Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A site-selective integration strategy for microdevices on conformable substrates

Abstract

Microdevices can be integrated on conformable substrates to create high-performance and multifunctional human–machine interfaces. However, existing integration schemes often use unpatterned, thick and rigid adhesive layers that can increase the flexural rigidity and compromise mechanical compliance. Here we report the site-selective and anisotropically conductive integration of microdevices on conformable substrates. An adhesive precursor is selectively deposited on high-density arrays of microdevices using a velocity-controlled dip-transfer coating method. This technique suppresses capillary action and unwanted coating between devices, thereby minimizing the extent of bonding areas that degrade the inherent compliance of polymeric substrates. Ferromagnetic particles in the adhesives are magnetically self-assembled into well-defined anisotropic chains, resulting in a low contact resistance without electrical interference between fine-pitch terminals. We use the approach to additively integrate multiscale, die-level microdevices on various flexible and stretchable substrates. We show that it can be used to assemble microscale light-emitting diodes and a microcontroller die on a flexible circuit to create a skin-attachable device capable of detecting and displaying temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: S-ACI for highly conformable microelectronics.
Fig. 2: Velocity-controlled dip-transfer coating for selectively patterning epoxy composites onto high-density microdevices.
Fig. 3: Electrical characteristics of magnetically self-assembled S-ACI.
Fig. 4: Mechanical characteristics of S-ACI-based conformable systems.
Fig. 5: Compatibility of the S-ACI scheme across various substrates and electrodes.
Fig. 6: Skin-attachable microelectronic systems integrating die-level microdevices onto an FPCB.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Kathe, C. et al. Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice. Nat. Biotechnol. 40, 198–208 (2022).

    Article  Google Scholar 

  2. Lee, J. H. et al. Wearable surface-lighting micro-light-emitting diode patch for melanogenesis inhibition. Adv. Healthc. Mater. 12, 2201796 (2023).

    Article  Google Scholar 

  3. Li, J. et al. Ultrathin, soft, radiative cooling interfaces for advanced thermal management in skin electronics. Sci. Adv. 9, eadg1837 (2023).

    Article  Google Scholar 

  4. Yao, K. et al. Encoding of tactile information in hand via skin-integrated wireless haptic interface. Nat. Mach. Intell. 4, 893–903 (2022).

    Article  Google Scholar 

  5. Liu, Y. et al. Electronic skin as wireless human-machine interfaces for robotic VR. Sci. Adv. 8, eabl6700 (2022).

    Article  Google Scholar 

  6. Jung, Y. H. et al. A wireless haptic interface for programmable patterns of touch across large areas of the skin. Nat. Electron. 5, 374–385 (2022).

    Article  Google Scholar 

  7. Toyozawa, K., Fujita, K., Minamide, S. & Maeda, T. Development of copper wire bonding application technology. IEEE Trans. Compon. Packag. Manuf. Technol. 13, 667–672 (1990).

    Google Scholar 

  8. Chan, Y. C. & Luk, D. Y. Effects of bonding parameters on the reliability performance of anisotropic conductive adhesive interconnects for flip-chip-on-flex packages assembly II. Different bonding pressure. Microelectron. Reliab. 42, 1195–1204 (2002).

    Article  Google Scholar 

  9. Park, S.-I. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009).

    Article  Google Scholar 

  10. Kim, R.-H. et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat. Mater. 9, 929–937 (2010).

    Article  Google Scholar 

  11. Park, S. I. et al. Light emission characteristics and mechanics of foldable inorganic light-emitting diodes. Adv. Mater. 22, 3062–3066 (2010).

    Article  Google Scholar 

  12. Lee, S. H. et al. Optogenetic control of body movements via flexible vertical light-emitting diodes on brain surface. Nano Energy 44, 447–455 (2018).

    Article  Google Scholar 

  13. Kim, R.-H. et al. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 11, 3881–3886 (2011).

    Article  Google Scholar 

  14. Choi, M. et al. Stretchable active matrix inorganic light-emitting diode display enabled by overlay-aligned roll-transfer printing. Adv. Funct. Mater. 27, 1606005 (2017).

    Article  Google Scholar 

  15. Wang, C. et al. Programmable and scalable transfer printing with high reliability and efficiency for flexible inorganic electronics. Sci. Adv. 6, eabb2393 (2020).

    Article  Google Scholar 

  16. Park, J.-B. et al. Stable and efficient transfer-printing including repair using a GaN-based microscale light-emitting diode array for deformable displays. Sci. Rep. 9, 11551 (2019).

    Article  Google Scholar 

  17. Lee, J. S. et al. Nanoscale-dewetting-based direct interconnection of microelectronics for a deterministic assembly of transfer printing. Adv. Mater. 32, 1908422 (2020).

    Article  Google Scholar 

  18. Hwang, H. et al. Stretchable anisotropic conductive film (S-ACF) for electrical interfacing in high-resolution stretchable circuits. Sci. Adv. 7, eabh0171 (2021).

    Article  Google Scholar 

  19. Lee, H. E. et al. Monolithic flexible vertical GaN light-emitting diodes for a transparent wireless brain optical stimulator. Adv. Mater. 30, 1800649 (2018).

    Article  Google Scholar 

  20. Guo, C. et al. Large-scale programmable assembly of functional micro-components for advanced electronics via light-regulated adhesion and polymer growth. npj Flex. Electron. 6, 44 (2022).

    Article  Google Scholar 

  21. Michoud, F. D. R. et al. Epineural optogenetic activation of nociceptors initiates and amplifies inflammation. Nat. Biotechnol. 39, 179–185 (2021).

    Article  Google Scholar 

  22. Gupta, S., Navaraj, W. T., Lorenzelli, L. & Dahiya, R. Ultra-thin chips for high-performance flexible electronics. npj Flex. Electron. 2, 8 (2018).

    Article  Google Scholar 

  23. Yokota, T. et al. Ultraflexible organic photonic skin. Sci. Adv. 2, e1501856 (2016).

    Article  Google Scholar 

  24. Lu, T., Wissman, J., Ruthika & Majidi, C. Soft anisotropic conductors as electric vias for Ga-based liquid metal circuits. ACS Appl. Mater. Interfaces 7, 26923–26929 (2015).

    Article  Google Scholar 

  25. Lau, J. H. Recent advances and new trends in flip chip technology. J. Electron. Packag. 138, 030802 (2016).

    Article  Google Scholar 

  26. Shang, B. et al. Numerical and experimental study on the transferred volume in phosphor dip-transfer coating process of light-emitting diodes packaging. J. Electron. Packag. 138, 021003 (2016).

    Article  Google Scholar 

  27. Wolf, F. G., Dos Santos, L. O. E. & Philippi, P. C. Capillary rise between parallel plates under dynamic conditions. J. Colloid Interface Sci. 344, 171–179 (2010).

    Article  Google Scholar 

  28. Baek, S. et al. Effects of tube radius and surface tension on capillary rise dynamics of water/butanol mixtures. Appl. Sci. 11, 3533 (2021).

    Article  Google Scholar 

  29. Qian, B. & Breuer, K. S. The motion, stability and breakup of a stretching liquid bridge with a receding contact line. J. Fluid Mech. 666, 554–572 (2011).

    Article  Google Scholar 

  30. Delannoy, J., Lafon, S., Koga, Y., Reyssat, E. & Quere, D. The dual role of viscosity in capillary rise. Soft Matter 15, 2757–2761 (2019).

    Article  Google Scholar 

  31. Kinloch, A. J. & Kinloch, A. J. Adhesion and Adhesives: Science and Technology (Springer Science & Business Media, 1987).

  32. Ghatak, J., Huang, J.-H. & Liu, C.-P. Derivation of the surface free energy of ZnO and GaN using in situ electron beam hole drilling. Nanoscale 8, 634–640 (2016).

    Article  Google Scholar 

  33. Ziff, R. M. Spanning probability in 2D percolation. Phys. Rev. Lett. 69, 2670–2673 (1992).

    Article  Google Scholar 

  34. Tang, Y., Wang, R., Zhang, Y., Li, S. & Du, P. Anisotropy of percolation threshold of BaTiO3-Ni0.5Zn0.5Fe2O4 composite films. Sci. Rep. 9, 7855 (2019).

    Article  Google Scholar 

  35. Jin, S., Tiefel, T. & Wolfe, R. Directionally-conductive, optically-transparent composites by magnetic alignment. IEEE Trans. Magn. 28, 2211–2213 (1992).

    Article  Google Scholar 

  36. Moon, S. & Chappell, W. J. Analysis of failure rate by column distribution in magnetically aligned anisotropic conductive adhesive. IEEE Trans. Compon. Packag. Manuf. Technol. 1, 784–791 (2011).

    Article  Google Scholar 

  37. Wang, L. & Lu, N. Conformability of a thin elastic membrane laminated on a soft substrate with slightly wavy surface. J. Appl. Mech. 83, 041007 (2016).

    Article  Google Scholar 

  38. Yamagishi, K., Takeoka, S. & Fujie, T. Printed nanofilms mechanically conforming to living bodies. Biomater. Sci. 7, 520–531 (2019).

    Article  Google Scholar 

  39. Kim, H.-S. et al. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting. Proc. Natl Acad. Sci. USA 108, 10072–10077 (2011).

    Article  Google Scholar 

  40. Lee, H. E. et al. Trichogenic photostimulation using monolithic flexible vertical AlGaInP light-emitting diodes. ACS Nano 12, 9587–9595 (2018).

    Article  Google Scholar 

  41. Jeong, J. et al. Remote heteroepitaxy of GaN microrod heterostructures for deformable light-emitting diodes and wafer recycle. Sci. Adv. 6, eaaz5180 (2020).

    Article  Google Scholar 

  42. Asad, M., Li, Q., Sachdev, M. & Wong, W. S. Thermal and optical properties of high-density GaN micro-LED arrays on flexible substrates. Nano Energy 73, 104724 (2020).

    Article  Google Scholar 

  43. Kim, J. et al. Active photonic wireless power transfer into live tissues. Proc. Natl Acad. Sci. USA 117, 16856–16863 (2020).

    Article  Google Scholar 

  44. Jang, B. et al. Auxetic meta-display: stretchable display without image distortion. Adv. Funct. Mater. 32, 2113299 (2022).

    Article  Google Scholar 

  45. Hu, L. et al. Flexible micro-LED display and its application in Gbps multi-channel visible light communication. npj Flex. Electron. 6, 100 (2022).

    Article  Google Scholar 

  46. Kim, N., Kim, J., Seo, J., Hong, C. & Lee, J. Stretchable inorganic LED displays with double-layer modular design for high fill factor. ACS Appl. Mater. Interfaces 14, 4344–4351 (2022).

    Article  Google Scholar 

  47. Jung, H. et al. High-resolution active-matrix micro-LED stretchable displays. J. Soc. Inf. Disp. 31, 201–210 (2023).

    Article  Google Scholar 

  48. Lee, Y. et al. Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Sci. Adv. 7, eabg9180 (2021).

    Article  Google Scholar 

  49. Lee, W. et al. Universal assembly of liquid metal particles in polymers enables elastic printed circuit board. Science 378, 637–641 (2022).

    Article  Google Scholar 

  50. Daerr, A. & Mogne, A. Pendent_drop: an ImageJ plugin to measure the surface tension from an image of a pendent drop. J. Open Res. Softw. 4, 3 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Samsung Research Funding & Incubation Center of Samsung Electronics under project no. SRFC-IT1801-07.

Author information

Authors and Affiliations

Authors

Contributions

H.Y., B.L. and Y.H. conceived the idea and designed the experiments. H.Y. and S.J. performed the device fabrication and characterization of S-ACI performance. H.Y. and S.J. carried out the FEA in discussion with B.L. H.Y., S.J., B.L. and Y.H. demonstrated the miniaturized micro-LED display and temperature-indicating system. H.Y., B.L. and Y.H. wrote the paper. All authors discussed the results and revised and approved the paper.

Corresponding authors

Correspondence to Byeongmoon Lee or Yongtaek Hong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Ravinder Dahiya and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 FEA of the effect of dip-transfer velocity on the capillary rise of the epoxy composite between two microdevices.

a, Schematic illustration of the dip-transfer coating of the epoxy composite for two microdevices separated by 30 µm. The withdrawing velocity of microdevices from the epoxy composite is considered a \({v}_{{\rm{dt}}}\) for FEA. b, Calculated y-component fluid position (\({p}_{{\rm{f}}}\)) (left) and fluid velocity (\({v}_{{\rm{f}}}\)) (right) of the epoxy composite at the centre of the meniscus. c, FEA results visualizing the y-component fluid velocity for various \({v}_{{\rm{dt}}}\) values from 1 to 50 mm min-1. d, Magnified FEA results visualizing the y-component fluid velocity and arrows representing the fluid velocity vectors. The left result shows the meniscus rising at a lower \({v}_{{\rm{dt}}}\) of 5 mm min-1. The right result shows the meniscus separating at a higher \({v}_{{\rm{dt}}}\) of 20 mm min-1.

Supplementary information

Supplementary Information

Supplementary Figs. 1–46 and Tables 1–12.

Supplementary Video 1

Flexible micro-LED display.

Supplementary Video 2

Velocity-controlled dip-transfer coating of epoxy composite to microdevices.

Supplementary Video 3

Miniaturized, die-level micro-LED display.

Supplementary Video 4

Real-time detection and visualization of water temperature flowing into a metal straw.

Supplementary Video 5

Skin-attachable, miniaturized temperature-indicating system.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, H., Jeong, S., Lee, B. et al. A site-selective integration strategy for microdevices on conformable substrates. Nat Electron (2024). https://doi.org/10.1038/s41928-024-01159-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41928-024-01159-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing