneous dementia patients (n = 854, age range = 47–95,
47% females, Table 1) based on various diagnoses (Probable AD, vascular
dementia, other/unspecified dementia) and diagnostic criteria for inclusion
(Supplementary Table 2), and a set of controls strictly matched on site, age,
and sex of equal size.We trainedmultipleCNNs to differentiate between the
groups, employing a cross-validation approach utilizing all available time-
points for participants in three training folds and a single randomly selected
timepoint for participants in separate validation and test folds. When
stacking the out-of-sample predictions for all participants from all folds
together (n = 1708), for each fold using the model with the best validation
performance, we observed satisfactory discriminationwith a combined area
under the receiver operating characteristics curve (AUC) of 0.908
(0.904–0.920 split across folds, Supplementary Fig. 1), and an accuracy of
84.95% (83.04–87.13%, Supplementary Table 3). This is slightly below with
what is commonly achieved in similar studies classifying a specific subtype
(typically AD) in a single dataset28.

Relevance maps highlight predictive brain regions in individuals
with dementia
Based on the classifierswith the highestAUCs in the validation sets, we built
an explainable pipeline for dementia prediction, LRPdementia, using com-
positeLRP43, and a strategy to prioritize regions of the brain that contributed
positively towards a prediction of dementia in the explanations. Using this
pipeline, we computed out-of-sample relevancemaps for all participants by
applying the model for which the participant was unseen. Qualitatively,
these maps corroborated known anatomical locations with structural
aberrations in dementia, while still allowing for inter-individual variation
(Supplementary Fig. 2). We confirmed this apparent corroboration
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quantitatively by comparing a voxel-wise average map �Rdementia (Supple-
mentary Fig. 3), containing positive relevance from all correctly predicted
dementia patients, with a statistical referencemapG (Supplementary Fig. 4)
from an activation likelihood estimation (ALE) meta-analysis44, metho-
dology established by an earlier study40. For sanity checks,we also computed
average maps from three alternative pipelines, �Rsex , �Rrandomized weights and
�Rrandomized images. The comparisons with the reference map were done by
binarizing the maps on both sides of the comparison at various thresholds
andmeasuring the Dice overlap (Fig. 2a). For the three alternative pipelines
the amount of overlap decreased monotonically as the binarization
threshold rose (Fig. 2b), whereas for �Rdementia it stabilized as the maps grew
sparser, indicating its higher similarity withG. This effect was reaffirmed by
a normalized cross-correlation45 of 0.64 for �Rdementia, compared to 0.41, 0.40,
and 0.12 of �Rsex , �Rrandomized weights and �Rrandomized images, respectively. In

addition, we performed a region-wise, qualitative comparison of �Rdementia
and G, also yielding general agreement (Fig. 2c), with the most important
regions in both maps being the nucleus accumbens, the amygdala, and the
parahippocampal gyrus. Next, we tested the importance of the detected
regions in a predictive context, by applying an iterative mask-and-predict
procedure. For each participant, we produced a baseline dementia-
prediction ŷ0 and relevance map Rtask for each pipeline LRPtask. We then
iterativelymasked out themost important regions of the image according to
the relevancemapand recordedhow the prediction changed as a functionof
the occlusion (Fig. 2d). Using only true positives, the predictions should
ideally start out at ~1.0 (empirically found to be 0.89 on average) and trend
towards 0.5 (random prediction) as a larger proportion of the image is
occluded. The rate of decline is indicative of whether the masked regions
contain information essential for the classifier to classify the image correctly.

Fig. 1 | Overview of the modeling process. The
modeling process consisted of four sequential steps.
First, we fit multiple Simple Fully Convolutional
Networks to classify dementia patients and healthy
controls based on structural MRIs. Then we applied
the best models to generate out-of-sample predic-
tions and relevance maps for all participants. Next,
we validated the relevance maps against existing
knowledge using a meta-analysis to generate a sta-
tistical reference map. Finally, we employed the full
pipeline in an exploratory analysis to stratify
patients with mild cognitive impairment (MCI).
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Over 20 iterations we observed that the predictions based on maps from
both LRPdementia; LRPsex and LRPrandomized weights decreased, but LRPdementia
at a distinctly steeper rate than the rest (Fig. 2d). To quantify this
observation we calculated an area over the perturbation curve (AOPC) of
0.231, 0.009, −0.001 and 0.002 for LRPdementia, LRPsex , LRPrandomized images,
LRPrandomized weights respectively. Taken together, these results demonstrate

that our pipeline generates maps with relevance in brain regions associated
with changes in dementia.

Output from the explainable dementia pipeline has prognostic
value for MCI patients
For the MCI patients (n = 1256, timepoints = 6448), previously unseen by
all models, we built an averaging ensemble to procure a singular out-of-
sample prediction and relevance map per patient per timepoint. Put toge-
ther, we let this represent a morphological record (illustrated in Fig. 4)
visualizing the absolute quantity (indicated by the prediction) and location
(indicated by the relevancemap) of dementia-related pathology detected by
the models over time. Qualitatively, both predictions and maps were rela-
tively stable within a participant over time, while allowing enough variation
to composewhat resembled a trajectory. To investigate the prognostic value
of our proposed morphological records we divided the MCI patients into
three subgroups based on their trajectories in the follow-up period: those
who saw improvement of their condition (n = 80), those with a stable
diagnosis throughout (sMCI, n = 754), and those who progressed into
dementia (pMCI, n = 304). The remaining (n = 118) had either a non-MCI
diagnosis at thefirst timepoint, or amore complexdiagnostic trajectory (e.g.,
MCI- > AD- > CN) and were excluded from subsequent analyses. We
observed that the predictions in the first group were generally very low
(mean ŷ = 0.13, Supplementary Fig. 5a), indicating that themodels detected
little, if any, evidence of dementia in these participants. For the stable

Fig. 2 | Validation of relevance maps from the
dementia pipeline compared with three alter-
native pipelines. a Visualization of the comparison
between the binarized average relevance map
�Rdementia from the dementia-pipeline and the
binarized statistical reference map G from Ginger-
ALE, at different thresholds for binarization.
b Overlap between the four average relevance maps
�R from our four pipelines andG as a function of the
binarization threshold. The numbers in the legend
denote the normalized Cross Correlation (nCC) for
each pipeline. c Mean voxel-wise activation in
�Rdementia andG, grouped by brain region. dAverage
participant-wise prediction from the dementia
model after iteratively masking out regions of the
image according to relevance maps from the four
pipelines. Area over the permutation curve (AOPC)
for the dementiamap is indicated by the shaded area
and denoted in the legend for all pipelines.

Table 1 | Overview of cohorts

CNN training and cross-validation

Cohort Participants Mean age (± std) Sex (F/M)

Healthy controls 854 75.13±7.81 401/453

Dementia patients 854 74.82±7.84 401/453

Total 1708 74.98±7.82 802/906

Downstream prognostic and correlational analyses

Improved MCI 80 71.18±8.14 37/43

Stable MCI 754 74.63±7.66 324/430

Progressive MCI 304 75.60±7.46 124/180

Total 1138 74.67±7.73 485/653

Key characteristics of the cohorts used for training and testing the predictive models, and the
exploratory analyses utilizing their predictions.
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patients themeanpredictionwashigher (mean ŷ ¼ 0:33), but still below the
classification threshold of 0.5, whereas in the progressive group the model
predicted the average patient to already have dementia (mean ŷ ¼ 0:72).
Importantly, this was also true when considering only timepoints before
these patients received the clinical diagnosis (mean ŷ ¼ 0:65, Supplemen-
tary Fig. 5b), suggesting that themodel foundevidenceof thedisorder before
the clinical symptoms surpassed the diagnostic threshold. To formally
delineate the differences in predictions leading up to the potential diagnosis,
we combined the improving and stable patients into a non-progressive
group (nMCI, n = 834), and sampled patients to match the progressive
group based on their visiting histories, leading up to a terminal diagnosis
timepoint (or a constructednon-diagnosis timepoint in thenon-progressive
group). In this matched dataset (n = 550) we applied a linear mixed model
controlling for age and sex and observed that the group difference was even
greater than what we previously observed (β = 0.47, p = 6:05× 10�71,
Fig. 3a, Supplementary Table 4). Furthermore, we observed a significant
difference in longitudinal slopes (β = 0.05 increase in prediction per year,
p = 8:14× 10�17) indicating a greater rate of brain change detected by the
model in those who would be diagnosed with dementia at a later point
in time.

The large group differences in the dementia predictions leading up to a
potential diagnosis suggest this as a biomarkerwith innate prognostic value,
yet the most salient part of our morphological records were the relevance
maps. Thus, we performed exploratory analyses based on these to further
differentiate the non-progressive and progressive groups and characterize
both inter- and intra-group heterogeneity. However, given the high
dimensionality of the maps and the relatively small number of patients, we
first applied a principal component analysis (PCA) to relevance maps from
all MCI patients, effectively compressing their information content into a

smaller set of characteristic variables encoding facets of the maps, enabling
the subsequent analyses.We retained the 64 components that explained the
largest amount of variance and observed that they qualitatively clustered
into three overarching categories. The first component was a generic
component detecting general presence of relevance, resembling the average
map from dementia patients, and thus made up a cluster by itself. The next
cluster was comprised of the subsequent three components that captured
high-level, abstract patterns of relevance, namely differences in lateraliza-
tion, along the sagittal axis and in subcortical regions (Fig. 3b). The final
cluster consisted of the remaining 60 components that captured specific,
intricate patterns of presence/non-presence of relevance in regions revealed
in the preceding analyses (Supplementary Fig. 6). To investigate the
potential of using the relevance maps for prognosis, we first performed a
survival analysis using a Cox proportional hazards model where getting a
diagnosis was considered the terminal event.

Specifically, we modeled the fraction of the population without a
diagnosis as a function of age and used the subject-wise loadings of ct from
the PCA as predictors. After Benjamini-Hochberg correction, 37 of these
components were significantly associated with staying undiagnosed (Fig. 3c
and Supplementary Table 5). However, we observed a correlation between
the singular dementia prediction ŷ and the absolute magnitudes of these
components (Supplementary Fig. 7), indicating that the associations in the
survival analysis could be induced by differences in the prediction rather
than variability in the relevance maps. To mitigate this concern, we fit an
equivalent model while stratifying on ŷ, observing that 29 associations
remained significant, and that all coefficients had the same sign. None-
theless, this analysis did not account for the predictions and relevancemaps
changing within a participant over time, so we reframed the question in a
purely predictive setting, constructed to bear resemblance to a clinical

Fig. 3 | Utility of the dementia pipeline for pre-
dicting progression and characterizing
individual-level deviations in the mild cognitive
impairment cohort. a Group-wise mean predic-
tions from the dementia-model in the progressive
and non-progressive groups in the years before a
diagnosis was given. b The four first voxel-wise
components of the principal component analysis
plotted in MNI152-space. c Survival curves for the
average MCI patient (blue) and fictitious patients at
the extreme percentiles of the span for each com-
ponent. The second component was not significant
and is not shown. d Predictive performance of the
three models predicting progression in the years
following theMRI examination. The baseline model
(Mbase) included only sex and age as covariates, the
next modelMpred included the prediction from the
dementia classifier as a predictor, while the final
model Mcomp also added the component vectors
representing the relevance maps. e Significance
levels of correlations between the each of the four
PCA components and various cognitive measures.
The six annotated measures are composite language
(PHC_LAN) and executive function (PHC_EXF)
scores from the ADSP Phenotype Harmonization
Consortium, total score from the Functional Activ-
ities Questionnaire (FAQTOTAL), composite
executive function score from UW – Neuropsych
Summary Scores (ADNI_EF), clinical evaluation of
impairment related to judgment and problem-
solving (CDJUDGE) from the Clinical Dementia
Rating, and an overall measure of cognition from the
Mini-Mental State Examination (MMSCORE,
commonly referred to as MMSE).
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scenario, using the same participants (nMCI = 834, pMCI = 304, total
n = 1138). For eachMCI patient p at each timepoint t we asked whether we
were able to predict, at yearly intervals γ up to five years into the future,
whether p had progressed into dementia, using information from
LRPdementia available at t. Importantly, all timepoints for all these partici-
pants were unseen by the dementia-model, yielding out of sample predic-
tions and relevance maps from LRPdementia, and we employed nested cross-
validation to ensure the progression predictions were also out-of-sample.
First, we fit a baseline modelMbase with age and sex as predictors, showing
no predictive efficacy at any timepoint (all AUCs ≈ 0.5, Supplementary
Table 6), indicating that the dataset was not biased with respect to these
variables. When adding the prediction from the dementia model ŷt as a
predictor inmodelMpred we saw large improvements in prognostic efficacy
at all yearly intervals, culminatingwith a fold-wisemeanAUCof 0.889 after
five years (Fig. 3d). In thefinalmodel,Mcomp, also including the component
vector ct as predictors, we saw further improvements for all years, peaking at
0.903 after five years (p = 0.035 when compared to Mpred in a Wilcoxon
signed-rank test across the outer folds). Overall, our best performingmodel
predicted progression to dementia after five years with an AUC of 0.903, an
accuracy of 84.1%, a positive predicted value of 0.92, a sensitivity of 0.82 and
a specificity of 0.86 (Table 2).

Facets of the relevance maps are associated with cognitive
impairments in distinct domains
Finally, we tested whether common features found in the relevance maps,
represented by the PCA component, were correlated with impairments in
distinct cognitive and functional domains. We extracted 17 summary
measures from 7 neuropsychological tests (Supplementary Tables 7 and 8),
performed approximately at the same time as an MRI examination, and
tested for associations with the subject-wise loadings of ct in 733 MCI
patients using linearmodels. After FDR correction, while correcting for age,
sex and ŷ, we found 48 significant correlations between 18 unique com-
ponents and 14 of the cognitive measures (Fig. 3e). Component 30 and the
aggregate score from the Functional Activities Questionnaire (FAQTO-
TAL)had the highest number of significant hits among the components and
measures respectively, both with six passing the threshold. Most impor-
tantly, the components showed distinct patterns of associations with the
different cognitivemeasures. To ensure the significant associationswere not
driven by collinearity between components ci and ŷ, we ran an equivalent
analysis without including ŷ as a predictor, observing that only 5/48 of the
previously significant hits had coefficients with the opposite sign. To
summarize, the spatial features captured in our relevance maps, and sub-
sequently in our component vectors, were associated with distinct patterns
of performance on neuropsychological tests relevant for characterizing
phenotypic heterogeneity in dementia patients (Supplementary Fig. 8).

Discussion
Given thehugeburdenof thedisease andanexpected increase inprevalence,
innovative technological solutions for clinical decision-making in dementia
diagnostics and prognostics are urgently needed. Although commonly
referred to as a homogenous condition or split into a few subtypes based on
etiology or pathophysiology17, dementia patients exhibit unique and com-
plex deficiencies, disease trajectories, and cognitive deficits. To explore the

potential of brain MRI and XAI to characterize heterogeneity in the brain
underpinnings of dementia, we trained neural networks to differentiate
dementia patients from healthy individuals and derived relevance maps
using Layerwise Relevance Propagation to explain the individual-level
decisions of the classifier. The relevancemapswere specific to the individual,
spanned regions that were predictive of dementia and corroborated existing
knowledge of the anatomical distribution of structural aberrations. In a
cohort of MCI patients, it enabled characterization and differentiation of
individual-level disease manifestations and trajectories linked to cognitive
performance in multiple domains. While further validations in clinical
contexts are needed, our XAI pipeline for dementia demonstrates how
advanced predictive technology can be employed by clinicians to monitor
and characterize disease development for individual patients.

There is a multitude of XAI techniques available for explaining the
decisions of an image classifier, many of which have yielded promising
results for dementia classification38. We employed LRP due to its straight-
forward interpretation as well as earlier studies indicating robustness46 and
specificity42, properties we consider integral in a clinical decision support
system.Butwhile procuring explanations that are ipso factomeaningful is an
important step towards adoption of AI in clinical neuroimaging, it is not in
itself sufficient. There is a host of predictive models that are trivially
explainable, but not understandable47, and there is genuine concern that
XAI will lead to another level of systems that are formally well-defined, but
opaque and obscure, and thus practically useless48. Thus, empirical
explorations are imperative to investigate the nature of these explanations,
examine how they may be useful and build essential trust49. In our valida-
tion, we observed that the explanatory maps produced by the dementia
pipeline were more predictive and showed distinctly more agreement with
existing knowledge of pathology than those produced by the three alter-
native pipelines. Given limitations that have been exposed in suchmethods
earlier50,51 these validations are crucial, and observing that our results both
corroborate earlier evidence40 and extend upon it, provides confidence that
the explanations derived from the model are meaningful. However, we
emphasize that the ultimate validation should happen in actual imple-
mentations of the technology in end-user systems, with clinical personnel
applying it in clinical scenarios on realistic data.

We continued beyond validating the relevance maps by proposing
them as a potential epistemic and clinical tool to characterize individual
facets of dementia. To this end, we explored if the maps contributed to
predicting imminent progression from MCI to dementia, and correlated
them with different cognitive measures, extending upon the current
literature38. In both analyses we found evidence, although modest, that the
maps are informative beyond the predictions of the model. To illustrate the
potential of the pipeline for clinical decisionmaking we compiled its output
into a proposed morphological record (visualized for a single patient in
Fig. 4) that canhelp clinicians localizemorphological abnormalities during a
diagnostic process. Identifying subtle pathophysiology through deep phe-
notyping could have a huge potential for charting the heterogeneity of
dementia, providing precise biological targets to guide future research.
Furthermore, for the individual patient, it can support personalized diag-
nosis to identify appropriate disease-modifying treatments, and in the
future, hopefully, accurate therapeutic interventions.

The regions with the highest density of relevance in ourmaps were the
nucleus accumbens, amygdala and the parahippocampal gyrus, all of which
are strongly affected in dementia52–54. While the two latter corroborate the
established involvement of the medial temporal lobe55, it is surprising that
the hippocampus does not appear in our analyses, as it has frequently in
similar studies38,41,42. While this could be caused by actual localization of
pathology56we consider itmore likely to be related to the internalmachinery
of themodel. Specifically, the CNN relies on spatial context to identify brain
regions before assessing their integrity, utilizing filters that span areas of the
image larger than those containing the region itself. In the backwards pass,
LRPuses thesefilters, and thus the localizationof relevance is not necessarily
voxel precise. Furthermore, we believe the model broadly can be seen as an
atrophy detector, which necessarily entails looking for gaps surrounding

Table 2 | Predictive performance of the three models pre-
dicting progression five years into the future

Model AUC Balanced
accuracy

PPV Sensitivity Specificity

Mbase 0.515 51.05% 0.14 0.09 0.93

Mpred 0.889 83.61% 0.91 0.83 0.84

Mcomp 0.903 84.1% 0.92 0.82 0.86

The baseline modelMbase used only age and sex as covariates.Mpred also added the prediction
from the dementia model at the current timepoint as a predictor, whileMcomp additionally included
the component vector ct encoding information from the relevance maps.
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regions instead of directly at the regions themselves. Therefore, while the
relevancemaps provide important information, they depend on contextual
information and thus rely on interpretation from clinicians to maximize
their utility in clinical practice.

We focused our analyses mainly on the relevancemaps, but the results
with largest, immediate, potential for clinical utility were the predictions
from the dementia classifier. Other studies have shown the efficacy of
machine learning models in differentiating dementia patients and healthy
controls28, but it is intriguing that we see a large discrepancy in the pre-
dictions of the progressive and non-progressive MCI patients many years
before the dementia diagnosis is given. This corroborates findings from
theory-driven studies57 and a recent deep learning study27, implying
detectable structural brain changes many years before the clinical diagnosis
is given. This gives hope for advanced technology to contribute to early
detection and diagnosis through MRI-based risk scores, in our case sup-
ported by a visual explanation. If curative treatments prove efficacious and
become accessible, early identification of eligible patients could be
imperative58. Furthermore, timely access to interventions have shown effi-
ciency in slowing the progress of cognitive decline59, in addition to
improving the quality of life for those afflicted and their caregivers26,60.
Widely accessible technology that allows for early detection with high
precision could play a key role in the collective response to the impending
surge of patients and provide an early window of opportunity for more
effective treatments.

While our results show a great potential for explainable AI, and par-
ticularly LRP, as a translational technology to detect and characterize

dementia, there are limitations to our study. First, there are technical caveats
to be aware of. Most importantly, there is an absolute dependence between
the predictions of our model and the relevance maps. In our case, when we
qualitatively assessed the relevance maps of the false negatives, they were
indistinguishable from the true negatives. This emphasizes the fact that
when the model is wrong, this is not evident from the explanations. Next,
while themaps contain information sufficient to explain theprediction, they
are not necessarily complete. Thus, they don’t contain all evidence in the
MRI pointing towards a diagnosis, a property which could prove essential
for personalization. We have addressed this problem through pragmatic
solutions, namely ensembling and targeted augmentations, but theoretical
development of the core methodology might be necessary to theoretically
guarantee complete maps. Beyond the fundamental aspects of LRP, there
are weaknesses to the present study that should be acknowledged. First, the
dataset with dementia patients portrayed as heterogeneous mostly consists
of ADNI and OASIS data, and thus patients with a probable AD diagnosis
(although clinically determined). Thus, while we consider it likely, it is not
necessarily true that the dimension of variability spanning from healthy
controls to dementia patients portrayed by our model has the expressive
power to extrapolate to other aetiologies. To overcome this in actual clinical
implementations, we encourage the use of datasets that are organically
collected from subsets of the population that are experiencing early cogni-
tive impairments, for instance from memory clinics. Furthermore, it is not
trivial to determine whether a clinical, broad, dementia-label is an ideal
predictive target for models in clinical scenarios. Both ADNI and AIBL
contain rich biomarker information with multiple variables known to be
associated with dementia, such as amyloid positivity. It would be intriguing
to see studies methodologically similar to ours with a biological predictive
target, and we encourage investigations into whether this supports and
complements the results we have observed here. Another limitation of the
present study is out-of-sample generalization, especially related to scanners
and acquisition protocols. Although we utilize data frommany sites, which
we have earlier shown to somewhat address this problem61, in combination
with transfer learning, we did not explicitly test this by e.g., leaving sites out
for validation. Again, we advise that clinical implementations should be
based on realistic data, and thus at least be finetuned towards data coming
from the relevant site, scanner, and protocol implemented in the clinic62.
This also includes training models with class frequencies matching those
observed in clinical settings, instead of naively balancing classes as we have
done here. Next, we want to explicitly mention the cyclicality of our mask-
and-predict validation. In a sense it trivially follows that regions that are
considered important by a model are also the ones that are driving the
predictions, and thus it is no surprise that the relevancemaps coming from
the dementia model are more important to the dementia model than the
maps coming from e.g., the sexmodel.We addressed this by alternating the
models for test and validation, but fully avoiding this circularity would
require disjunct datasets, andmore and larger cohorts. Finally, we highlight
the potential drawbacks of including the improvingMCI patients alongside
the stable in the progression models. We believe this accurately depicts a
realistic clinical scenario, where diagnostic and prognostic procedures
happen based on currently available clinical information. However, that
these patients improve could indicate that their condition is not caused by
stable biological aberrations. This could oversimplify the subsequent pre-
dictive task, inflating our performance measures. In summary, the pre-
dictive valuewe observed for the individual patientmust be interpretedwith
caution.However, our extensive validationapproachaswell as our thorough
explanation of themethod and its limitations, and training on large datasets,
provide a first step towards making explainable AI relevant for clinical
decision support in neurological disorders. Nonetheless, it also reveals a
complicated balance between validating against existing knowledge and
allowing for new discoveries. In our case, confirming whether small details
revealed in the relevancemaps are important aspects of individualization or
simply intra-individual noise requires datasets with a label-resolution
beyond what currently exists. Thus, we reiterate our belief that the con-
tinuation of our work should happen at the intersection between clinical

Fig. 4 | A visualization of the proposed morphological record for a randomly
selected progressive MCI patient that was held out of all models and analyses.
a The top half shows the prediction from the dementia model at each visit, while the
bottom part displays the relevance map underlying the prediction. The opaque
sections (including c, d, and e) contain information accessible at the imagined
current timepoint (22.02.07) to support a clinician in a diagnostic procedure. The
angle (ff) represents the change in dementia prediction per year based on the first
two visits. b Translucent regions reveal the morphological record for the remaining
follow ups in the dataset, thus depicting the future. The ground truth diagnostic
trajectory is encoded by the color of the markers. c Predicted probabilities of pro-
gression at future follow-ups based on the prediction and relevance map at the
current timepoint. d Survival curve of the patient compared to the average MCI
patient calculated from the prediction and relevance map. The marker indicates the
location of the patient at the current timepoint. e A list of cognitive domains where
the patient is predicted to significantly differ from the average based on the pre-
diction and relevance map.
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practice and research63, by continuously collecting and labeling data to
develop and validate technology in realistic settings.

To conclude, while there are still challenges to overcome, our study
provides an empirical foundation and a roadmap for implementations of
brain MRI based explainable AI in personalized clinical decision support
systems. Specifically, we show that deep neural networks trained on a het-
erogenous set of brain MRI scans can predict dementia, and that their
predictions can be made human interpretable. Furthermore, our pipeline
allowsus to reasonabout structural brain aberrations in individuals showing
early signs of cognitive impairment by providing personalized character-
izations which can subsequently be used for precise phenotyping and
prognosis, thus fulfilling a realistic clinical purpose.

Methods
Data
The data used here was obtained from previously published, publicly
accessible studies. All of these collected informed consents from their par-
ticipants and received approval from their respective institutional review
board or relevant research ethics committee. The present study was per-
formed with approval from the Norwegian Regional Committees for
Medical and Health Research Ethics (REK) and conducted in accordance
with the Helsinki Declaration.

To train the dementiamodels we compiled a case-control dataset from
seven different sources (Supplementary Table 1), consisting of patients with
a dementia diagnosis and healthy controls from the same scanning sites.
Because of the different diagnostic criteria used in the original datasets, we
applied different rules to achieve a singular, heterogeneous dementia label
(Supplementary Table 2). We extracted all participants with a dementia-
diagnosis at all timepoints to comprise thepatient group (n = 854).Then, for
each unique proxy site (In ADNI, due to a large number of scanners and
acquisition protocols, and the work put into unifying them, we used field
strength as a proxy for site), sex, and age-bin spanning 10 years, we sampled
an equal number of healthy controls to form the matched control set (total
n = 1708, Table 1). Lastly, beforemodeling,we split the data intofive equally
sized folds stratified on diagnosis, site, sex, and age, such that all timepoints
for a single participant resided in the same fold.

For the MCI dataset, we started with all participants from all ADNI
waves with an MCI diagnosis (subjective memory complaint, MMSE
between 24 and 30, CDR > 0.5 with memory box > 0.5, Weschler Memory
Scale-Revised <9 for 16 years of education, <5 for 8–15 years of education
and <3 for 0–7 years of education)64, on at least one timepoint. These were
12661 images from 6448 visits for 1256 participants, none of which were
used formodel training. This selection criterion ensured all participants had
an MCI diagnosis at one point in time, though it did not limit us to only
those timepoints. Thus, in addition to those with a consistent, stable, MCI
diagnosis (sMCI), we had a variety of diagnostic trajectories, including those
transitioning from normal cognition to MCI, MCI to AD (pMCI) and
various other combinations. Before the subsequent analyseswediscarded all
participants without an MCI diagnosis initially, and everyone with ambig-
uous trajectories (e.g., MCI- > CN- >AD), leaving 5607 visits from 1138
participants.

From these two datasets, we extracted T1-weighted structural MRI
data for each participant at each timepoint to use as inputs for the sub-
sequent predictive models. Prior to modeling, the raw images were mini-
mally processed using a previously developed pipeline58 relying on
FreeSurfer v5.3 and FSL v6.065 to perform skullstripping66 and linear
registration to MNI152-space67 with six degrees of freedom. Consequently,
the processed images consisted of normalized voxel values from the raw
images, registered to a common spatial template and contained minimal
non-brain tissue.

Modeling
All dementia models were variants of the PAC2019-winning simple fully
convolutional network architecture68,69, modified to have a single output
neuron with a sigmoid activation. The architecture is a simple, VGG-like

convolutional neural network with six convolutional blocks and ~3million
parameters.We initialized themodelwithweights fromapublicly accessible
brain age model previously shown to have superior generalization cap-
abilities when dealing with unseen scanning sites and protocols61. The
models were trained on a single Nvidia A100 GPU with 40 GB of memory,
Tensorflow 2.670 through the Keras interface71. We used a vanilla stochastic
gradient descent (SGD) optimizer with a learning rate defined by the
hyperparameter settings (see next section), optimizing the binary cross-
entropy loss. All models ran for 160 epochs with a batch size of 6, and for
each run the epoch with the lowest validation loss was chosen. Varying
slightly depending on the hyperparameters, a single model trained in ~4 h.

For eachhold-out test foldwe trainedmodels on threeof the remaining
folds and validated on the fourth, akin to a cross-validation with an addi-
tional out-of-sample test set, to achieve out-of-sample predictions for all
1708 participants while allowing for hyperparameter tuning. The hyper-
parameters we optimized were dropout d 2 0:25; 0:5f g and weight decay
w 2 10�2; 10�3

� �
. Additionally, we tested stepwise, one-cycle and multi-

cycle learning rate schedules and a light and a heavy augmenter. Initial
values for the learning rate were set manually based on a learning rate
sweep72, though kept conservative to preserve the learned features from the
pretraining. The hyperparameter search was implemented as a naive grid-
search over the total 24 different configurations (Supplementary Fig. 9).We
selected the model procuring the best AUC in the validation set to produce
out-of-sample predictions for the outer hold-out fold. In thefinal evaluation
of the models, we compiled predictions for all participants, for each using
the model where they belonged to the hold-out test set. Our main method
for measuring performance was the AUC, but we also report accuracy,
which, due to our matching procedure, is equivalent to balanced accuracy.

Relevance maps
We built a pipeline LRPdementia for generating relevance maps by imple-
menting LRP37 on top of the trained classifier. LRP is a technique for
explaining single decisions made by themodel, and thus, when running the
pipeline on inputX a relevancemapR is generated alongside the prediction
ŷ. R is a three-dimensional volume, representing a visual explanation for ŷ,
where each voxel ri;j;k 2 R has a spatial position i; j; k corresponding to the
location of an input voxel xi;j;k 2 X. Furthermore, the intensity of ri;j;k can
be directly interpreted as how much voxel xi;j;k contributes to ŷ, such thatP

r2R r ¼ ŷ. In the original LRP-formulation, relevance r is propagated
backwards between subsequent layers Zl and Zlþ1 with artificial neurons
am 2 Zl and an 2 Zlþ1 such that rðamÞ is proportional to how much am
contributes to the activations of all an in the forward pass (Eq. (1)).

r am
� � ¼X

j

amwmnP
o aowon

r an
� �

; ð1Þ

where wmn denotes the weight between am and an
We controlled the influence of different aspects of the explanations

using a composite LRP strategy43, combining different formulations of the
LRP formula for the different layers in themodel to enhance specific aspects
of the relevance maps. Specifically, we employed a combination of alpha-
beta and epsilon rules that have previously shown to produce meaningful
results for dementia classifiers41,42. For the prediction layer, we retained the
most salient explanations through an LRPϵ-rule (Eq. (2)).

rϵ am
� � ¼X

n

amwmn

ϵþPo aowon

� �
r an
� �

ð2Þ

For the central convolutional layers, we upweighted positive relevance
(e.g., features increasing the prediction, corresponding to evidence for a
diagnosis) with LRPαβ-rules (Eq. (3)).

rαβ am
� � ¼X

n

α
ðamwmnÞþP
o aowon

� �þ � β
ðamwmnÞ�P
o aowon

� ��
 !

r an
� �

; ð3Þ
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where �ð Þþ and �ð Þ� denote positive and negative contributions respectively
For the input layer and the subsequent convolutional layer, we

employed LRPb to smooth finer details of the relevance maps (Eq. (4)).

rb am
� � ¼X

n

1
joj ð4Þ

where joj denotes the number of nodes connected to an.
The resulting relevancemaps produced by the pipeline were full brain

volumes with the same dimensionality as the MRI data (167 × 212 × 160
voxels) containing mostly (see below) positive relevance.

Notation-wise we generally consider the relevance map R Xð Þ for an
imageX to be a function of themodelmtask, where task indicates which task
the model was trained for, the LRP strategy LRPcomposite and the image X
(Eq. (5)).

R Xð Þ ¼ f mtask; LRPcomposite;X
� 	

ð5Þ

Because the compositeLRP strategydescribedabove is keptfixed inour
pipeline, this can be contracted (Eq. (6)).

R Xð Þ ¼ f mtask;X
� � ð6Þ

Furthermore, the model-specifier task can also annotate the map for a
further simplification (Eq. (7)).

Rtask Xð Þ ¼ f Xð Þ ð7Þ

Thus, LRPtask is used to annotate the full pipeline for a given task, while
Rtask Xð Þ denotes a single relevancemap generated by this pipeline for image
X.When the task is given by the context, we sometimes simplify this further
toR Xð Þ, and when a general image is considered, we simply useR to denote
its relevance map.

While we generally discuss our pipeline as a singular one, there were in
realityfive approximately equivalent pipelines (corresponding to themodels
trained for the five test folds), andwhich one is useddepends onwhat image
was used as input. Specifically, for each participant diagnosed with
dementia, the pipeline is chosen where the participant was part of the hold-
out test set while training the model, and both the relevance maps and the
predictions are thus always out-of-sample. For participants used in theMCI
analysis, which are all out-of-sample for all models, we created an ensemble
by averaging the predictions and the voxel-wise relevance across all models.

Before implementing the LRP procedure we made two slight mod-
ifications to the models to facilitate the backwards relevance propagation,
both leaving the functional interface of the model unchanged. First, we
removed the sigmoid activation in the final layer, so that the output of the
model changed from a bounded continuous variable ŷ 2 0; 1½ � to an
unbounded prediction ŷσ 2 �1; 1½ �. In this space a raw prediction of
ŷσ ¼ 0 is equivalent to a sigmoid-transformed prediction of ŷ ¼ 0:5, and
thus ŷσ < 0 means that the model predicts control status for the given
participant, andoppositely ŷσ > 0 implies that themodelpredicts adementia
diagnosis. Furthermore, this means that all positive relevance r 2 R; r > 0
can be interpreted as visual evidence in favor of a dementia diagnosis.
Secondly, we modified the model by fusing all batch normalization layers
with their preceding convolutional layers, adjusting their weights and biases
to match the shift and scaling previously performed by the normalization
layer73,74.

After generation, the relevance maps are in the same stereotaxic space
as their corresponding, linearly registered, input MRIs. To ensure intra-
individual comparisons were done in the same space we non-linearly
registered themaps toMNI152- space before subsequent statistical analyses
were run. First, we registered the preprocessedMRIsX used as inputs to the
1mmMNI152 template packaged with FSL using fnirt with splineorder=2.
We then applied the transformation computed for X to R Xð Þ using

applywarp. We also restrained our relevance maps to contain strictly
positive relevance, evidence in favor of a dementia prediction, by clipping
them to a minimum value of 0. Furthermore, to remove edge-effects from
our analyses, we enforce that there is no relevance in non-brain tissue by
nullifying all relevance outside the brain (Eq. (8)).

8 i; j; k
� �

xi;j;k ¼ 0 ) ri;j;k ¼ 0
h i

ð8Þ

All visualized relevance maps are plotted after non-linear registration,
overlayed on theMNI152-template. As themaps are three-dimensional, we
generally plot a collection of distributed axial slices. The relevance is colored
by the nibabel v3.2.275 cold_hot colourmap. Since the absolute relevance
values vary between maps, all maps are normalized to the intensity range
[0, 1] in the visualizations.

Validating the relevance maps
Earlier studies have shown that interpretability techniques in general are
prone to generate visual explanations that do not capture salient parts of the
input50,51. To investigate the extent of this for our pipeline LRPdementia we
employed two analyses to assess the sanity of the relevance maps. The first
was an established task-specific technique comparing the relevancemaps to
existing knowledge of the pathology of dementia40. The secondwas a purely
quantitative analysis examining how important the regions found by the
pipeline are for the dementia prediction ŷ. In both cases we contrasted the
relevance maps generated from the main pipeline with three alternative
pipelines representing variants of a null hypothesis, all expected to produce
relevance maps with no significant association with dementia.

LRPrandom images represents the simplest alternative pipeline, and is built
around the dementia model, but with an additional preprocessing step
scrambling the input (Eq. (9)).

Rrandom images Xð Þ ¼ Rdementia Xð Þ; ð9Þ

where X ¼ N �X; σX
� �

LRPrandom images is expected to generate relevance maps where the
relevance is evenly distributed across the entire image. In the next pipeline
LRPrandomweights we replaced the dementia-modelwith amodelwith random
weights (Eq. (10)).

Rrandomweights Xð Þ ¼ R mθ; X
� �

ð10Þ

mθ has not been trained for any task, and thus has random weights
initialized by the default Keras ”Glorot Uniform” weight-initializer. This
pipeline is expected to produce relevancemapswhich correlate with the raw
voxel intensities, e.g., high intensity in the input should entail more (abso-
lute) relevance, thereby reflecting aspects ofmorphology.Thefinal andmost
realistic alternative pipeline was LRPsex , where we replaced the dementia-
model with a binary sex-classifier (Eq. (11)).

Rsex Xð Þ ¼ R msex; X
� � ð11Þ

The sex-classifierwas trained todifferentiatemales fromfemales in one
of the splits from the dementia-dataset, achieving an out-of-sample AUC of
0.956 and a balanced accuracy of 89.40%. We did not do any hyperpara-
meter optimization for this model but used the best configuration from the
dementia cross-validation in the same fold. The heatmaps from this pipeline
should reflect regions where there is intra-individual variation in mor-
phology, which are predictive of sex but with minimal association with
dementia.

As a proxy for existing knowledge in the literature, we performed an
ALE meta-analysis using Sleuth v3.0.476 and GingerALE v3.0.244. We used
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Sleuth to search for relevant articles with the query

ImagingModality isMRI

AND

Context is disease

AND

Diagnosis is Dementia ORAlzheimer'sDiseaseOR Lewy BodyDementiaOR Frontotemporal

Dementia ORNon-Aphasic Frontotemporal Dementia

in the Voxel-based morphometry database, yielding 394 experiments from
124 articles. These experiments contained 3972 foci, 280 of which were
outside theMNI152mask, leaving 3692 to be loaded intoGingerALE. Then
the reference map G, with voxels gi;j;k, was generated by an ALE meta-
analysis using the default parameters: Cluster-level FWE = 0.01, Threshold
Permutations = 1000, P value = 0.001. The reference map is visualized in
Supplementary Fig. 4.

We performed four pairwise comparisons to estimate the amount
of overlap between each of the pipelines and G. For each pipeline the
comparison was performed by computing an average map �R, binar-
izing both it and G, and computing the Dice overlap between the two.
The employed approach closely resembles themethod ofWang et al.40,
but with multiple thresholds of binarization also for G, and allowed us
to plot similarity as a function of the threshold. For each pipeline, we
first computed an average relevance map �R across all true positives
(e.g., dementia patients that were correctly predicted to have a diag-
nosis by the dementia-model, n = 697), by computing their voxel-wise
average. Next, we binarized both the average map (Eq. (12)) and the
reference map (Eq. (13)) by thresholding them at multiple percentiles
p 2 0; 100½ Þ.

�Rp ¼
1; ri;j;k > percentileð�R; pÞ
0; else



ð12Þ

Gp ¼
1; gi;j;k > percentileðG; pÞ
0; else



ð13Þ

Then, for each percentile p we calculate the Sørensen-Dice coefficient
SDCp between the two (Eq. (14)).

SDCp
�Rp; Gp

� 	
¼

P
i;j;k ri;j;k gi;j;kP

i;j;k ri;j;k þ
P

i;j;k gi;j;k
; r 2 �R; g 2 G ð14Þ

Additionally, to have a singular numerical basis for comparison, we
computed the normalized cross-correlation45 between the (non-binarized)
average maps �R and the reference map G (Eq. (15)).

nCC �R; G
� � ¼

P
i;j;kðri;j;k � �rÞðgi;j;k � �gÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j;k ðri;j;k � �rÞ2 �Pi;j;k ðgi;j;k � �gÞ2
q ; r 2 �R; g 2 G ð15Þ

To facilitate an intuitive understanding of what parts of the brain the
dementia-model is focusing on, we also performed a similar, region-wise
comparison. Thiswas done by extracting a subset of voxels from the average
relevance map �Rdementia belonging to each region ρ (Eq. (16)) from the
Harvard-Oxford cortical and subcortical atlases77.

�Rρ ¼ ri;j;k j i; j; k
� � 2 ρ

n o
;

where ρ is a predefined region
ð16Þ

We did the same for G and let the mean activation per region for both
constitute a tuple (Eq. (17)) plotted in Fig. 2c.

P
r2Rρ

r

jRρj
;

P
g2Gρ

g

jGρj

 !
ð17Þ

However, as it is non-trivial to determine which aggregation method
corresponds to the most understandable and intuitive interpretation, we
also created plots for tuples of sums (Eq. (18)) and maximum values (Eq.
(19)) per region in Supplementary Fig. 10.

X
r2Rρ

r;
X
g2Gρ

g

0
@

1
A ð18Þ

max
r2Rρ

r; max
g2Gρ

g

� �
ð19Þ

To quantify the importance of the spatial locations captured by the
variousLRPpipelines forpredictingdementia,we implemented aprocedure
for iteratively occluding parts of the image based on the relevancemaps and
observing how the prediction from the dementia model changed78. Still
using the true positives, for each pipeline LRPtask for each MRI X0 we
generated a baseline dementia-prediction ŷ0 and relevance map Rtask. Then
we located the voxel with the highest amount of relevance in Rtask and
replaced a 15 × 15 × 15 cube centered around the voxel with random uni-
form noise U 0; 1ð Þ, effectively concealing all information contained in this
region. Next, we ran themodified imageX1

task through the dementia-model
to see how the prediction ŷ1task changed as a function of the occlusion. Note
that injecting a box of randomnoise into the image is not trivially equivalent
to removing information, however we specifically applied the same mod-
ification in the random box-augmentation during training and are thus
hopeful that the model is invariant to the injection beyond the information
removal. We iteratively applied this modify-and-predict procedure, also
masking out the regions from the relevant maps between each iteration to
minimize overlap of occlusionwindows, for 20 iterations, producing a list of
predictions ŷ0; ŷ

1
task; ŷ

2
task; . . . ; ŷ

19
task

� 
plotted for each pipeline in Fig. 2d

(averaged across all true positives). The rate of decline in these traces
indicates the importance of the regions found in the respective relevance
maps. We quantified the differences between the pipelines LRPtask by cal-
culating the area over their perturbation curves78 (AOPCs, Eq. (20)).

AOPCtask ¼
1
20

X20
i¼1

ŷ0 � ŷitask

 !
ð20Þ

Exploratory analyses in the MCI cohort
In the exploratoryMCI analyses,weusedLRPdementia to generate predictions
and relevance maps for participants from ADNI who were given an MCI
diagnosis at inclusion.Wefirst compiled thepredictions and relevancemaps
(and the corresponding timestamps) for each participant at all timepoints
into a single data structure we called a morphological record.We then tried
to utilize this data structure todifferentiate three groups: stableMCIpatients
(sMCI), progressive MCI patients (pMCI), and those who saw improve-
ment in their cognition throughout thedata collectionphase.The remaining
participants, e.g., thosewho either passed through all three diagnostic stages,
or bounced between diagnoses, were excluded. Furthermore, we combined
the stable and improving cohorts into a non-progressive group (nMCI) to
facilitate binary group comparisons in the subsequent analyses.

For the first analysis comparing predictions in the two groups, due
to variability in the total number and the frequency of visits between
participants, we aimed to create amatched dataset based on visit history
from the nMCI and pMCI cohorts to compare the predictions in the
two groups with reference to a specific timepoint. We first started with
all the progressive patients pp 2 pMCI who got a diagnosis at timepoint
tnþ1, and, for each patient individually, compiled all previous visits
tm; m ≤ n into a vector hp representing the time of the visits. The entries
dtm of the vector were the number of days until the diagnosis was given,
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tnþ1 � tm, including dtnþ1
¼ 0 (Eq. (21)).

hp ¼ dt0 ; dt1 ; . . . ; dtn ; 0
h i

ð21Þ

Then, for eachof thenon-progressivepatientspn 2 nMCIwhodidnot
have a time of diagnosis (e.g., tnþ1 is not given) we compiled a setHp of all
possible history vectors hp by varying which visit was chosen as t0 and a
terminal non-diagnosis timepoint tnþ1. Next, we defined a cost-criterion for
matching two histories (with an equal number of visits) as the sum of
absolute pairwise differences between the vectors (Eq. (22)).

cost h1; h2
� � ¼Xn

m¼0

jdh1tm � dh2tm j ð22Þ

For each pair of progressive and non-progressive patients ðpp; pnÞ this
allowed us to calculate a best possible match (Eq. (23)), given that the stable
patient had a total number of visits equal to or larger than the number of
visits for the progressive patient.

matchðpp; psÞ ¼
min
h2Hps

cost hpp ; h
� 	

9h 2 Hps
hj j ¼ hpp

��� ���� 	

1 else

8<
: ð23Þ

Finally, we compiled the cost of the optimalmatch from all pairs into a
matrix and found the best complete matching by minimizing the total cost
across this matrix using the Hungarian algorithm implemented in scipy
v1.6.379, such that each patient occurs in at most one pair.

We estimated differences in predictions ŷ between the two groups
using a linear mixed model. Specifically, we modeled ŷ at all timepoints
before the terminal timepoint tnþ1 as a function of age, sex (as controlling
variables), years to diagnosis, categorical group membership (nMCI,
pMCI), and an interaction between years to diagnosis and group. In addi-
tion, we had an independent intercept and slope per participant. Themodel
was fit through the formula API of statsmodels v0.13.280 using the formula
from Eq. (24) on the matched dataset.

y∼ ageþ sex þ years to diagnosisþ C group
� �

þyears to diagnosis : C group
� �

þ 1þ years to diagnosisjsubject� � ð24Þ

A full overview of coefficients and p values can be found in Supple-
mentary Table 4.

Due to the high dimensionality of the relevancemaps, we decomposed
them with a principal component analysis (PCA) before the final analyses.
To fit the PCA we used the non-linearly registered relevance maps from a
randomly selected timepoint for all MCI patients. Before fitting the model,
all relevance maps were smoothed with a constant 3 × 3 × 3 blurring kernel
using the convolution operation from Tensorflow 2.6 to strengthen the
signal-to-noise ratio. The PCA was computed using scikit-learn v1.0.281,
retaining 64 components (out of 1137maximally possible) in a component
vector c ¼ c0; c1; . . . ; c63

� 
. An axial slice from each of the 64 compo-

nents visualized in MNI152-space is shown in Supplementary Fig. 6.
We fit Cox proportional hazard models using the component vectors

as predictors to assess the association between the relevance maps and
progression as a function of age. In addition to the components, repre-
senting the maps, we controlled for sex in the model. The p values and
coefficients can be found in Supplementary Table 5. To account for cov-
ariance between the components and the dementia-prediction ŷ we ran an
additional model where we divided the patients into ten strata based on ŷ.
Both models were fit using lifelines v0.27.182.

To further explore the prognostic efficacy of our pipeline we set up a
predictive analysis for predicting progression atmultiple, fixed timepoints a
given number of months in the future. For each participant p with visits at

timepoints tp, we denoted the last timepoint with anMCI diagnosis tpneg and
the first timepoint with a dementia diagnosis (if present) tppos. Using a fixed
set of years into the future, γ 2 1; 2; 3; 4; 5f g, we constructed a target
variable zγ tpð Þ encoding progression according to Eq. (25).

zγ tpð Þ ¼
1 tp þ γ≥ tppos

0 tp þ γ≤ tpneg
NA else

8><
>: ð25Þ

where the NAs allow for exclusion of all patients where the status at time-
point tp þ γ is unknown. For each γ we constructed the target vector zγ
across all timepoints for all participants with zγ≠NA and split the con-
stituent patients p into five folds stratified on zγ, sex and age, such that all
timepoints from a participant resided in the same fold. Using these folds, we
fit logistic regression models to predict zγ with an l1-penalty in a nested
cross-validation loop, allowing us to both tune the regularization parameter
λ and have out-of-sample predictions for all participants. For eligible
participants we used all timepoints for training the models, but during
testing we sampled a random timepoint per participant to ensure
independence between datapoints in the final evaluation. For each γ we
fit threemodels: a baselinemodel to assess the bias in thedatasetwith respect
to age at the given timepoint tp and sex (Eq. (26)), a model including the
prediction ŷtp from the dementia classifier at tp as a predictor (Eq. (27)), and
a model including the relevance maps from tp, represented by the
component vector ctp , as additional predictors (Eq. (28)).

Mbase :¼ zγ ∼ agetp þ sex þ agetp × sex ð26Þ

Mpred :¼ zγ ∼ agetp þ sex þ agetp × sex þ ŷtp þ agetp × ŷtp ð27Þ

Mcomp :¼ zγ ∼ agetp þ sex þ agetp × sex þ ŷtp þ agetp × ŷtp þ ctp

ð28Þ

Allmodelswerefit and tunedusing theLogisticRegressionCV interface
of sklearn v1.0.281. We compared models by measuring the mean AUC
across the five folds (Supplementary Table 6). To evaluate clinical applic-
ability we also report accuracy, positive predictive value, sensitivity, and
specificity (Table 2). To determine whether the more complex models
represented significant improvements we employed a one-sidedWilcoxon
signed-rank test from scipy v1.9.379 to do pairwise comparisons between
Mbase and Mpred , and Mpred , and Mcomp across the five out-of-sample
AUCs independently.

To assess whether the relevance maps were associated with specific
cognitive functions we associated aspects of them with performance on
various cognitive tests. We first extracted test results from seven neu-
ropsychological batteries which spanned all ADNI waves and contained
high-level summary scores from the ADNI website (Supplementary
Table 7). We then manually extracted 17 summary scores spanning dif-
ferent, but overlapping, cognitive domains (Supplementary Table 8). The
component vectors c were used as proxies for the relevance maps, where
each represented a template for localization of pathology.Wematched 2402
component vectors with test results from 733MCI patients, forming a basis
for the comparison. We then calculated the univariate association between
cognitive performance according to each of the 17 with each of the
dimensions ci 2 c, while including age and sex as covariates for correction.
To isolate the effect of the localization we also corrected for
dementia-prediction, ŷ. When a patient had multiple potential matches, a
random timepoint was selected, and the final number of datapoints used in
the analyses varied from 518 to 675. Correction for multiple testing was
done with the Benjamini-Hochberg procedure. To ensure the associations
werenot confoundedby collinearities between c and ŷ, we alsoperformedan
equivalent analysis without correction to observe whether the sign of the
coefficients changed.
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The data used in this studywere gathered fromvarious sources, an overview
including acknowledgments of their respective funding sources is provided
in Supplementary Table 1. Among others, data used in the preparation of
this article was obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI, see adni.loni.usc.edu for further details), the Australian
Imaging Biomarkers and Lifestyleflagship study of ageing (AIBL, www.aibl.
csiro.au) the AddNeuroMed consortium, and MIRIAD (www.nitrc.org/
projects/miriad). The investigators within these studies contributed to the
design and implementation of the data collection process but did not par-
ticipate in the analysis or writing of this report, and this publication is solely
the responsibility of the authors. Requests for access will need to be placed
with the prinicipal investigators responsible for the individual studies.

Code availability
The trained model and explainable pipeline and the underlying code are
available at https://github.com/estenhl/pyment-public. Generic code for
generating explanations for 3D CNNs is available at https://github.com/
estenhl/keras-explainability.
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