Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Catalytic atroposelective synthesis

Abstract

Atropisomeric architectures are increasingly encountered in modern materials and medicinally important compounds. More importantly, they are now a characteristic of broadly useful chiral ligands and organocatalysts. Over the past decade, substantial advancements have been made in enhancing the accessibility of major classes of atropisomers through the refinement of existing strategies and the introduction of contemporary concepts for catalytic atroposelective synthesis. This synthetic capability enables the expansion of chemical space and facilitates the preparation of valuable atropisomeric scaffolds. Here we review the state of the art in the asymmetric synthesis of atropisomers with the help of selected examples. Focus will be placed on the strategies that have emerged rapidly in recent years, and that are characterized by high versatility and modularity. Additionally, the incorporation of emerging synthetic tools and representative scaffolds are discussed, alongside future directions in this research domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Discovery and importance of axial chirality.
Fig. 2: Catalytic asymmetric synthesis of atropisomers through C–H functionalization.
Fig. 3: Synthesis of atropisomeric biaryls through atroposelective ring-opening reactions.
Fig. 4: Atroposelective direct arylation enabled by organocatalytic arene umpolung.
Fig. 5: Catalytic asymmetric synthesis of atropisomers involving axially chiral VQM.
Fig. 6: Catalytic asymmetric synthesis of atropisomers involving emerging synthetic tools.
Fig. 7: Axially chiral alkenes and stereogenic axis involving heteroatom(s).
Fig. 8: Atropisomers with a stereogenic C(sp3)–X axis or multiple axes.

Similar content being viewed by others

References

  1. Christie, G. H. & Kenner, J. LXXI.—The molecular configurations of polynuclear aromatic compounds. Part I. The resolution of γ-6:6′-dinitro- and 4:6:4′:6′-tetranitrodiphenic acids into optically active components. J. Chem. Soc. Trans. 120, 614–620 (1922).

    Article  Google Scholar 

  2. LaPlante, S. R., Edwards, P. J., Fader, L. D., Jakalian, A. & Hucke, O. Revealing atropisomer axial chirality in drug discovery. ChemMedChem 6, 505–513 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Noyori, R. & Takaya, H. BINAP: an efficient chiral element for asymmetric catalysis. Acc. Chem. Res. 23, 345–350 (1990).

    Article  CAS  Google Scholar 

  4. Chen, Y., Yekta, S. & Yudin, A. K. Modified BINOL ligands in asymmetric catalysis. Chem. Rev. 103, 3155–3212 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Teichert, J. F. & Feringa, B. L. Phosphoramidites: privileged ligands in asymmetric catalysis. Angew. Chem. Int. Ed. 49, 2486–2528 (2010).

    Article  CAS  Google Scholar 

  6. Rokade, B. V. & Guiry, P. J. Axially chiral P,N-ligands: some recent twists and turns. ACS Catal. 8, 624–643 (2018).

    Article  CAS  Google Scholar 

  7. Shirakawa, S. & Maruoka, K. Recent developments in asymmetric phase-transfer reactions. Angew. Chem. Int. Ed. 52, 4312–4348 (2013).

    Article  CAS  Google Scholar 

  8. Akiyama, T. Stronger Brønsted acids. Chem. Rev. 107, 5744–5758 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Parmar, D., Sugiono, E., Raja, S. & Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing and metal phosphates. Chem. Rev. 114, 9047–9153 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Kumarasamy, E., Raghunathan, R., Sibi, M. K. & Sivaguru, J. Nonbiaryl and heterobiaryl atropisomers: molecular templates with promise for atropselective chemical transformations. Chem. Rev. 115, 11239–11300 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Wencel-Delord, J., Panossian, A., Leroux, F. R. & Colobert, F. Recent advances and new concepts for the synthesis of axially stereoenriched biaryls. Chem. Soc. Rev. 44, 3418–3430 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Cheng, J. K., Xiang, S.-H., Li, S., Ye, L. & Tan, B. Recent advances in catalytic asymmetric construction of atropisomers. Chem. Rev. 121, 4805–4902 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Lassaletta, J. M. Atropisomerism and Axial Chirality (World Scientific, 2019).

  14. Tan, B. Axially Chiral Compounds: Asymmetric Synthesis and Applications (Wiley, 2021).

  15. Zheng, J. & You, S.-L. Construction of axial chirality by rhodium-catalyzed asymmetric dehydrogenative heck coupling of biaryl compounds with alkenes. Angew. Chem. Int. Ed. 53, 13244–13247 (2014).

    Article  CAS  Google Scholar 

  16. Liu, C.-X., Zhang, W.-W., Yin, S.-Y., Gu, Q. & You, S.-L. Synthesis of atropisomers by transition-metal-catalyzed asymmetric C-H functionalization reactions. J. Am. Chem. Soc. 143, 14025–14040 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Luo, J. et al. Enantioselective synthesis of biaryl atropisomers by Pd-catalyzed C-H olefination using chiral spiro phosphoric acid ligands. Angew. Chem. Int. Ed. 58, 6708–6712 (2019).

    Article  CAS  Google Scholar 

  18. Tian, M., Bai, D., Zheng, G., Chang, J. & Li, X. Rh(III)-catalyzed asymmetric synthesis of axially chiral biindolyls by merging C-H activation and nucleophilic cyclization. J. Am. Chem. Soc. 141, 9527–9532 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Yao, Q.-J., Zhang, S., Zhan, B.-B. & Shi, B.-F. Atroposelective synthesis of axially chiral biaryls by palladium-catalyzed asymmetric C-H olefination enabled by a transient chiral auxiliary. Angew. Chem. Int. Ed. 56, 6617–6621 (2017).

    Article  CAS  Google Scholar 

  20. Liao, G., Zhou, T., Yao, Q.-J. & Shi, B.-F. Recent advances in the synthesis of axially chiral biaryls via transition metal-catalysed asymmetric C-H functionalization. Chem. Commun. 55, 8514–8523 (2019).

    Article  CAS  Google Scholar 

  21. Dhawa, U. et al. Enantioselective pallada-electrocatalyzed C-H activation by transient directing groups: expedient access to helicenes. Angew. Chem. Int. Ed. 59, 13451–13457 (2020). The successful merging of electro-chemical synthesis and asymmetric catalysis in atroposelective synthesis.

    Article  CAS  Google Scholar 

  22. Dhawa, U. et al. Enantioselective palladaelectro-catalyzed C-H olefinations and allylations for N-C axial chirality. Chem. Sci. 12, 14182–14188 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jang, Y.-S., Woźniak, Ł., Pedroni, J. & Cramer, N. Access to P- and axially chiral biaryl phosphine oxides by enantioselective CpxIrIII-catalyzed C-H arylations. Angew. Chem. Int. Ed. 57, 12901–12905 (2018).

    Article  CAS  Google Scholar 

  24. Serrano, J., Ros, A. & Lassaletta, J. M. Ir-catalyzed atroposelective desymmetrization of heterobiaryls: hydroarylation of vinyl ethers and bicycloalkenes. J. Am. Chem. Soc. 142, 2628–2639 (2020).

    Article  Google Scholar 

  25. Uchikura, T. et al. Chiral phosphoric acid-palladium(II) complex catalyzed asymmetric desymmetrization of biaryl compounds by C(sp3)-H activation. J. Am. Chem. Soc. 145, 15906–15911 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Jacob, N., Zaid, Y., Oliveira, J. C. A., Ackermann, L. & Wencel-Delord, J. Cobalt-catalyzed enantioselective C-H arylation of indoles. J. Am. Chem. Soc. 144, 798–806 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Choppin, S. & Wencel-Delord, J. Sulfoxide-directed or 3d-metal catalyzed C-H activation and hypervalent iodines as tools for atroposelective synthesis. Acc. Chem. Res. 56, 189–202 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, Y.-J. et al. Synthesis of axially chiral biaryls through cobalt(II)-catalyzed atroposelective C-H arylation. Angew. Chem. Int. Ed. 62, e202310004 (2023).

    Article  CAS  Google Scholar 

  29. Catellani, M., Frignani, F. & Rangoni, A. A complex catalytic cycle leading to a regioselective synthesis of o,o′-disubstituted vinylarenes. Angew. Chem. Int. Ed. 36, 119–122 (1997).

    Article  CAS  Google Scholar 

  30. Ding, L., Sui, X. & Gu, Z. Enantioselective synthesis of biaryl atropisomers via Pd/norbornene-catalyzed three-component cross-couplings. ACS Catal. 8, 5630–5635 (2018).

    Article  CAS  Google Scholar 

  31. Liu, Z.-S. et al. Construction of axial chirality via palladium/chiral norbornene cooperative catalysis. Nat. Catal. 3, 727–733 (2020). The generation of atropisomeric Pd(II)–biaryl complex for further transformation.

    Article  CAS  Google Scholar 

  32. Feng, Q. et al. Catalytic atroposelective Catellani reaction enables construction of axially chiral biaryl monophosphine oxides. CCS Chem. 3, 377–387 (2021).

    Article  CAS  Google Scholar 

  33. Liu, Z.-S. et al. An axial-to-axial chirality transfer strategy for atroposelective construction of C-N axial chirality. Chem 7, 1917–1932 (2021).

    Article  CAS  Google Scholar 

  34. Gao, Q. et al. Catalytic synthesis of atropisomeric o-terphenyls with 1,2-diaxes via axial-to-axial diastereoinduction. J. Am. Chem. Soc. 143, 7253–7260 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Bringmann, G. & Hartung, T. First atropo‐enantioselective ring opening of achiral biaryls containing lactone bridges with chiral hydride‐transfer reagents derived from borane. Angew. Chem. Int. Ed. 31, 761–762 (1992).

    Article  Google Scholar 

  36. Ashizawa, T., Tanaka, S. & Yamada, T. Catalytic atropo-enantioselective reduction of biaryl lactones to axially chiral biaryl compounds. Org. Lett. 10, 2521–2524 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, G.-Q. et al. Design and synthesis of chiral oxa-spirocyclic ligands for Ir-catalyzed direct asymmetric reduction of Bringmann’s lactones with molecular H2. J. Am. Chem. Soc. 140, 8064–8068 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Yu, C., Huang, H., Li, X., Zhang, Y. & Wang, W. Dynamic kinetic resolution of biaryl lactones via a chiral bifunctional amine thiourea-catalyzed highly atropoenantioselective transesterification. J. Am. Chem. Soc. 138, 6956–6959 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Mori, K., Itakura, T. & Akiyama, T. Enantiodivergent atroposelective synthesis of chiral biaryls by asymmetric transfer hydrogenation: chiral phosphoric acid catalyzed dynamic kinetic resolution. Angew. Chem. Int. Ed. 55, 11642–11646 (2016).

    Article  CAS  Google Scholar 

  40. Zhang, J. & Wang, J. Atropoenantioselective redox-neutral amination of biaryl compounds through borrowing hydrogen and dynamic kinetic resolution. Angew. Chem. Int. Ed. 57, 465–469 (2018).

    Article  CAS  Google Scholar 

  41. Zhao, K. et al. Enhanced reactivity by torsional strain of cyclic diaryliodonium in Cu-catalyzed enantioselective ring-opening reaction. Chem 4, 599–612 (2018). The introduction of cyclic diaryliodonium for catalytic asymmetric synthesis of biaryls.

    Article  CAS  Google Scholar 

  42. Xue, X. & Gu, Z. Synthesis of bridged biaryl atropisomers via sequential Cu- and Pd-catalyzed asymmetric ring opening and cyclization. Org. Lett. 21, 3942–3945 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Hou, M., Deng, R. & Gu, Z. Cu-catalyzed enantioselective atropisomer synthesis via thiolative ring opening of five-membered cyclic diaryliodoniums. Org. Lett. 20, 5779–5783 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Duan, L., Zhao, K., Wang, Z., Zhang, F.-L. & Gu, Z. Enantioselective ring-opening/oxidative phosphorylation and P‑transfer reaction of cyclic diaryliodoniums. ACS Catal. 9, 9852–9858 (2019).

    Article  CAS  Google Scholar 

  45. Duan, L., Wang, Z., Zhao, K. & Gu, Z. Enantioselective preparation of atropisomeric biaryl trifluoromethylsulfanes via ring-opening of cyclic diaryliodoniums. Chem. Commun. 57, 3881–3884 (2021).

    Article  CAS  Google Scholar 

  46. Zhao, K., Yang, S., Gong, Q., Duan, L. & Gu, Z. Diols activation via Cu/borinic acids synergistic catalysis in atroposelective ring-opening of cyclic diaryliodoniums. Angew. Chem. Int. Ed. 60, 5788–5793 (2021).

    Article  CAS  Google Scholar 

  47. Wu, M. et al. Organocatalytic Si-CAryl bond functionalization-enabled atroposelective synthesis of axially chiral biaryl siloxanes. J. Am. Chem. Soc. 145, 20646–20654 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Li, C., Chen, D. & Tang, W. Addressing the challenges in Suzuki-Miyaura cross-couplings by ligand design. Synlett 27, 2183–2200 (2016).

    Article  CAS  Google Scholar 

  49. Goetzke, F. W., Van Dijk, L. & Fletcher, S. P. in Patais Chemistry of Functional Groups (Rappoport, Z. ed.) 1−54 (Wiley, 2019).

  50. Hedouin, G., Hazra, S., Gallou, F. & Handa, S. The catalytic formation of atropisomers and stereocenters via asymmetric Suzuki-Miyaura couplings. ACS Catal. 12, 4918–4937 (2022).

    Article  CAS  Google Scholar 

  51. Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C-C bonds. Chem. Rev. 115, 9587–9652 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Loxq, P., Manoury, E., Poli, R., Deydier, E. & Labande, A. Synthesis of axially chiral biaryl compounds by asymmetric catalytic reactions with transition metals. Coord. Chem. Rev. 308, 131–190 (2016).

    Article  CAS  Google Scholar 

  53. Surgenor, R. R., Liu, X., Keenlyside, M. J. H., Myers, W. & Smith, M. D. Enantioselective synthesis of atropisomeric indoles via iron-catalysed oxidative cross-coupling. Nat. Chem. 15, 357–365 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, X., Wang, J. & Yang, S.-D. Enantioselective cobalt-catalyzed reductive cross-coupling for the synthesis of axially chiral phosphine-olefin ligands. ACS Catal. 11, 14008–14015 (2021).

    Article  CAS  Google Scholar 

  55. Akiyama, T., Itoh, J., Yokota, K. & Fuchibe, K. Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. Angew. Chem. Int. Ed. 43, 1566–1568 (2004).

    Article  CAS  Google Scholar 

  56. Uraguchi, D. & Terada, M. Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc. 126, 5356–5357 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Qi, L.-W., Mao, J.-H., Zhang, J. & Tan, B. Organocatalytic asymmetric arylation of indoles enabled by azo groups. Nat. Chem. 10, 58–64 (2018). The identification of azo group for the arene umpolung under CPA catalysis and its application in the synthesis of atropisomers.

    Article  CAS  PubMed  Google Scholar 

  58. Qi, L.-W., Li, S., Xiang, S.-H., Wang, J. & Tan, B. Asymmetric construction of atropisomeric binaphthyls via a redox neutral cross-coupling strategy. Nat. Catal. 2, 314–323 (2019).

    Article  CAS  Google Scholar 

  59. Xia, W. et al. Chiral phosphoric acid catalyzed atroposelective C-H amination of arenes. Angew. Chem. Int. Ed. 59, 6775–6779 (2020).

    Article  CAS  Google Scholar 

  60. Mao, J.-H. et al. Organocatalyst-controlled site-selective arene C-H functionalization. Nat. Chem. 13, 982–991 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Da, B.-C., Wang, Y.-B., Cheng, C. K., Xiang, S.-H. & Tan, B. Organocatalytic atroposelective cross-coupling of 1-azonaphthalenes and 2-naphthols. Angew. Chem. Int. Ed. 62, e202303128 (2023).

    Article  CAS  Google Scholar 

  62. Ding, W.-Y. et al. DFT-guided phosphoric-acid-catalyzed atroposelective arene functionalization of nitrosonaphthalene. Chem 6, 2046–2059 (2020).

    Article  CAS  Google Scholar 

  63. Zhang, H.-H. et al. Design and enantioselective construction of axially chiral naphthyl-indole skeletons. Angew. Chem. Int. Ed. 56, 116–121 (2017).

    Article  CAS  Google Scholar 

  64. Wang, J.-Y. et al. Atroposelective construction of axially chiral alkene‐indole scaffolds via catalytic enantioselective addition reaction of 3‐alkynyl‐2‐indolylmethanols. Chin. J. Chem. 39, 2163–2171 (2021).

    Article  CAS  Google Scholar 

  65. Rodriguez, J. & Bonne, D. Enantioselective organocatalytic activation of vinylidene-quinone methides (VQMs). Chem. Commun. 55, 11168–11170 (2019).

    Article  CAS  Google Scholar 

  66. Furusawa, M. et al. Base-catalyzed Schmittel cycloisomerization of o-phenylenediyne-linked bis(arenol)s to indeno[1,2-c]chromenes. Tetrahedron Lett. 54, 7107–7110 (2013).

    Article  CAS  Google Scholar 

  67. Liu, Y. et al. Organocatalytic atroposelective intramolecular [4 + 2] cycloaddition: synthesis of axially chiral heterobiaryls. Angew. Chem. Int. Ed. 57, 6491–6495 (2018). The realization of enantiocontrolled nucleophilic addition to VQMs to synthesize atropisomers by judicious modification of the chiral catalyst.

    Article  CAS  Google Scholar 

  68. Peng, L. et al. Organocatalytic asymmetric annulation of ortho-alkynylanilines: synthesis of axially chiral naphthyl-C2-indoles. Angew. Chem. Int. Ed. 58, 17199–17204 (2019).

    Article  CAS  Google Scholar 

  69. Arae, S. et al. Asymmetric synthesis of axially chiral benzocarbazole derivatives based on catalytic enantioselective hydroarylation of alkynes. Org. Lett. 20, 4796–4800 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, L. et al. Design and atroposelective construction of IAN analogues via organocatalytic asymmetric heteroannulation of alkynes. Angew. Chem. Int. Ed. 59, 23077–23082 (2020).

    Article  CAS  Google Scholar 

  71. Jia, S. et al. Organocatalytic enantioselective construction of axially chiral sulfone-containing styrenes. J. Am. Chem. Soc. 140, 7056–7060 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Wang, Y.-B. et al. Rational design, enantioselective synthesis and catalytic applications of axially chiral EBINOLs. Nat. Catal. 2, 504–513 (2019).

    Article  CAS  Google Scholar 

  73. Xu, D. et al. Diversity-oriented enantioselective construction of atropisomeric heterobiaryls and N-aryl indoles via vinylidene ortho-quinone methides. CCS Chem. 4, 2686–2697 (2022).

    Article  CAS  Google Scholar 

  74. Tan, Y. et al. Enantioselective construction of vicinal diaxial styrenes and multiaxis system via organocatalysis. J. Am. Chem. Soc. 140, 16893–16898 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Liu, H., Li, K., Huang, S. & Yan, H. An isolable vinylidene ortho-quinone methide: synthesis, structure and reactivity. Angew. Chem. Int. Ed. 61, e202117063 (2022).

    Article  CAS  Google Scholar 

  76. Liang, Y. et al. Enantioselective construction of axially chiral amino sulfide vinyl arenes by chiral sulfide-catalyzed electrophilic carbothiolation of alkynes. Angew. Chem. Int. Ed. 59, 4959–4964 (2020).

    Article  CAS  Google Scholar 

  77. Zhang, X. et al. Asymmetric azide-alkyne cycloaddition with Ir(I)/squaramide cooperative catalysis: atroposelective synthesis of axially chiral aryltriazoles. J. Am. Chem. Soc. 144, 6200–6207 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Guo, W.-T. et al. Enantioselective Rh-catalyzed azide-internal-alkyne cycloaddition for the construction of axially chiral 1,2,3-triazoles. J. Am. Chem. Soc. 144, 6981–6991 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Zeng, L., Li, J. & Cui, S. Rhodium-catalyzed atroposelective click cycloaddition of azides and alkynes. Angew. Chem. Int. Ed. 61, e202205037 (2022).

    Article  CAS  Google Scholar 

  80. Irie, R., Masutani, K. & Katsuki, T. Asymmetric aerobic oxidative coupling of 2-naphthol derivatives catalyzed by photo-activated chiral (NO)Ru(II)-salen complex. Synlett 10, 1433–1436 (2000).

    Google Scholar 

  81. Hölzl-Hobmeier, A. et al. Catalytic deracemization of chiral allenes by sensitized excitation with visible light. Nature 564, 240–243 (2018).

    Article  PubMed  Google Scholar 

  82. Jiang, X. et al. Construction of axial chirality via asymmetric radical trapping by cobalt under visible light. Nat. Catal. 5, 788–797 (2022). The effective combination of photocatalysis with asymmetric catalysis in atroposelective synthesis.

    Article  CAS  Google Scholar 

  83. Xiong, W. et al. Dynamic kinetic reductive conjugate addition for construction of axial chirality enabled by synergistic photoredox/cobalt catalysis. J. Am. Chem. Soc. 145, 7983–7991 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Jiang, H. et al. Photoinduced cobalt-catalyzed desymmetrization of dialdehydes to access axial chirality. J. Am. Chem. Soc. 145, 6944–6952 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Liang, D., Chen, J.-R., Tan, L.-P., He, Z.-W. & Xiao, W.-J. Catalytic asymmetric construction of axially and centrally chiral heterobiaryls by Minisci reaction. J. Am. Chem. Soc. 144, 6040–6049 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Meyer, T. H., Choi, I., Tian, C. & Ackermann, L. Powering the future: how can electrochemistry make a difference in organic synthesis? Chem 6, 2484–2496 (2020).

    Article  CAS  Google Scholar 

  87. von Münchow, T., Dana, S., Xu, Y., Yuan, B. & Ackermann, L. Enantioselective electrochemical cobalt-catalyzed aryl C-H activation reactions. Science 379, 1036–1042 (2023).

    Article  Google Scholar 

  88. Lin, Y., von Münchow, T. & Ackermann, L. Cobaltaelectro-catalyzed C-H annulation with allenes for atropochiral and P‑stereogenic compounds: late-stage diversification and continuous flow scale-up. ACS Catal. 13, 9713–9723 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Qiu, H. et al. Enantioselective Ni-catalyzed electrochemical synthesis of biaryl atropisomers. J. Am. Chem. Soc. 142, 9872–9878 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Bock, L. & Adams, R. The stereochemistry of N-phenyl pyrroles. The preparation and resolution of N-2-carboxyphenyl-2,5-dimethyl-3-carboxypyrrole. J. Am. Chem. Soc. 53, 374–376 (1931).

    Article  CAS  Google Scholar 

  91. Frey, J., Choppin, S., Colobert, F. & Wencel-Delord, J. Towards atropoenantiopure N-C axially chiral compounds via stereoselective C-N bond formation. Chimia 74, 883–889 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Kitagawa, O. Chiral Pd-catalyzed enantioselective syntheses of various N-C axially chiral compounds and their synthetic applications. Acc. Chem. Res. 54, 719–730 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Rodríguez-Salamanca, P., Fernández, R., Hornillos, V. & Lassaletta, J. M. Asymmetric synthesis of axially chiral C-N atropisomers. Chem. Eur. J. 28, e202104442 (2022).

    Article  PubMed  Google Scholar 

  94. Zheng, S.-C. et al. Organocatalytic atroposelective synthesis of axially chiral styrenes. Nat. Commun. 8, 15238 (2017). Conformationally stable acyclic axially chiral alkenes were first accessed.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Feng, J., Li, B., He, Y. & Gu, Z. Enantioselective synthesis of atropisomeric vinyl arene compounds by palladium catalysis: a carbene strategy. Angew. Chem. Int. Ed. 55, 2186–2190 (2016).

    Article  CAS  Google Scholar 

  96. Jolliffe, J. D., Armstrong, R. J. & Smith, M. D. Catalytic enantioselective synthesis of atropisomeric biaryls by a cation-directed O-alkylation. Nat. Chem. 9, 558–562 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Wu, S., Xiang, S.-H., Cheng, J. K. & Tan, B. Axially chiral alkenes: atroposelective synthesis and applications. Tetrahedron Chem. 1, 100009 (2022).

    Article  Google Scholar 

  98. Yang, K. et al. Construction of axially chiral arylborons via atroposelective Miyaura borylation. J. Am. Chem. Soc. 143, 10048–10053 (2021). Conformationally stable atropisomers with a C-B stereogenic axis were accessed.

    Article  CAS  PubMed  Google Scholar 

  99. Yang, K. et al. Construction of C–B axial chirality via dynamic kinetic asymmetric cross-coupling mediated by tetracoordinate boron. Nat. Commun. 14, 4438 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xu, J. et al. Palladium-catalyzed atroposelective kinetic C-H olefination and allylation for the synthesis of C-B axial chirality. Angew. Chem. Int. Ed. 62, e202313388 (2023).

    Article  CAS  Google Scholar 

  101. Yang, J. et al. Chiral phosphoric acid-catalyzed remote control of axial chirality at boron-carbon bond. J. Am. Chem. Soc. 143, 12924–12929 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Mei, G.-J. et al. Rational design and atroposelective synthesis of N-N axially chiral compounds. Chem 7, 2743–2757 (2021).

    Article  CAS  Google Scholar 

  103. Mei, G.-J., Koay, W. L., Guan, C.-Y. & Lu, Y. Atropisomers beyond the C-C axial chirality: advances in catalytic asymmetric synthesis. Chem 8, 1855–1893 (2022).

    Article  CAS  Google Scholar 

  104. Centonze, G., Portolani, C., Righi, P. & Bencivenni, G. Enantioselective strategies for the synthesis of N-N atropisomers. Angew. Chem. Int. Ed. 62, e202303966 (2023).

    Article  Google Scholar 

  105. Betson, M. S., Clayden, J., Worrall, C. P. & Peace, S. Three groups good, four groups bad? Atropisomerism in ortho-substituted diaryl ethers. Angew. Chem. Int. Ed. 45, 5803–5807 (2006).

    Article  CAS  Google Scholar 

  106. Clayden, J., Senior, J. & Helliwell, M. Atropisomerism at C-S bonds: asymmetric synthesis of diaryl sulfones by dynamic resolution under thermodynamic control. Angew. Chem. Int. Ed. 48, 6270–6273 (2009).

    Article  CAS  Google Scholar 

  107. Yuan, B. et al. Biocatalytic desymmetrization of an atropisomer with both an enantioselective oxidase and ketoreductases. Angew. Chem. Int. Ed. 49, 7010–7013 (2010).

    Article  CAS  Google Scholar 

  108. Dai, L. et al. A dynamic kinetic resolution approach to axially chiral diaryl ethers by catalytic atroposelective transfer hydrogenation. Angew. Chem. Int. Ed. 62, e202216534 (2023).

    Article  CAS  Google Scholar 

  109. Bao, H., Chen, Y. & Yang, X. Catalytic asymmetric synthesis of axially chiral diaryl ethers through enantioselective desymmetrization. Angew. Chem. Int. Ed. 62, e202300481 (2023).

    Article  CAS  Google Scholar 

  110. Vaidya, S. D., Toenjes, S. T., Yamamoto, N., Maddox, S. M. & Gustafson, J. L. Catalytic atroposelective synthesis of N‑aryl quinoid compounds. J. Am. Chem. Soc. 142, 2198–2203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhu, D., Yu, L., Luo, H.-Y., Xue, X.-S. & Chen, Z.-M. Atroposelective electrophilic sulfenylation of N-aryl aminoquinone derivatives catalyzed by chiral SPINOL-derived sulfide. Angew. Chem. Int. Ed. 61, e202211782 (2022).

    Article  CAS  Google Scholar 

  112. Iorio, N. D., Filippini, G., Mazzanti, A., Righi, P. & Bencivenni, G. Controlling the C(sp3)-C(sp2) axial conformation in the enantioselective Friedel-Crafts-type alkylation of β‑naphthols with inden-1-ones. Org. Lett. 19, 6692–6695 (2017).

    Article  PubMed  Google Scholar 

  113. Wu, X. et al. Catalyst control over sixfold stereogenicity. Nat. Catal. 4, 457–462 (2021). Conformationally stable atropisomers with high-order stereogenicities are attained.

    Article  CAS  Google Scholar 

  114. Schmidt, T. A., Schumann, S., Ostertag, A. & Sparr, C. Catalyst control over threefold stereogenicity: selective synthesis of atropisomeric sulfones with stereogenic C-S axes. Angew. Chem. Int. Ed. 62, e202302084 (2023).

    Article  CAS  Google Scholar 

  115. Bertuzzi, G. et al. Organocatalytic enantioselective construction of conformationally stable C(sp2)-C(sp3) atropisomers. J. Am. Chem. Soc. 144, 1056–1065 (2022).

    Article  CAS  PubMed  Google Scholar 

  116. Bao, X., Rodriguez, J. & Bonne, D. Enantioselective synthesis of atropisomers with multiple stereogenic axes. Angew. Chem. Int. Ed. 59, 12623–12634 (2020).

    Article  CAS  Google Scholar 

  117. Lotter, D., Neuburger, M., Rickhaus, M., Häussinger, D. & Sparr, C. Stereoselective arene-forming aldol condensation: synthesis of configurationally stable oligo-1,2-naphthylenes. Angew. Chem. Int. Ed. 55, 2920–2923 (2016).

    Article  CAS  Google Scholar 

  118. Moser, D. & Sparr, C. Synthesis of atropisomeric two-axis systems by the catalyst-controlled syn- and anti-selective arene-forming aldol condensation. Angew. Chem. Int. Ed. 61, e202202548 (2022).

    Article  CAS  Google Scholar 

  119. Beleh, O. M., Miller, E., Toste, F. D. & Miller, S. J. Catalytic dynamic kinetic resolutions in tandem to construct two-axis terphenyl atropisomers. J. Am. Chem. Soc. 142, 16461–16470 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bao, X., Rodriguez, J. & Bonne, D. Bidirectional enantioselective synthesis of bis-benzofuran atropisomeric oligoarenes featuring two distal C-C stereogenic axes. Chem. Sci. 11, 403–408 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Luc, A. & Wencel-Delord, J. One reaction—double stereoinduction: C-H activation as a privileged route towards complex atropisomeric molecules. Chem. Commun. 59, 8159–8167 (2023).

    Article  CAS  Google Scholar 

  122. Luc, A. et al. Double cobalt-catalyzed atroposelective C-H activation: one-step synthesis of atropisomeric indoles bearing vicinal C-C and C-N diaxes. Chem. Catal. 3, 100765 (2023).

    Article  CAS  Google Scholar 

  123. Wang, B.-J. et al. Single-step synthesis of atropisomers with vicinal C-C and C-N diaxes by cobalt-catalyzed atroposelective C-H annulation. Angew. Chem. Int. Ed. 61, e202208912 (2022).

    Article  CAS  Google Scholar 

  124. Pummerer, R., Prell, E. & Rieche, A. Darstellung von binaphthylendioxyd. Ber. Dtsch. Chem. Ges. 59, 2159–2161 (1926).

    Article  Google Scholar 

  125. Miyashita, A. et al. Synthesis of 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (BINAP), an atropisomeric chiral bis(triaryl)phosphine, and its use in the rhodium(I)-catalyzed asymmetric hydrogenation of α-(acylamino)acrylic acids. J. Am. Chem. Soc. 102, 7932–7934 (1980).

    Article  CAS  Google Scholar 

  126. Alcock, N. W., Brown, J. M. & Hulmes, D. I. Synthesis and resolution of 1-(2-diphenylphosphino-1-naphthyl)isoquinoline; a P-N chelating ligand for asymmetric catalysis. Tetrahedron: Asymmetry 4, 743–756 (1993).

    Article  CAS  Google Scholar 

  127. Hulst, R., de Vries, N. K. & Feringa, B. L. α-Phenylethylamine based chiral phospholidines; new agents for the determination of the enantiomeric excess of chiral alcohols, amines and thiols by means of 31P NMR. Tetrahedron: Asymmetry 5, 699–708 (1994).

    Article  CAS  Google Scholar 

  128. Ooi, T., Kameda, M. & Maruoka, K. Molecular design of a C2-symmetric chiral phase-transfer catalyst for practical asymmetric synthesis of α-amino acids. J. Am. Chem. Soc. 121, 6519–6520 (1999).

    Article  CAS  Google Scholar 

  129. Nakashima, D. & Yamamoto, H. Design of chiral N-triflyl phosphoramide as a strong chiral Brønsted acid and its applicationto asymmetric Diels-Alder reaction. J. Am. Chem. Soc. 128, 9626–9627 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Kaib, P. S. J., Schreyer, L., Lee, S., Properzi, R. & List, B. Extremely active organocatalysts enable a highly enantioselective addition of allyltrimethylsilane to aldehydes. Angew. Chem. Int. Ed. 55, 13200–13203 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (21825105, 22231004, 22271135 and 22301125), the National Key R&D Program of China (2022YFA1503703 and 2021YFF0701604), Guangdong Innovative Program (2019BT02Y335) and Shenzhen Science and Technology Program (KQTD20210811090112004, JCYJ20210324120205016 and JCYJ20210324105005015). We appreciate assistance from SUSTech Core Research Facilities.

Author information

Authors and Affiliations

Authors

Contributions

B.T. and W.-Y.D. supervised the study. S.-H.X. and W.-Y.D. conducted the literature search. B.T., S.-H.X., W.-Y.D. and Y.-B.W. wrote the manuscript.

Corresponding authors

Correspondence to Wei-Yi Ding or Bin Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, SH., Ding, WY., Wang, YB. et al. Catalytic atroposelective synthesis. Nat Catal (2024). https://doi.org/10.1038/s41929-024-01138-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41929-024-01138-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing