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Transcriptional condensates: a blessing
or a curse for gene regulation?

M| Check for updates

Martin Stortz'?, Diego M. Presman ®3#{ & Valeria Levi® '®

Whether phase-separation is involved in the organization of the transcriptional machinery and if it aids
or inhibits the transcriptional process is a matter of intense debate. In this Mini Review, we will cover
the current knowledge regarding the role of transcriptional condensates on gene expression
regulation. We will summarize the latest discoveries on the relationship between condensate
formation, genome organization, and transcriptional activity, focusing on the strengths and
weaknesses of the experimental approaches used to interrogate these aspects of transcription in
living cells. Finally, we will discuss the challenges for future research.

The mechanisms behind gene transcription have puzzled researchers for
decades. Transcription factors (TFs) are central actors in this process since
they bind to regulatory elements' triggering the recruitment of coactivators,
chromatin remodelers, the Mediator complex, and RNA polymerase II (Pol
I1). The first textbook models of transcription were built considering the
sequential, hierarchical formation of these macromolecular protein-DNA
complexes through lock-and-key interactions’, but these models were
insufficient to describe many aspects of transcription in cells.

One of the most perplexing observations is that the diffusion of TFs
within the nucleus is not sufficient to explain their velocity in locating
specific DNA targets within the entire genome’”. Moreover, a wealth of
evidence shows that TF-chromatin interactions are highly dynamic, with
lifetimes spanning from less than a second to minutes’, in contrast to the
traditional view of transcriptional complexes bound to chromatin for
hours’. Puzzlingly, the stochastic and apparently inefficient TF-chromatin
interactions result in sustained transcriptional bursts that can last sig-
nificantly longer® and are the consequence of many regulatory processes that
involve TF binding to enhancers, enhancer looping, chromatin remodeling,
and Pol Il recruitment and activation through mechanism(s) not completely
elucidated™".

Although it was widely known that liquid-liquid phase-separation
(LLPS) contributes to many emergent properties of biological systems,
including cellular organization'', a tsunami of reports in the last few years'
proposed that the selective phase-separation of TFs and other related
molecules near target genes contributes to transcriptional regulation®. In
this review, we will explore the different models explaining the nature and
function of these condensates, their link with chromatin organization, and

the experimental evidence both in favor and against their role in
transcription.

Transcriptional hubs, condensates, or factories?

The discovery of membrane-less compartments within the nucleus dates
from the nineteenth century with the foundational observations of the
nucleolus™. Decades later, different electron microscopy techniques pro-
vided high-resolution views of the nuclear ultrastructure and its enormous
variety of nuclear bodies with different functions (reviewed elsewhere'). In
parallel, the improvement of fluorescence microscopy tools allowed the
exploration of the intracellular distribution of biomolecules in live cells,
leading to the observation that many actors involved in transcription do not
distribute homogeneously throughout the nucleus but concentrate in dis-
tinct foci. In this section, we will discuss the different ideas aimed at
explaining this heterogeneous organization. These models have granted
different functions and names to these foci and still present challenges to be
addressed.

A couple of decades ago, the observation of Pol II and active tran-
scription sites concentrating as discrete foci within the nucleus of interphase
cells led to the idea of transcription occurring within certain nuclear regions
referred to as transcription factories (reviewed elsewhere'®). This model—
that contrasted with the classic idea of individual polymerases moving along
an immobile DNA template'’—postulates that Pol IT molecules accumulate
in stable clusters that physically interact with mobile chromatin loops to be
transcribed'*. Transcription factories may explain the transcription of
some but not all genes, and consequently, they probably coexist with other
modes of transcription™. In fact, the observation of Pol Il molecules moving
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along very long and highly expressed genes” suggests a more complex
scenario than a static transcriptional platform.

Deeper scrutiny of transcription foci highlighted that they may con-
centrate many transcription-related molecules that interact among them
weakly and with genomic loci forming networks with lifetimes below the
minute time scale”. These dynamic networks are thought to favor the
protein-protein and DNA-protein interactions required for transcription
and are usually referred to as transcriptional hubs™. The propensity of TFs
and other transcriptional players to form hubs was attributed to a common,
modular structure shared by these molecules. Particularly, eukaryotic TFs
present well-folded DNA-binding domains that recognize their chromatin
targets and transactivation domains that usually include intrinsically dis-
ordered regions (IDRs)*® which could interact transiently with the IDRs of
Pol 11, cofactors, and other TFs***. Thus, both DNA-binding and trans-
activation domains of TFs would be responsible for the interaction network
implicated in transcriptional hubs.

In the same direction, weak, multivalent IDR-IDR interactions seem to
promote the phase-separation of IDR-containing proteins, including Medl,
Pol I, TBP*, BRD4, YAP”, and OCT4"” in aqueous solutions. These
observations led to the idea that similar droplet-like structures of
transcription-related molecules with hallmarks of liquid phases could form
inside cells and could play a role in transcription regulation’®***. According
to this idea, chromatin regions act as scaffolds recruiting TFs and related
molecules; this initial seed would grow by the incorporation of many other
multivalent molecules with IDRs through weak interactions, finally forming
a liquid transcriptional condensate***. We should point out that the terms
‘hubs’ and Tliquid transcriptional condensates” are not precisely defined in
theliterature yet; some authors are using the term ‘hubs’to indicate that they
are formed by a relatively lower number of molecules™ and do not specify
the mechanism involved in their formation™. In contrast, it is assumed that
liquid transcriptional condensates form by LLPS and include a larger
number of molecules. In any case, the term ‘transcriptional condensate’ is
now used to invoke any nuclear compartment concentrating biomolecules
involved in transcription (Pol II, TFs, coactivators). Additionally, tran-
scriptional repressors can also form condensates promoting transcriptional
repression’, suggesting that condensation would act by favoring the specific
activity of the condensed biomolecules, either activators or repressors. In
this Mini Review, we will use the term ‘transcriptional condensates’ as an
operational, agnostic definition, without implying that these structures
necessarily form by phase-separation.

A recent report shows that the charge patterns of IDRs define the
selective partitioning of biomolecules into different condensates, with
possible functional consequences”, including the segregation of different
transcriptional programs into specific transcriptional condensates™.
Moreover, different types of transcriptional condensates seem to control
several steps of gene activation, including the formation of preinitiation
complexes, transcriptional pausing and elongation, super-enhancer clus-
tering, and mRNA splicing and processing”*’. In fact, the biochemical
reactions occurring during transcription may modulate the relative com-
position and properties of these condensates. For example, Pol II CTD
phosphorylation will drive the transition from initiation to elongation, and
therefore, the exit of Pol Il molecules from initiation condensates to splicing
condensates*’. Also, newly synthesized RNA might regulate condensate
formation and dissolution””. These features would work as feedback
mechanisms controlling the different steps throughout mRNA biosynthesis.

However, other authors are challenging whether phase separation is
involved in the formation of transcriptional condensates, claiming that
alternative theoretical frameworks that also include weak and transient
interactions between multivalent biomolecules could explain many of the
properties assigned to liquid condensates” . Scrutinizing the biophysical
properties of transcriptional condensates is especially challenging given
their sub-diffraction size and the complex network of players involved,
which make it difficult to use the standard in vitro approaches for studies in
cells. There have been a few attempts to utilize single-molecule tracking in
live cells as a tool to test whether distinct diffusive behaviors can be observed

inside and outside condensates as predicted for distinct phases, leading to
diverse and sometimes contradictory conclusions******,

Hence, the jury is still out on whether sufficient evidence has been
provided for LLPS involvement in the formation of transcriptional
condensates.

Chromatin organization under the phase-separation lens
Chromatin presents a hierarchical organization at different scales that span
from the micron-sized territories occupied by each chromosome, sub-
micron features as topologically associating domains (TADs) and loops®, to
the recently characterized nano-domains™. Although it is now widely
accepted that many aspects of this organization are intimately related to
genome function™, the relationship is still far from being understood”.
Complementary approaches™ > focusing on the physical properties of this
biopolymer and/or its biochemical features, provided some clues regarding
chromatin folding in the nucleus and its relevance to its functions.
Chromatin-chromatin interactions are invoked as one of the major forces
driving genome self-organization, defining domains and compartments,
among other features™. At a sub-micron spatial scale, active processes such
as loop extrusion drive the formation of loops and TADs and, combined
with the passive, local exploration of the chromatin chain by diffusion, allow
the interactions between relevant transcriptional regulatory elements,
including enhancers and promoters™*.

In addition, many aspects of chromatin organization have been ana-
lyzed under the phase-separation framework™”. For example, reports
indicate that chromatin behaves as a liquid phase in vitro™ and at the sub-
micrometer/sub-second scales in cells”, whereas it behaves as a solid phase
at the micrometers/minutes scales and also in live cells™. Additionally, the
formation of constitutive and facultative heterochromatin domains might
be produced by the phase-separation of associated heterochromatin
proteins®”', exemplifying the relevance of condensation to genome
function.

More broadly, given that the structure of the genome influences its
related functions™, we can expect an analogous interplay between tran-
scriptional condensates and genome organization; this means that the for-
mer might shape the latter and vice versa (Fig. 1). In this sense, chromatin
could act as a scaffold recruiting multivalent transcription-related molecules
and triggering the formation of transcriptional condensates (Fig. 1a). Froma
chemical point of view, chromatin provides an adequate surface to promote
the formation of condensates even at lower concentrations of the engaging
molecules than those expected for a standard phase-separation process®.
Given that transcriptional condensates may involve the interactions
between multiple, distant chromatin regions, the 3D genome architecture
can also contribute to condensate formation providing an adequate topo-
logical framework. In this sense, it has been shown that CTCF-dependent
chromatin loops recruit Pol II, BRD4, and Mediator molecules, driving
transcriptional condensate formation® (Fig. 1b). In addition, the chroma-
tinic microenvironment of condensates seems to modulate their shape and
size (Fig. 1c), as very dense environments could limit the growth and coa-
lescence of synthetic condensates™ while low-density chromatin regions
would favor their formation®. However, the functional consequences of this
potential modulation remain elusive.

Conversely, nuclear condensates themselves can reorganize the local
chromatin architecture®. For example, it has been shown that TFs such as
FOXA1 and SOX2 co-condense with DNA in vitro, exerting a tension force
on the DNA strand which can bring together distal regions”". This force
observed in vitro could contribute to chromatin looping associated with
transcription regulation. Thus, chromatin-sticky condensates may bring
together genomic loci through coalescence involving capillary forces®>”
(Fig. 1d), whereas, in other cases, the growth of a non-sticky condensate may
exclude chromatin, pulling apart certain genomic loci® (Fig. le).

Although further work needs to be done to demonstrate that many of
these processes observed in vitro or with synthetic condensates in cells also
occur in vivo, several studies suggest that transcriptional condensates could
regulate gene expression by modulating genome structure. Specifically, the
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formation of phase-separated condensates of certain TFs has been linked to
a 3D rearrangement of the genome and the consequent activation of target
genes as observed during somatic cell reprogramming’”’, B-cell to macro-
phage trans-differentiation”' and leukemogenesis™. The use of synthetic TFs
capable of phase-separate also illustrates how transcriptional condensates
targeted to specific loci could increase chromatin accessibility, promote
long-range contacts between genes and regulatory regions, and induce
transcription of these target genes®.

Transcriptional condensates have also been postulated as responsible
for the formation of multi-way hubs comprising many genes involved in
similar biological functions (Fig. 1f). This is the case for housekeeping genes
in mammalian cells” wherein the contacts between their promoters are
driven by the TF Ronin. Similarly, a report claims that HSF1 is responsible
for the coalescence of long-range, distal genes responding to heat-shock
stress in yeast’". These examples illustrate additional ways in which tran-
scriptional condensates may contribute to chromatin architecture, thus
modulating gene expression.

A functional link between transcriptional condensates and tran-
scriptional activity: evidence and caveats

In the previous sections, we discussed some ideas on the nature of tran-
scriptional condensates and reviewed evidence linking them with chromatin
organization. The concepts presented above point to the inevitable relevant
question of what the function of these condensates in transcriptional control
might be. In this last section, we will present and discuss the evidence either
in favor of or against the role of transcriptional condensates in transcrip-
tional regulation. However, interpreting the complex and sometimes
apparently contradictory spectrum of evidence requires first understanding
the strengths and limitations of the different strategies usually employed to
address this question. In Table 1, we provide a representative overview of the
current literature describing the biological models, experimental approa-
ches, and relevant results from key studies in the field.

One important experimental caveat in all these studies is how to
selectively affect the ability of a transcriptional player to form condensates
without altering other important activities. For example, IDRs of TFs and
coactivators appear essential for condensate formation in many cases”, but
they are also linked to activation functions™ and even to the DNA target
searching process”’®. Therefore, it is extremely difficult to discriminate
among the many functions IDRs can have on transcriptional regulation,
including biomolecular condensation. This important limitation makes it
relevant to understand the methodological aspects of the specific studies;
Fig. 2 summarizes recent and commonly used experimental strategies
designed to test whether transcriptional condensates are involved in tran-
scriptional regulation.

Correlative studies (Fig. 2a) often include the use of different fluores-
cence microscopy techniques and labeling strategies to analyze the coloca-
lization of nuclear condensates and key molecular players in transcriptional
regulation, either in live or fixed cells. Noteworthy, fixation has been
reported to produce artifacts and change the appearance of condensates”,
therefore some colocalization experiments performed in fixed cells should
be validated on live samples if possible. In the particular case of co-
immunofluorescence studies, it is also imperative to perform additional
experiments on live-cell systems and purified proteins to characterize a
cellular object as a condensate.

Correlative reports have shown the colocalization between TFs con-
densates and other transcriptional players or epigenetic marks (Fig. 2a.i)
such as Med1, BRD4, H3K27ac, and Pol I7**’*””, Even though, in many
cases, the colocalization is partial (Fig. 2a.ii), at least a fraction of TF con-
densates appears to co-occupy, within the resolution limit of the techniques,
sites of active transcription. Similarly, TF condensates were found to colo-
calize with target enhancers or target genes labeled by DNA-FISH**” and
with fluorescently labeled reporter genes™****. In addition, a recent study
found that condensate proximity with a gene locus correlates with RNA
burst enhancement®. Taken together, these results point to at least a
population of transcriptional condensates being involved in transcription.

Causal studies (Fig. 2b), which means probing beyond correlation of a
cause-effect link between transcriptional condensates and transcription, are
intrinsically more difficult to achieve. There have been three main strategies
used thus far: pharmacological/chemical treatments, deletions/truncations/
mutations of key transcriptional players, and synthetic/chimera TFs cou-
pled with reporter genes. Chemical manipulation (Fig. 2b.i) includes—but is
not limited to—the use of aliphatic alcohols, which, in principle, perturb
weak hydrophobic interactions, resulting in the dissolution of some liquid
condensates™. Even though this behavior was traditionally considered the
fingerprint of LLPS and this dissolution correlated with decreased tran-
scriptional activity’*””***¥’, nowadays, this treatment is considered to have
many confounding effects on cells beyond affecting condensates® ™.
Nevertheless, it might still be useful to explore the chemical properties of the
intermolecular interactions involved in condensates rather than to establish
evidence of phase separation”’.

While pharmacological studies are scarce, there is an interesting report
wherein a compound specifically targets the androgen receptor’s IDR, dis-
rupting both the receptor condensates and its transcriptional activity”®.
Targeting the IDR of the oncogenic driver TF MYC also affects its tran-
scriptional activity™, but the effect on MYC condensates has not been
evaluated. Beyond a potentially suitable tool to causally link condensates to
transcriptional activity, pharmacological manipulation of condensates can
potentially be used for clinical applications™. We expect that high-

Fig. 1 | Proposed mechanisms involved in the a
interplay between nuclear condensates and chro-
matin organization. Illustrations of chromatin

(pink) and condensates (green) schematically
represent the ways they can influence each other.

a Chromatin can act as a nucleation site for con-

Chromatin as
nucleation site

densate formation. b Chromatin structure driven by
CTCEF-cohesin loops (cohesin complexes repre-
sented in blue) can act as a structural framework
favoring condensate formation. ¢ Chromatin d
microenvironment can exert mechanical forces on
nuclear condensates. Local microenvironments

Chromatin pulled in

would generate greater forces impairing condensate
growth. d Condensate formation and growth can
pull in two distant chromatin regions, driving
chromatin looping. e Condensate growth can exert
mechanical forces on surrounding chromatin,
pushing it apart. f Condensate can bring multiple
chromatin regions together, forming a multi-way
chromatin hub.

C Mechanical constraints
by chromatin

b Chromatin as structural
framework

//.. _/I

CTCF/cohesin-

driven loops Chromatin density
e Chromatin pushed apart f Multiway hubs
—
Condensate-
driven loops
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TF with an additional IDR increases transcription below critical con-
centration (no condensate formation) but decreases transcription

when forming condensates at higher concentrations

Causal (mutations, truncations) Inhibition

Natural TFs

Cancer cells (live)

107

1) Donut-shape condensates containing TF and corepressor; 2) IDR

necessary for condensation and transcriptional repression.

Inhibition

Correlative (colocalization); Causal (truncations)

Natural TF

Mice liver (fixed), cancer cell
lines (live) and mice (live?)

The Table summarizes some of the main evidence in the literature regarding the role of transcriptional condensates in regulating transcriptional activity, focusing on the experimental tools and strategies utilized. Only those experiments performed on cultured cells or
organisms were included (evidence obtained from in vitro approaches was excluded from this table). TF transcription factor, CTD C-terminal domain, /DR intrinsic disordered region, PP7/MS2 RNA labeling system to track transcription in real time, Pol Il Ser-5-P post-

translational modification of Pol Il that indicates transcription initiation, DBD DNA-binding domain.

throughput screening strategies will amplify the pharmacological toolkit to
target IDRs and transcriptional condensates in the near future.

Deletions, truncations (Fig. 2b.ii), and point-mutations (Fig. 2b.iii) in
different transcriptional players are suitable strategies to test causality, with
many examples shown in Table 1. However, it is worth noting that given the
likely lack of true modularity in TF domains™, the complex intertwined
connections between a measured phenotype and untested pleiotropic effects
of mutations make the lines between correlation and causality a bit blurry.
For example, and as we pointed out above, deleting an IDR of a TF might
affect its mechanism of action at different levels, making it difficult to dis-
criminate which one is responsible for the change in the phenotypic output.

Synthetic/chimeric TFs have provided the most promising
experimental evidence thus far to test the hypothesis of a causal link
between transcriptional condensates and transcriptional activity
(Table 1). Synthetic TFs usually contain a DNA-targeting moiety
(such as a catalytically dead Cas9, or the DNA-binding domain of a
eukaryotic/prokaryotic TF) (Fig. 2b.iv), an activation domain of
interest, and an ’optogenetic’ domain (e.g., CRY2), which allows
control of oligomerization and condensate formation in a switch-on/
off fashion using light'*******" (Fig. 2b.v). These constructs may
sometimes include additional IDRs (e.g., FUS IDR) to enhance their
condensation propensity (Fig. 2b.vi). Many of these approaches are
frequently combined with the use of reporter genes with specific
binding sequences for the DNA-binding domain of the synthetic TF
and stem-loops within the reporter nascent RNA that bind to coating
proteins fused to fluorescent tags, providing a spatially resolved,
readable transcriptional output (Fig. 2b.iv). The intrinsic artificial
nature of these constructions is a valid concern, and therefore, the
extrapolation of the results obtained from synthetic TFs with reporter
genes to the biology of natural TFs in a native context remains
unclear.

Many studies using synthetic/chimera TF strategies pointed to a
positive functional role of condensates in transcriptional activity”******"***
(Table 1). Nevertheless, a more complex picture is portrayed in a study
wherein DNA binding and oligomerization are independently controlled
within a synthetic TF. Here, the authors analyze how artificial TF clustering
correlates with the transcriptional output of a fluorescent reporter gene,
reporting the occurrence of transcription with and without clustering.
Interestingly, only 4% of TF clusters colocalize with nascent RNA signals,
with a wide spectrum of effects ranging from inhibition to sustained acti-
vation depending on the artificial TF”. In fact, other groups have argued that
transcriptional condensates are either neutral or even inhibitory for
transcription™***, In this sense, a clean experimental design in yeast
demonstrated that the activation of a reporter gene did not depend on
clustered TF recruitment™.

Both subtle differences and, in some cases, opposite conclusions among
studies on the role of condensates in transcription could be due to a plethora
of factors. From cell-type to gene-specific effects and all the way to protein-
specific action can explain the observed differences. Moreover, as with most
biological processes, transcriptional condensates may have an ideal com-
position range for optimal activity wherein any excess or deficiency might
have inhibitory effects, as illustrated by others””*”, and this optimal con-
centration ratio could be system- and/or condition-specific.

Outlook/perspectives
Over the last few years, we witnessed striking adjustments in how we
understand transcription. One of the most stunning changes is the multi-
phase picture of the nucleus’, where some of the membrane-less subnuclear
compartments concentrate transcriptional actors interacting through weak,
multivalent bonds. Although substantial work has been done to elucidate
whether these subnuclear structures play a role in the spatial and/or tem-
poral control of transcription, we are still missing fundamental pieces to
understand this complex transcriptional puzzle (Box 1).

One of the most relevant challenges to explain the relatively slow
progress in this specific topic is the absence of adequate tools to study these
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nuclear compartments. Particularly, there is not a consensus in the scientific
community on the evidence required to firmly assess LLPS involvement in
the formation of a given type of condensates in cells (discussed in detail
elsewhere*“””®). Because of these technical difficulties, probing a functional
relationship between biomolecular condensation and transcriptional reg-
ulation is still very challenging'”. A major criticism in the field is that many
observations performed in vitro or by the artificial manipulation of proteins
to generate condensates in cellular systems cannot be extrapolated to native
proteins in physiological conditions. Forcinglocal molecular concentrations
higher than their physiological values may favor non-specific interactions
between multivalent molecules and the formation of abnormal

condensates”. Moreover, chemical cell fixation might promote the aberrant
distribution of many nuclear biomolecules”'*'"", perturb chromatin
organization'”"'”, and underestimate the transient nature of relevant
interactions, overall preventing the straightforward interpretation of studies
using fixed cells. In the same direction, it might be risky attempting to
directly correlate live, single-cell imaging observations with those obtained
from experiments based on the chromosome conformation capture pro-
cedure, a method based on crosslinking chromatin regions that provides
information about the three-dimensional organization of the genome'”.
Despite these limitations, growing evidence points toward a functional
link between (some) transcriptional condensates and transcriptional
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Fig. 2 | Strategies to study the role of transcriptional condensates on transcrip-
tional activity. a Correlative strategies generally involve using fluorescence micro-
scopy to compare the spatial distributions of the condensates of a TF of interest
(green) with those of other biomolecules with a known role in transcription, such as
coactivators or Pol II (red). The merged images illustrate different degrees of colo-
calization (yellow): i) ‘total colocalization’, where both biomolecules colocalize in the
same condensates, and i) ‘partial colocalization’, where only a subset of condensates
colocalize with the condensates formed by the other biomolecule. b Causal strategies
involve performing perturbations of TF structure and analyzing their impact on
certain properties in the cells. Top panels: TFs usually present a modular structure
with a DNA-binding domain (DBD), and an IDR responsible for transactivation,
target searching, and, often, condensate formation. TF structure can be experi-
mentally altered by different approaches, including i) pharmacological targeting
(oval), ii) deletions/truncations (scissors), and iii) point-mutations (cross). Ana-
lyzing the TF spatial distribution and the TF-driven transcriptional activity after

these perturbations allows for exploring the contribution of the specific TF structural
features to condensate formation and activity. Bottom panels: Synthetic TFs (green-
purple) can be designed by fusing domains of the TF of interest to moieties with
known properties. iv) Designed DNA binding: replacing the TF DBD with a well-
studied, bacterial TF DBD, or RNA-guided dCas9 (not illustrated), and introducing
a specific transcription reporter (cyan) driven by this DBD allow studying how the
TF IDR contributes to transcriptional activity at these designed DNA targets. v)
Designed nucleation: replacing the TF DBD with a responsive module capable of
light- or chemical-controlled oligomerization helps to understand the contribution
of the TF IDR to condensate formation. vi) Designed condensation: this strategy
includes analyzing the effects of replacing the TF IDR with an exogenous IDR with
enhanced condensation propensity, helping to understand the role of condensation
on the TF activity at its natural DNA targets. These strategies can also be combined
or modified to analyze more complex scenarios, according to the specific system.

Box 1 | Questions and challenges looking forward

Outstanding questions and challenges

¢ Is condensation functionally involved in transcriptional initiation? The
field is still lacking a definitive roadmap to demonstrate that certain
membrane-less bodies are formed via biomolecular condensation, and
the tools to separate condensation from other functions of the same
protein.

e It is hard to correlate live-cell microscopy measurements with the
outputs of high-throughput genomics. Beyond the inherent difference in
the experimental unit (single-cell vs average population measurements),
fixation seems to severely affect chromatin organization/folding”” and
condensate formation'®.

e Who comes first, chromatin organization or transcriptional con-
densates? Does chromatin rule, is it the other way around, or does it

regulation (Table 1). The state-of-the-art data suggests that this relationship
is more complex than the initial view of transcriptional condensates con-
centrating transcription-activating molecules near gene promoters and thus
promoting transcription. Indeed, the small sample of key reports compiled
in this Mini Review attempts to be representative of the abundant literature
in the field, ruling out a univocal relation between condensates and tran-
scription regulation.

Our unresolved transcriptional puzzle suggests that transcriptional
condensates with different compositions and functions may coexist in a
single cell and be part of another temporal/spatial regulatory layer of
transcription. Biomolecular condensates may be directly engaged in this
regulation or could also contribute to shape chromatin structure at different
scales, thus indirectly modulating gene expression.
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