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Single-cell RNA sequencing reveals the
cellular and molecular heterogeneity of
treatment-naïve primary osteosarcoma
in dogs

Check for updates

Dylan T. Ammons 1 , Leone S. Hopkins2, Kathryn E. Cronise1, Jade Kurihara2, Daniel P. Regan1,2 &
Steven Dow 1,2

Osteosarcoma (OS) is a heterogeneous, aggressive malignancy of the bone that disproportionally
affects children and adolescents. Therapeutic interventions for OS are limited, which is in part due to
the complex tumor microenvironment (TME). As such, we used single-cell RNA sequencing (scRNA-
seq) to describe the cellular and molecular composition of the TME in 6 treatment-naïve dogs with
spontaneously occurring primary OS. Through analysis of 35,310 cells, we identified 41
transcriptomically distinct cell types including the characterization of follicular helper T cells, mature
regulatory dendritic cells (mregDCs), and 8 tumor-associated macrophage (TAM) populations. Cell-
cell interaction analysis predicted that mregDCs and TAMs play key roles in modulating T cell
mediated immunity. Furthermore, we completed cross-species cell type gene signature homology
analysis and founda high degree of similarity between human and canineOS. The data presented here
act as a roadmap of canine OS which can be applied to advance translational immuno-oncology
research.

Osteosarcoma (OS) is an aggressive malignancy of the bone that dis-
proportionally impacts children and adolescences. Despite a profound
impact on the lives of affected individuals, effective therapeutics are lacking,
with minimal advancements since the introduction of combined surgical
excision and adjuvant chemotherapy in 19861. Slow advancements in the
development of OS therapeutics are, in part, due to the relatively rare
incidence which limits patient accrual into clinical trials. In recent years,
there has been increased interest in using large animal models to evaluate
and validate the potential of immunotherapeutics for various cancers2,3.
Spontaneously occurring canineOS is regarded as an idealmodel of human
OS due to higher disease prevalence in dogs, similar genetics and pathology,
and the immune competent status of dogs4. Although dogs have been
identified as a valuable pre-clinical model, species-specific reagent limita-
tions have restricted researcher’s ability to fully characterize the canine OS
tumor microenvironment (TME).

Osteosarcoma has a complex TME that consists of malignant osteo-
blasts, osteoclasts, fibroblasts, macrophages, and lymphocytes as well as

numerous other stromal and immune components. Together, the OS TME
creates an immune suppressive milieu that hinders antitumor immune
responses5. Researchers have turned to the TME with the objective of
understanding and targeting the cellular constituents that promote immune
suppression6,7. Unlike many other cancer types, there have been reports in
bothhumans anddogs that suggest increasedmacrophage abundance inOS
reduces metastatic rate and enhances survival8–10. This unexpected finding
and the ill-defined mechanisms of immune suppression in the OS TME
highlights the need for a deeper understanding of OS pathobiology.

In recent years, single-cell RNA sequencing (scRNA-seq) has emerged
as a valuable tool to investigate the transcriptomes of individual cells within
heterogenous tissues. The approach overcomes species-specific regent
limitations by relying on a universal transcript capture method that is only
limited by the completeness of genome annotations11. Importantly, the
human scRNA-seq landscapes of primary, recurrent, and metastatic OS
have recently been described and act as a point of reference for cell type
homology analysis between canine and human OS12,13. The aim of the
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current study was to use scRNA-seq to complete a molecular dissection of
the canine OS TME and evaluate cell type transcriptomic homologies
between humans and dogs.

In the present study, we generated a single-cell RNA sequencing
reference dataset of six treatment-naïve dogs with primary osteosarcoma.
Our analysis revealed thepresenceof 41 transcriptomically distinct cell types
in canine OS and provided evidence of conserved cell type gene signatures
between human and canineOS.Overall, the data generated here can be used
to inform the identification of conserved OS TME features and facilitate
further study of the canine osteosarcoma tumor microenvironment.

Results
Establishment of a treatment-naïve canine osteosarcoma
reference database
To establish a treatment-naïve canine osteosarcoma reference, we com-
pleted single-cell RNA sequencing (scRNA-seq) on 6 dogs and collected
data on a total of 35,310 cells. The average number of cells collected per
tumorwas 5885 and on average each cell was sequenced to a depth of 72,649
reads per cell (Supplementary Table 3). All tumors were confirmed to be
osteosarcoma by histology and histological subtyping was completed on
each tumor (Table 1). In total, the curated dataset consisted of 1 fibroblastic,
1 chondroblast, and 4 osteoblastic tumors, with one dog exhibiting radio-
graphical evidence of lung metastasis.

Initial low-resolution cell type annotation revealed the presence of 7
major cell types consisting of T cells, B cells, tumor infiltrating monocytes
(TIMs)/tumor associated macrophage (TAMs), dendritic cells (DCs),
osteoclasts (OCs), tumor cells, cycling tumor cells, and an additional
3 minor cell populations consisting of neutrophils, mast cells, and endo-
thelial cells (Fig. 1a). Evaluation of the dataset for evidence of batch effects
indicated uniform distribution of cell types between biological replicates
(Fig. 1b). The one exceptionwas that naïve dog 6 had a higher proportion of
neutrophils compared to the other study dogs. This skewmight be a result of
sampling bias in which necrotic tumor, blood, or bone marrow con-
tamination was introduced during sampling. Subsequent analysis of cell
type proportions revealed 42.3% of the dataset consisted of tumor cells or
fibroblasts, 2.1% of the dataset was endothelial cells, and the remaining
55.6% was composed of immune cells (Fig. 1c).

Cell types were annotated based on expression of canonical markers,
reference mapping using a human OS dataset, and gene set enrichment
analysis (Fig. 1d). Cell type gene lists used by Liu et. al. to define cell
populations in human OS were applied using module scoring to provide
further support for cell classifications (Supplementary Fig. 1a)12. These
approaches consistently enabled the identification of T cells, B cells,
osteoclasts, and endothelial cells. However, our high-level unsupervised
clustering failed to distinguish between stromal fibroblasts and malignant
osteoblasts. This unexpected observationmay be in part due to the presence
of afibroblastic osteosarcoma tumor inourdataset and thebroad expression
of fibroblast markers (FAP, FBLN1) across all tumor cell clusters (Supple-
mentary Fig. 1b).

Due to the inability to identify a distinct fibroblast population using
feature expression, we applied CopyKAT and inferCNV to complete copy
number variation (CNV) analysis to infer which cells exhibited aneuploidy
based on their global transcriptional properties (Fig. 1e)14,15. The analysis

revealed that the majority of cells in the tumor/fibroblast cluster exhibited
evidence ofCNVaberrationswith only a small subset of cells predicted to be
diploid (Fig. 1e; purple arrow, Supplementary Figs. 2–9). The diploid cells
were determined to represent a small cluster of fibroblasts which were
investigated further through subclustering analysis.

Dissection of the tumor and stromal populations reveals a
distinct fibroblast cluster
Subclustering analysis on cycling tumor cells and tumor/fibroblasts iden-
tified 10 distinct cell clusters which we defined as 4 cycling malignant
osteoblasts clusters, 5 non-cycling malignant osteoblast clusters, and 1
fibroblast cluster (Fig. 2a, Supplementary Fig. 10a). The defining features for
each clusterwere identifiedusing aWilcoxonRankSumtest and the top 3–5
unique features were visualized using a heatmap and feature plots
(Fig. 2b, c). Overall, the malignant osteoblasts exhibited a unique gene
expression profile with collagen genes and alkaline phosphatase (ALPL)
contributing to the gene signatures. We observed a small cluster of tumor
cells (c9) that exhibited a gene expression pattern (OAS1, ISG15, OAS2)
consistent with an interferon (IFN) response gene signature (Fig. 2b). This
observation was further supported through completion of GSEA using
Hallmarks gene set terms (Fig. 2d). Similar IFNsignature enriched cells have
been reported among immune cells, but the observationof such a cluster in a
tumor population has not been previously reported in human OS
studies12,13,16,17. Interpretation of GSEA further revealed that fibroblasts (c6)
exhibited themost pronounced “epithelial-mesenchymal transition” (EMT)
and “angiogenesis” signatures, which suggests the fibroblasts might play a
role in promoting tumor growth. Additionally, GSEA supported the
annotation of hypoxic osteoblasts (c4), as the cluster exhibited the strongest
hypoxic transcriptomic signature.

To confirm the identification of fibroblasts, we used module scoring
with a human fibroblast gene list18. This analysis confirmed Cluster 6
exhibited the strongest fibroblast gene signature (Supplementary Fig. 10b).
We then completed differential gene expression (DGE) analysis contrasting
fibroblasts (c6) and non-hypoxic osteoblasts (c0, c1, and c2) to better define
the canine fibroblast gene signature (Fig. 2e; Supplementary Data 3). While
key fibroblast markers such as FAP and ACTA2 were identified, the top
features consisted of SFRP2 and PRSS23which were recently reported to be
associated with a fibroblast population involved in wound healing19. To
conclude our analysis of tumor cells, we sought to further investigate the
transcriptomic signature of hypoxic osteoblasts (c4) by contrasting with
non-hypoxic osteoblasts (c0, c1, and c2). Few differentially expressed genes
were identified, suggesting the cell types are similar, but subsequent pathway
analysis identified enrichment of “response to oxygen levels” to be a top
enriched pathway, suggesting that the tumor cells were indeed hypoxic
(Fig. 2f, Supplementary Data 3, Supplementary Fig. 10c). In summary, we
were able to resolve a population of fibroblasts through completion of
subclustering analysis, as well as define the transcriptional heterogeneity
within malignant osteoblasts.

Subclustering analysis reveals a populationofCXCL13+ follicular
helper CD4 T cells
To ensure we captured all biologically relevant T cell populations, we
completed subclustering analysis, which led to the identification of 10

Table 1 | Study dog demographics

Dog ID Sex Breed Age (years) Tumor location Evidence of metastasis Histological subtype

Naïve 1 FS Mixed (Husky) 8 L proximal humerus No Osteoblastic

Naïve 2 MC Catahoula 11.5 R distal femur Yes Osteoblastic

Naïve 3 MC Labrador Retriever 7.8 L distal femur No Fibroblastic

Naïve 4 MC Great Dane 8 R distal radius No Osteoblastic

Naïve 5 FS Mixed 11.3 R distal radius No Chondroblastic

Naïve 6 FS Catahoula 8.4 R distal radius No Osteoblastic
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transcriptomically distinct clusters: 3CD8Tcell, 4CD4Tcell, 1NKcell, and
2 mixed CD4/CD8 T cell clusters (Fig. 3a, b). Next, we interrogated T cell
subtypes using an approach that has been applied in human breast cancer
andOS scRNA-seq datasets to describe T cell populations13,20. Wemodified

the gene lists used in previous applications to include signatures for cycling
T cells, NK cells, and IFN-signature T cells that we recently established in
circulating canine leukocytes21. Overall, this approach proved to be con-
sistent with annotations assigned using canonical markers (Fig. 3c).

Fig. 1 | Unsupervised clustering reveals 10 distinct cell types in canine osteo-
sarcoma. aUMAP representation of 35,310 cells obtained from the primary tumors
of 6 dogs diagnosed with osteosarcoma. b Stacked bar graph depicting the cell type
proportion contributed by each dog. cPie chart depicting the cellular composition of
the data as a percentage of total cells. d Feature plots depicting the log normalized

counts of canonical markers used to justify major cell type classifications.
e UMAP depicting the results of CopyKAT copy number variation prediction.
Gray (NA) values indicate that the cell did not have a large enough transcriptome to
be evaluated using CopyKAT. The purple arrow points to the identified fibroblast
population.
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Fig. 2 | Subclustering analysis of tumor and stomal cells reveals osteoblast het-
erogeneity and a distinct fibroblast cluster. a UMAP representation of tumor and
stomal cells (n = 17,904 cells) depicting the 10 clusters identified though unsu-
pervised clustering. b Heatmap depicting expression of the top 3–5 features that
define each cluster. c Feature plots illustrating log normalized counts. dHeatmap of
scaled gene set enrichment analysis pathway activity for HALLMARK terms, with

hierarchical clustering of rows and columns. Dendrogram of terms using Euclidean
distance shown on the left. Volcano plots depicting the results of pseudobulk dif-
ferential gene expression analysis for (e) fibroblasts (c6) versus osteoblasts (c0, c1,
c2) and (f) hypoxic osteoblasts (c4) versus non-hypoxic osteoblasts (c0, c1, c2). The
top 20 features (weighted by adjusted P value) are labeled.
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Although the gene signatures were definitive for naïve CD4 T cells and
cytotoxic CD8 T cells, other gene signature scores provided weaker support
for their corresponding cell types. For instance, regulatoryT cells (Tregs) and
follicular helper CD4 T cells (CD4fh) both exhibited moderate enrichment
for exhausted and costimulatory terms, with minimal distinction between

the twoT cell types. The analysis also revealed the presence of a T cell cluster
with an IFN gene signature, a population that has been reported to be
hypersensitive to stimulation17.

After identifying each T cell subset, we completed pseudobulk con-
version and DGE analysis to further establish the transcriptomic signatures
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of Tregs and CD4fh. Comparisons between Tregs (c3) and activated CD4 T
cells (c2) revealed overexpression of IL21R,TNFRSF4, andTNFRSF18, with
CTLA4 being the most definitive marker of Tregs (Fig. 3d, Supplementary
Data 3). When repeating this analysis on CD4fh (c5) cells, we identified
CXCL13, IL4I1, and TMEM176A to be defining features (Fig. 3e, Supple-
mentary Data 3). Although intratumoral CD4fh cells exhibited a distinct
exhaustion profile (PDCD1, TOX, TOX2, IL4I1), they also displayed a
gene signature consistent with follicular helper T cells (CXCL13, IL21,
CD70)22,23. A similar population of CXCL13+ CD4fh T cells has been iden-
tified in multiple human tumors and the cell type has been implicated in
tertiary lymphoid follicle formation and modification of intratumoral
adaptive immune responses24–26. Our analysis confirms expression of
CTLA4/FOXP3 on Tregs and CXCL13/IL21 on CD4fh is conserved across
species, while also providing complete gene signatures for the canine T cell
subtypes18.

Following initial cell classification, we determined the cellular com-
position of each cell type as a percentage of immune cells and of all cells
within each sample (Fig. 3f, Supplementary Table 4). This analysis revealed
exhausted CD8 T cells (CD8ex) and effector CD8 T cells (CD8eff) to be
among the most abundant populations, along with activated CD4 T cells
and Tregs. We then curated a heatmap of defining features predicted to be
expressed on the cell surface with the objective of identifying potential cell
markers to be used in alternative cell identification approaches, such as flow
cytometry (Fig. 3g, Supplementary Fig. 11, Supplementary Data 4)27. With
the caveat that transcript presence does not always correlate with protein
expression, the analysis suggested that TNFRSF4 (OX-40), TNFSF8
(CD153), and TMEM140 may represent valuable surface markers for fur-
ther investigation of canineTregs, CD4fh, andTIFN-sig, respectively. Together,
the relative cellular percentages and potential surface markers provide a
foundation for further functional study of the cell types identified in our
transcriptomic analysis.

Mature regulatory dendritic cells are present in canine OS and
are predicted to modulate T cell mediated immunity
Five dendritic cell (DC) subtypes were identified when completing sub-
clustering analysis on FLT3+ cells. The subtypes identified included con-
ventional DC2s (cDC2; c0), mature regulatory DCs (c1; mregDC), cDC1s
(c2), plasmacytoidDCs (c3; pDC), and precursorDCs (c4; preDC) (Fig. 4a).
Key features used to assign cell type identities includedDNASE1L3 (cDC1),
CCR7/IL4I1 (mregDCs), CD1C (cDC2), IL3RA (preDC), and IGKC (pDC)
(Fig. 4b)28,29. The population of canine preDCs closely resembled a recently
redefined human preDC cell type that exhibits a tendency to cluster with
pDCs when investigated using scRNA-seq28. Of note, we previously iden-
tified cDC2, cDC1, preDC, and pDC cell types in canine peripheral blood,
however mregDCs (c1) were not observed, suggesting a potential tissue
specificity21. The identification of mregDCs, also reported as migratory
(mig) DCs, is of note as this cell type is predicted to modulate T cell
responses30,31. Thus,weprovide evidence that a key cell type reported tohave
immune regulatory properties is present in canine OS.

We next used hierarchical clustering and Toll-like receptor expression
to investigate differences between preDCs and pDCs. Hierarchical cluster-
ing indicatedpreDCs are closely related tomyeloid cDC2s and cDC1s,while
pDCs were located on a unique clade (Fig. 4c). In humans, pDCs are
reported to exhibit high expression of TLR9 and TLR7, which we identified

tobehighly expressed on canine pDCs (Fig. 4d)32. To ensure that noneof the
DC populations were of B cell origin, we evaluated MS4A1 (CD20)
expression and found it to be minimally expressed (Supplementary
Fig. 12a). We then used pySCENIC to predict active regulons in each DC
subtype (SupplementaryFig. 12b). This analysis revealedTCF4 andRUNX2,
master regulators of pDC development, to be enriched in both pDCs and
preDCs33. Overall, these findings suggest canine preDCs are closely related
to the recently defined plasmacytoid-like human preDCs28.

To confirm mregDCs exhibited a mature, immune regulatory tran-
scriptomic signature, we used module scoring with gene lists previously
applied to investigate human DC subtypes30,34. This analysis revealed that
mregDCs had a marked enrichment for migration, regulatory, and
maturation associated gene signatures (Fig. 4e). Subsequent, DGE analysis
of canine mregDCs (c1) relative to cDC2s (c0) revealed a distinct mregDC
signature ofCCR7, IL4I1,CCL19, and FSCN1with substantial overlap to the
humanmregDC transcriptional program (Fig. 4f, Supplementary Data 3)30.
With the precedent that mregDCs interact with intratumoral T cells to
shape adaptive immune responses in humans, we wanted to determine
whether a similar interaction might occur between mregDC and T cells in
dogs24,25. We used CellChat to evaluate interactions between mregDCs and
T/NK cells35. This analysis revealed enriched PD-1/PD-L1 and CTLA4/
CD80 interactions between mregDCs and CD4 Tregs, Tfh cells, and naïve
T cells (Fig. 4g). In summary, we present the transcriptomic signature of
caninemregDCsandprovide evidence of intratumoral interactions between
canine mregDCs and T cells.

Macrophage transcriptomic states support a spectrum of
cell types
Due to the transcriptional overlap between tumor associated macrophages
(TAMs) and osteoclasts (OCs), we analyzed these two cell types in the same
UMAP space. In doing so, our analysis highlighted the relatedness of OCs
and TAMs which would have been overlooked if analyzed independently.
Through subclustering analysis we identified 8 transcriptomically distinct
macrophage/monocyte populations which were annotated using modified
nomenclature derived from Ma et al. (Fig. 5a–c)36. Activated TAMs (c0,
TAM_ACT) and intermediateTAMs (c1, TAM_INT) didnotfit into anyof
the macrophage subtypes presented in Ma et al. so they were instead
annotated based on an activated signature (CD5L, CD40, CD80) and an
intermediate polarization signature, respectively. Tumor infiltrating
monocytes (TIMs) were divided into two populations based on CD4
expression; a division of monocytes unique to dogs21,37. Unsupervised
clustering divided lipid-associated (LA-)TAMs into two subclusters defined
by eitherC1QChi expression (c3) or SPP2hi expression (c2). To better define
the distinctions between the two LA-TAM populations we completed
pseudobulk-based DGE analysis (Fig. 5d, Supplementary Data 3). The
analysis revealed IL2RA,CXCL10, and SERPING1 as keymarkers ofC1QChi

LA-TAMs, while ENO1, LGALS3, and RBP4 defined SPP2hi LA-TAMs.
Based on the analysis, C1QChi LA-TAMs appear to most closely resemble
the definitions of human LA-TAMs provided by Ma et al.

In addition to the recently proposed TAM nomenclature, we used
module scoring with pro- and anti-inflammatory gene lists to investigate the
macrophage populations in a more traditional dichotomy (Supplementary
Table 5)38. We identified the C1QChi LA-TAM (c3) cluster to have the
strongest anti-inflammatory transcriptomic signature while CD4+

Fig. 3 | Analysis of tumor infiltrating NK and T cells provides gene signatures for
regulatory and follicular helper T cells. a UMAP representation of NK, CD4,
and CD8 T cells (n = 5778 cells) colorized by cell subtypes. b Feature plots depicting
expression of canonical T cell markers. c Dot plots depicting the scaled module score
(“Enrichment score” facet) and the scaled expression of features associated with each of
the 8 gene lists used to calculate the enrichment scores. Volcano plots depicting the
results of pseudobulk differential gene expression analysis for (d) regulatory T cells (c3)
versus activated CD4 T cells (c2) and (e) CD4 follicular helper T cells (c7) versus
activatedCD4T cells (c2). The top 20 features (weighted by adjustedP value) are labeled

for each plot. f Bar chart depicting mean composition of each cluster as a percentage of
immune cells and percentage of total cells (osteoclasts were included as an immune cell
in the calculation). Each dot corresponds to a biological replicate. g Scaled expression of
the top 3–5 features for each cluster. The selected features were chosen based on the
results of FindAllMarkers() and the inclusion of the feature in the surfaceome database
listed as predicted to have surface expression. Abbreviations: CD8SPP1 = SPP1+ CD8 T
cell, CD4act = activatedCD4T cell, CD4n = naïveCD4T cell, CD4fh = follicularhelper T
cell, CD4reg = regulatory T cell, TIFN-sig = T cells enriched in interferon gene signatures,
NK = natural killer cell, CD8eff = effector CD8 T cell, CD8ex = exhausted CD8 T cell.
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monocytes (c11) exhibited the most prominent pro-inflammatory tran-
scriptomic signature (Fig. 5e). To further investigate the gene signatures of
Clusters 11 and 3 we completed pseudobulk-based DGE analysis (Fig. 5f,
Supplementary Data 3). The genes upregulated in Cluster 11 exhibited
overlap with the predefined gene set that was used to identify the cluster as

pro-inflammatory, while also revealing IL1B, S100A12, LTF, and VCAN as
defining features. DGE analysis of the anti-inflammatory cluster (c3)
exhibited less overlap with the gene list originally used to identify the cluster
as anti-inflammatory (with MRC1 the only overlapping feature), but the
analysis further revealedAPOE, IGF1, and complement receptorsC1QA/B/C

Fig. 4 | Mature regulatory dendritic cells (mregDCs) are present in canine OS
tissues and are predicted to interact with T cells. a UMAP representation of
dendritic cells (DCs) colorized by cell subtype (n = 1067). b Violin plots depicting
expression of key DC features used for cell identification. c Dendrogram depicting
results of hierarchical clustering of DC subtypes using cluster averaged log nor-
malized expression. d, e Dot plots depicting scaled expression of Toll-like receptors
(TLRs), DC maturation, regulatory, and migratory features. f Volcano plots

depicting the results of pseudobulk differential gene expression analysis for
mregDCs (c1) versus cDC2s (c0). The top 20 features (weighted by adjusted P value)
are labeled for each plot. g Dot plot depicting the interaction probability (as deter-
mined using CellChat) of signaling networks for each mregDC-T cell interaction.
mregDCmature regulatory DC, cDC2 conventional DC2, cDC1 conventional DC1,
pDC plasmacytoid DC, preDC precursor DC.
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as enrichedmarkers.The top features identifiedwhencontrastingClusters 11
and3were thenused to generate aheatmap to evaluate how the expressionof
these features varied across all macrophage clusters (Fig. 5g). Findings from
the analysis suggested that there is a spectrum of macrophage phenotypes,
which is consistent with human macrophage literature39. As such, we next

sought to better define the heterogeneity of the macrophage populations
without relying on predefined cell type gene signatures.

Gene set enrichment analysis was used to provide further insights into
the inferred functional capacity of each macrophage subtype (Fig. 5h). Cell
clusters 4, 7, and 11 clustered together based on pathway enrichment scores
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suggesting the three transcriptionally distinct clusters have similar under-
lying gene signatures. LA-TAMs (c2, c3) and intermediate TAMs (c1)
exhibited the strongest scavenger receptor associated activation, suggesting
a mature macrophage population with immune suppressive properties40.
Several terms were identified suggesting that both SPP2hi LA-TAMS
and intermediate TAMs preferentially utilize oxidative phosphorylation
and mitochondrial metabolic pathways. C1QChi LA-TAMs had a distinct
profile suggestive of lipid and polysaccharide metabolism. Lastly, GSEA
confirmedc10 tobe consistentwith IFN-TAMsbasedon strong enrichment
of IFN signaling associated terms. In summary, we described the tran-
scriptional profiles of macrophages in the canineOSTMEwhich provides a
foundation for further investigation of the functional relevance of each
cell type.

Analysis of canine osteoclasts reveals four transcriptomically
distinct populations
Within the same UMAP space, we next shifted our focus to further char-
acterize osteoclast heterogeneity. Consistent with human and murine
reports using scRNA-seq to characterize OCs, we identified 4 tran-
scriptiomically distinct OC populations12,13,41. The cycling OCs (c5/c8) in
our canine OS dataset likely correspond to previously reported pre/pro-
genitorOCs, while thematureOCs (c6) are consistentwith previous reports
(Fig. 6a, b). CD320+OCs (transcobalamin receptor expressingOCs, c9) had
not been described in macrophage or osteoclast clusters from human and
mouse tissues and may represent a canine specific cell type, or possibly a
previously unresolved OC subtype (Fig. 6a, b). Due to the similarity of OCs
and macrophages we completed hierarchical clustering to confirm the
unsupervised clustering results (Fig. 6c). The secondary analysis was con-
sistent with unsupervised clustering and further suggested Clusters 5, 6, 8,
and 9 are distinct from the macrophage clusters.

To confirm the mature OC classification and provide a canine
specific transcriptomic signature, we completed DGE analysis. When
comparing mature OCs (c6) to macrophages (c0, c1, c2, c3) we identified
canine mature OCs to be defined by ATP6V1C1, CD84, HYAL1, and
CAMTA2 expression, which subsequent GSEA analysis revealed an
association with bone resorption and remodeling (Fig. 6d, Supplemen-
tary Data 3, Supplementary Fig. 13a). We next completed DGE analysis
contrasting CD320+ OCs (c9) with macrophages and mature OCs.
(Supplementary Data 3, Supplementary Fig. 13b, c). By evaluating the
intersection of the differentially expressed genes we determined CD320+

OCs are defined byHMGA1,TNIP3, andCD320 expression (Fig. 6e). The
analysis also provided further evidence that c9 is an OC cluster based on
TNFRSF11A (RANK) enrichment when contrasted with macrophage,
but not when contrasted to mature OCs42. Lastly, we used pySCENIC’s
regulon specificity scoring to better define the transcription factors active
in mature OCs and CD320+ OCs. We identified ZEB1 and NFATC1,
known regulators of OC development, to be enriched in mature OCs,
while SNAI1 and ETV3/6/7 were enriched in CD320+ OCs suggesting a
differentiating cell type (Fig. 6f, g)43–45. Together our analysis indicates,
CD320+ OCs are a distinct population from mature OCs that may
represent an OC precursor.

Transcript abundance of widely used immunohistochemistry
macrophage markers exhibit distinct specificity to myeloid cells
In contrast to other tumor types, there have been multiple reports in
humans and dogs suggesting that increased TAM infiltrates in OS are
correlated with reduced metastasis rates and increased patient survival8,9.
Despite these reports, other groups completing similar analysis have con-
cluded that increased macrophage infiltrates have a negative impact on OS
clinical outcomes46. Given the conflicting nature of previous reports we
sought to employ our dataset to investigate which cell types express the
transcript of the prototypical macrophage markers used for IHC analysis.
To complete this analysis, we profiled TIMs, TAMs, DCs, and OCs for the
expression ofwidely used canine (MSR1 akaCD204 andAIF1 aka Iba1) and
human (CD163 and CD68) macrophage markers (Fig. 7a). With the caveat
that this analysis is limited to transcript abundance and does not evaluate
protein expression,we found thatCD163 transcript expressionwas themost
specific for macrophages. CD68 expression was detected in TIMs, TAMs,
and OCs, with remarkably high expression levels in mature OCs. The
expression of CD68 on mature OCs is consistent with human literature47.
AIF1 (Iba1)was themost non-specificmarkerwithdiffuse expressionacross
all cell types, except formatureOCs. Lastly,MSR1 (CD204)was determined
to be largely specific to TAMs, but the expression also extended to CD320+

OCs andCD4+monocytes. To investigate the translational relevance of this
finding, we evaluated expression of the markers in human OS (Supple-
mentary Fig. 14). We observed similar expression patterns, with marked
variability in specificity of each marker, suggesting the variability is con-
served across species.

Given the degree of heterogeneity within the myeloid compartment
in the OS TME, we used a Wilcoxon Rank Sum test to identify features
that define each cell type, then selected for features predicted to be
expressedon the cell surface (Fig. 7b, Supplementary Fig. 15, Supplementary
Data 5). Overall, the analysis suggested there is substantial overlap in
expression of most features. Despite the overlap, we were able to
identify candidate markers which included ADAM28 for LA-
TAM_C1QChi, TNFSF13B for IFN-TAMs, and CD84 for mature OCs.
Lastly, we calculated the relative percentages of each cell type to further
facilitate cell identification (Fig. 7c, Supplementary Table 6). Together, the
data presented here act as a foundation to further investigate the role of
myeloid cells in OS biology.

Cell-cell interaction analysis indicates TAMs are involved in
immune regulatory pathways
Following cell identification through subclustering analysis of major cell
types, we evaluated the cell-cell interaction networks using CellChat.
Between the 41 cell types included in the analysis, we identified a total of
13,235 inferred interactions across 59 signaling networks. The number of
interactions and the predicted interaction strength of incoming (express
receptor) versus outgoing (express ligand) signals were used to infer the
activity of cells within the TME (Fig. 8a, Supplementary Fig. 16a). The top
three cell types predicted to have the strongest interactions were fibroblasts,
mature OCs, and endothelial cells. We next categorized the significantly
enriched networks as “immune specific”, “immune related”, and “non-

Fig. 5 | Tumor-associated macrophages exhibit a spectrum of transcriptional
states with C1QChi LA-TAMs exhibiting the most immune suppressive tran-
scriptional profile. a UMAP representation of tumor infiltrating monocyte (TIM),
tumor associated macrophage (TAM), and osteoclast (OC) populations
(n = 10,512). Four osteoclast (OC) clusters are depicted but grayed out. b, c Feature
plots and heatmap of canonical features used to define cell types. d Volcano plots
depicting the results of pseudobulk differential gene expression analysis for C1QChi

lipid-associated (LA)-TAMs (c3) versus SPP2hi LA-TAMs (c2). The top 20 features
(weighted by adjusted P value) are labeled for each plot. eDot plot depictingmodule
scoring of “Pro-inflammatory” and “Anti-inflammatory” gene signatures. The size
of each dot indicates the percentage of cells enriched for a given gene set (larger dot
equates to more broadly enriched), and the color indicates strength of enrichment

score (brighter color indicates stronger score). f Volcano plot depicting results of
differential gene expression analysis when contrasting the cluster with the most pro-
inflammatory gene signature (c11; CD4+ TIMs) to the cluster with the most anti-
inflammatory gene signature (c3; C1QChi LA-TAMs). The top 20 features (weighted
by adjusted P value) are labeled for each plot. g Heatmap of the top 20 features
identified to be upregulated in in c11 relative to c3 and vice versa. Columns are
ordered by hierarchical clustering (Euclidean distance), shown at top. hHeatmap of
scaled gene set enrichment analysis pathway activity for Reactome terms, with
hierarchical clustering of rows and columns. Dendrogram of terms using Euclidean
distance shown on the left. TAM_ACT activated TAM, ANGIO-TAM pro-angio-
genesis TAM, TAM_INT intermediate TAM, IFN-TAM TAM enriched in inter-
feron gene signatures.
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immune” to investigate if certain cell types were more active in a subset of
networks (Fig. 8b). We found that malignant osteoblasts and stromal cells
were largely predicted to be involved in “non-immune” interactions, while
“immune specific” interactions were largely confined to TAMs and DCs
with strong outgoing interactions.

By subsetting on immune cells and evaluating interactions of known
immune regulatory pathways we identified mregDCs and IFN-TAMs to
have the most interactions, while activated (CD5L+) macrophages and
C1QChi LA-TAMs were predicted to have the strongest outgoing signals
(Fig. 8c). It was furtherpredicted that follicular helper and regulatoryCD4T
cellsmake up the populations receivingmost of the signals originating from
myeloid cells.When evaluating the PD-L1network, we identifiedmregDCs,
TIMs, and IFN-TAMs to have the highest expression of PD-L1 and were
predicted to interact with Tfh, Tregs, and exhausted CD8 T cells (Fig. 8d,
Supplementary Fig. 16b). The CD80 and CD86 networks involved a larger
portion of myeloid cells, with all CD4 T cells predicted to be influenced by
the interactions (Fig. 8e, Supplementary Fig. 16c, d). Overall, activated
TAMs, IFN-TAMs, and C1QChi LA-TAMs are predicted to be key con-
tributors to shaping T cell mediated immunity.

ComparisonofhumanandcaninescRNA-seqOSdatasets reveal
a high degree of similarity in cell type gene signatures between
species
Lastly, we obtained 6 publicly available treatment-naïve humanOS scRNA-
seq samples to complete a cross-species analysis (GSE162454)12. The two
datasets were integrated using a Seurat alignment workflow which is
reported to overcome genomic annotation differences between species48.
Hierarchical clustering of the integrated SCTransform normalized data
revealed a high degree of similarity between species, with major clades
containing similar cell types based on pre-integration annotations (Fig. 9a).
Evaluation of similarities in cell type gene signatures using Jaccard similarity
index produced similar results (Supplementary Fig. 17). All canine lym-
phocyte subtypes paired 1:1 with their human counterpart, as did endo-
thelial cells and fibroblasts. Discrepancies between species included the
placement of plasmacytoid dendritic cells (pDCs), which clustered into
separate clades, andweak Jaccard similarity index values for pDCs andmast
cells across species. Overall, macrophages clustered in the same clade, but
due to differences in annotation levels, many cell types did not pair off into
terminal clades.

Fig. 6 | Four transcriptionally distinct osteoclast subtypes are identified using
unsupervised clustering. a UMAP representation of macrophage and osteoclast
(OC) populations (n = 10,512). The 8 macrophage subtypes defined in Fig. 5 are
grayed out. b Feature plots of canonical features used to define cell types. (c) Den-
drogram depicting results of hierarchical clustering of OC subtypes using cluster
averaged log normalized expression. dVolcano plots depicting results of differential
gene expression analysis when comparingmature OCs (c6) versusmacrophages (c0,
c1, c2, and c3). The top 20 features (weighted by adjustedP value) are labeled for each

plot, ACP5 and CTSK additionally labeled in d. e Scatter plot depicting the signed
log10(adjusted P value) when contrasting CD320+ OC versus macrophage (c0, c1,
c2, and c3) (x-axis) and CD320+ OCs versus mature OC (y-axis). The top 20 co-
enriched features are labeled in red, while the top 7 features enriched in one species
are labeled in black (f,g) Scatter plot depicting regulon specificity score (rss) for
active transcription factors in mature OC (f) and CD320+ OC clusters (g), as
determined using pySCENIC.
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Fig. 7 | Transcript abundance of widely used immunohistochemistry macro-
phage markers reveal variable specificity. a Violin plots, grouped by canine cell
type, depicting expression of four immunohistochemistry (IHC) macrophage
markers widely used to evaluate macrophage infiltrates in canine and human
osteosarcoma. b Scaled expression of the top 3–5 features for each cluster. The
selected features were chosen based on the results of FindAllMarkers() and the

inclusion of the feature in the surfaceome database listed as predicted surface
expression. c Bar chart of the mean percent composition for each cell type as a
percentage of total immune cells and percentage of all cells (osteoclasts were
included as an immune cell in the calculation). Each dot corresponds to a biological
replicate.
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To further compare transcriptional programs across speciesweusedan
analysis approach adopted from Scheyltjens et al.49. Briefly, the approach
used DGE analysis between two cell populations in each species, then
signing of the adjusted P value to determine if transcriptomic signatures
were conserved. When contrasting fibroblasts and endothelial cells, we
found substantial overlap in gene expression patterns with key endothelial
cell markers (PLVAP, CD34, and PECAM1) enriched in both species
(Fig. 9b, Supplementary Data 6). Top features conserved in fibroblasts
included VCAN, COL6A1, and LUM, while key features such as FAP and
ACTA2 were also conserved. Interesting discrepancies included the
expression of HYAL2 and NOTCH as defining features in human endo-
thelial cells, but nonsignificant in canine endothelial cells.

Completion of the same analysis on plasmacytoid DCs and cDC2s
revealed TCF4 to be enriched in pDCs and BATF expression enriched in
cDC2s, which is consistent with human literature (Fig. 9c, Supplementary
Data 7)29. An intriguing distinction between species included the high
expression of GZMB and PTGDS (prostaglandin D2 synthase) in human
pDCs, but not in canine pDCs. Lastly, we applied the same approach to
compare mature OCs with TIMs (Fig. 9d, Supplementary Data 8). As
expected, mature osteoclasts were defined byCSTK,ACP5, andATP6V0D2
expression, while monocytes in both species were defined byCXCL8,OSM,
and LYZ expression. Notable differences included canine monocytes exhi-
biting high expression of SLAMF9 and PLBD1, while human monocytes
had high S100A8 and HCST expression. In summary, we present a com-
prehensive comparison of human and canineOScell types, which suggests a

highdegree of consistency in cell type gene signatures across the two species,
however we also present evidence of distinct transcriptional programs in
pDCs, mast cells, and monocytes.

Discussion
In the present study, we completed a comprehensive analysis of canine
osteosarcoma (OS) using single-cell RNA sequencing which revealed the
complex network of cells within the tumor microenvironment (TME).
Through analysis of 6 treatment-naïve canine OS samples we were able to
identify 30 distinct immune cell types, 9 unique malignant osteoblast
populations, 1 cluster of fibroblasts, and 1 population of endothelial cells
(Supplementary Data 1). We described the transcriptomic heterogeneity
within malignant osteoblasts, identified cell types that have not been pre-
viously reported in dogs, and applied our data set to investigate the tran-
script abundance of widely used macrophage surface markers. Ultimately,
the data presented here act as amolecular roadmap of the canine OS tumor
microenvironment which provides canine specific cell type gene signatures
that can be applied to guide immunological reagent development and fur-
ther investigations of the canine OS TME.

Prior to this study, evidence of a conserved OS TME between humans
and dogs was limited, with the most recent human-canine comparisons
being presented inMannheimer et al.50. To compare the human and canine
OS TMEmore directly we obtained a publicly available scRNA-seq human
OS dataset which enabled evaluation of the relative relatedness of cell types
between species. The analysis revealed that lymphocytes exhibited the

Fig. 8 | Cell-cell interaction analysis reveals fibroblasts as a key communicating
cell type and identifies TAMs as immune regulatory. a Scatter plot depicting the
strength of outgoing (x-axis) and incoming (y-axis) signals for all cell types and
calculated using all enriched signaling networks. b Scatter plot depicting interaction
strengths for three subdivided networks, “immune”, “immune-related”, and
“non-immune”. c Scatter plot depicting the interaction strengths for immune cells

calculated using three immune suppressive signaling networks (PD1/PDL1 &
CD80-CD86/CTLA4). Circos plots of immune regulatory networks identified using
CellChat with (d) PDL1 and (e) CD80/CD86 networks depicted. The arrow origin
represents expression of a ligand, while terminal arrow indicates expression of a
receptor. Cell types not involved in the network are grayed out.
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highest degree of conservation between species, while the gene signatures of
major cell types also exhibited substantial overlap. The cell types with the
most distinct transcriptional signatures included plasmacytoid dendritic
cells and mast cells. These species differences could be the result of either
distinct transcriptional profiles or, less interestingly, discordant annotations

between species. In both datasets plasmacytoid dendritic cells (pDCs) were
defined by FLT3, IGHM, andTCF4which suggests consistent annotation in
both species51. Therefore, the difference in gene signatureswithinpDCsmay
represent distinct transcriptional profiles. The mast cells identified in each
species were defined byGATA2 andMS4A2 expression, but the population

Fig. 9 | Cell type gene signatures in osteosarcoma are conserved between human
and canine. a Hierarchical clustering of human (“hu_” prefix) and canine (“can_”
prefix) cell types using SCTransform normalized data of a human-canine integrated
dataset. Scatter plots comparing the signed log10(adjusted P value) of significantly
upregulated or downregulated genes identified when comparing (b) human fibro-
blasts versus human endothelial cells and canine fibroblasts versus canine endo-
thelial cells, (c) human pDC versus human cDC2s and canine pDC versus canine
cDC2s, and (d) human mature OCs versus human CD14 monocytes and
canine mature OCs versus canine TIMs (both CD4+ TIMs and CD4− TIMs).

In b–d conserved upregulated features are in the top right quadrant (top 10 in red
labels) and conserved downregulated features are in the bottom left quadrant (top 10
in blue labels). Conflicting features – up in human but down in dog (bottom right
quadrant) and down in human but up in dog (top left quadrant) – are labeled in pink
(top 2 in each quadrant). Features up or down in one species, but not a differentially
expressed gene in the other, fell on the axis and the top 2 on each axis direction are
labeled in black. The numbers in the corners and at the ends of axis lines represent
how many features fell in that region.
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had the weakest Jaccard similarity index suggesting poor conservation of
gene signatures. GATA2 (a transcription factor with implications in baso-
phil and mast cell differentiation) and MS4A2 (the IgE receptor found on
basophils and mast cells) are not specific to mast cells, so it is possible that
the cluster could instead represent basophils or possibly eosinophils52–54.
Further functional and transcriptomic investigation of these cell popula-
tions is warranted.

Our analysis revealed the presence of many rare cell populations,
including mregDCs, CD4fh T cells, and IFN-TAMs, opening avenues for
further investigation of these cell populations. With the caveat that tran-
script expression may not correlate with protein expression, we used the
surfaceome reference database to identify possible surface markers for
further study of these cell types27. In addition to antibody-based assays, the
transcriptomic signatures presented here provide a reference for the
application of deconvolution algorithms (such as CIBERSORTx and
TIMER) when evaluating bulk RNA sequencing data obtained from canine
OS samples55,56.

Mature regulatory dendritic cells represent a recently defined cell type
which has been identified across several human tumor types, including
OS31,57. The biological role of mregDCs is still being identified, but recent
reports suggest a potential role in shaping T cell antitumor immune
responses24,25. In our analysis, we were able to identify a CCR7+/IL4I1+/
FSCN1+ dendritic cell population which closely resembles the descriptions
of humanmregDCs. We found that canine mregDCs express high levels of
immune suppressive and costimulatorymolecules, whichmay play a role in
modulation of adaptive immune responses through communication with
follicular helper and regulatory T cells. This study provides evidence that
mregDCs are present in canine OS, demonstrating a conserved role within
osteosarcoma across species.

The heterogeneity within themyeloid compartment of OS is an area of
intense interest, in particular the role of TAMs in regulating OS biological
behavior and clinical outcomes is debated58. To provide further context for
thediscrepantfindings reported in the literature regarding the role ofTAMs,
we evaluated the transcript abundances of keymacrophagemarkers used in
human and canine analysis. Although the analysis was completed at the
transcript level, we observednotable differences in the specificity of each cell
type marker within given myeloid populations. Inconsistencies between
TAM cell types using immunohistochemistry (IHC) could explain why
some groups identify negative prognostic correlates with TAM density,
while other groups report that TAM density is correlated with positive
outcomes8,9,46. Further validation of the variability in cell typemarkers could
be completed using refined IHC panels coupled with spatial tran-
scriptomics. Ultimately, a better understanding of the prognostic and
functional roles ofmyeloid cells within the TMEwill aid in the development
of effective myeloid cell targeted therapeutics.

While the single-cell RNA reference presented here provides key
insights into canineOS, thedataset is notwithout limitations. First, although
we sampled male and female dogs across a range of ages, our dataset still
only consisted of 6 dogs and may not fully represent all cell populations
found in canine OS. Secondly, the tumor sample obtained from one dog
(dog 6) exhibited markedly more neutrophils relative to other samples
which may suggest sample contamination with blood, bone marrow, or
necrotic tissue. Lastly, cellular annotations largely relied on human gene
signatures due to the lack of canine specific data available. This may have
exaggerated similarities between species and may have resulted in the for-
cing of distinct canine-specific cell types into subtypes derived from human
nomenclature. Thus, the discordant findings regarding mast cell gene sig-
natures represents an important distinction that should be investigated
further and considered when using the dog as a model for human disease.

The data presented here represent a valuable resource for comparative
oncology research using the canine cancer model. A major goal of this
project was to make the data accessible to the greater research community
and multiple avenues are provided for researchers to explore and use the
dataset (see data availability statement). Our comparisons between human
and canine OS revealed the conserved nature of cell type gene signatures in

OS while also identifying potential differences. Overall, our analysis further
supports the value of the dog as a model for human OS research and
provides an important reference dataset to advance canine immuno-
oncology research.

Methods
Study animals
Dogs included in the study were selected based on the presence of an
appendicular primary tumor and the absence of previous therapeutic
intervention. All dogs presented with radiographic evidence of OS and
subsequent histopathological evaluation was completed to confirm the
diagnosis. All study dogs underwent amputation of the affected limb and
samples were collected for single-cell RNA sequencing processing within
30min. The amputated limb was then submitted to the Colorado State
University Veterinary Diagnostic Laboratory where representative samples
of the tumor were processed for histopathologic confirmation of the clinical
diagnosis. The osteosarcoma subcategorization presented in Table 1 was
based on pathology reports for each sample and confirmed by a second
veterinary pathologist. All studies were approved by the Colorado State
University (CSU) Institutional Animal Care and Use Committee and the
CSU Clinical Review Board. We have complied with all relevant ethical
regulations for animal use and all dog owners provided informed consent
prior to sample collection.

Sample preparation
The amputated limb was dissected to the level of the tumor and a stainless-
steel Michele trephine biopsy needle was used to obtain 3–5 biopsy cores
from the tumor, targeting areas where therewas an obviousmass effect and/
or lysis of cortical bone. The biopsy cores were thenwashed with phosphate
buffered saline (PBS), minced using a scalpel, and digested with collagenase
type II (250 U/mL) in Hanks’ Balanced Salt Solution (HBSS) for 45min at
37 °C with agitation (Thermo Fisher Scientific Inc.). Samples were passed
through a 70-µm cell strainer, washed with PBS, then centrifuged for 5min
at 400 rcf. Each of the separately collected biopsies were inspected to ensure
the presence of viable cells (as determined using trypan blue exclusion;
Thermo Fisher Scientific Inc.), then all samples with detectable live cells
were pooled into 4-mLHBSS. To enrich for live cells and remove debris, the
pooled cell suspension was layered onto 3-mL Ficoll Paque (Cytiva; Marl-
borough,MA), and centrifuged for 30minutes at 400 rcfwith acceleration at
9 andbrake at 0.Followingdensity centrifugation, the cell interface layerwas
collected, washed one time with PBS, and resuspended in 10-mL of
Ammonium-Chloride-Potassium lysis buffer for 3–7min at room tem-
perature. To remove small debris and platelets, a final wash at 100 rcf for
15min was completed. Cells were resuspended in 0.04% molecular grade
BSA (Sigma-Aldrich; St. Louis, MO) in PBS, confirmed to have a viability
greater than 90% (as determined using trypan blue exclusion), and trans-
ported to a Chromium iX instrument (10x Genomics; Pleasanton, CA) for
cell capture. All samples were captured within 30min of preparation.

Library preparation and sequencing
Single cells were isolated and tagged with molecular barcodes using a
Chromium iX instrument with a target of 5000 cells per sample. Two of the
six dogs (dogs 1 and 2) had two samples processed each with a 5000-cell
target, for a total target of 10,000 cells for dogs 1 and 2. Single cells were
processed using a Chromium Next GEM Single Cell 3ʹ v3.1 Kit and a
standard Illumina library dual index library construction kit (10x Geno-
mics). Sample quality was analyzed using a LabChip (PerkinElmer; Wal-
tham, MA) and submitted for sequencing on an Illumina NovaSeq
6000 sequencer (Novogene Corporation; Sacramento, CA) with a target of
100,000 150 bp paired-end reads per cell.

Read mapping and quantification
ACell Rangeranalysis pipeline (version6.1.2, 10×Genomics)was utilized to
process raw FASTQ sequencing data, align reads to the canine genome, and
generate a count matrix. The default settings were used when running
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“cellranger count” and aligned to a CanFam3.1 reference (Ensembl release
104) prepared as previously described21.

Data filtering and integration
For each sample, the count matrix was imported into R using the
Read10X() function then converted to a Seurat object using the Cre-
ateSeuratObject() function18. To estimate the number of dead/poor
quality cells, the percentage of reads mapping to mitochondrial chro-
mosomes per cell (“percent.MT”) was calculated using PercentageFea-
tureSet() to count all reads mapped to features with the prefix “MT-“.
Each object was filtered to only retain cells which met the following
requirements: 200 < nFeature_RNA < 5500, percent.mt < 12.5, and
100 < nCount_RNA < 75000. Next, DoubletFinder, was used to identify
and remove putative cell doublets59. After completing quality control
filtering on each sample, all samples were normalized using SCTransform
(Pearson residuals of regularized negative binomial regression) then
integrated into one object using Seurat’s alignment workflow48. The
alignment workflow consisted of (1) identification of variable features in
each sample, (2) scaling data for variable features in each sample,
(3) identification and filtering of conserved variable features between
samples (“anchors”) using canonical correlation analysis (2000 integra-
tion anchors used), and (4) pairwise integration of the samples. During
the data scaling step, we used the “percent.MT” value as latent variable in
a linear regression framework to minimize the impact of mitochondrial
reads on dimension reduction and integration60. Following data inte-
gration, the dataset was inspected and three low quality clusters (defined
by low UMI counts) were identified and removed from the dataset. The
filtered dataset was then divided into a list of count matrices by sample
and Seurat’s alignment workflow was repeated, as the selection of vari-
able features is potentially altered with removal of cells. Ideal clustering
parameters (res = 0.8, dims = 45, n.neighbors = 40, min.dist = 0.35) were
determined using the R package clustree61. Dimension reduction and
visualization was completed, and the data were projected using 2-
dimensional, non-linear uniform manifold approximation and projec-
tion (UMAP) plots.

Subclustering analysis
For each major cell type, we subset the integrated dataset onto the popu-
lation of interest to exclude all additional cells. The subset dataset was then
divided into a list of count matrices by sample and Seurat’s alignment
workflow was repeated as described above. In the process of repeating the
integration new variable features were identified which can enhance the
ability to detect rare cell types through unsupervised clustering of the
reintegrated dataset. The integration, dimension reduction, and clustering
parameters were as follows; tumor/stroma: integration anchors = 3000,
res = 0.5, dims = 40, n.neighbors = 50, min.dist = 0.5, T cell: integration
anchors = 2500, res = 0.6, dims = 40, n.neighbors = 50, min.dist = 0.3, den-
dritic cells: integration anchors = 2000, res = 0.3, dims = 35, n.neighbors =
50, min.dist = 0.3, and macrophage/osteoclasts: integration anchors =
2500, res = 0.6, dims = 40, n.neighbors = 40, min.dist = 0.25. During sub-
clustering analysis additional low-quality clusters (low UMI or heterotypic
doublets) were filtered out. Specifically, 3 (tumor/stroma), 1 (T cell), 0
(dendritic cells), and 1 (macrophage/osteoclasts) cluster(s) were removed
from each major subset.

Cell classification
High level cell type annotations were established using unsupervised clus-
tering results, gene set enrichment analysis, and manual annotation based
on the literature for human cell type markers62. Briefly, features used to
identify major cell populations included CD3E/CD5/CD7 for T cells,
CTSK/ACP5/ATP6V0D2 for osteoclasts, CD68/AIF1/MRC1 for macro-
phages, S100A12/CD4/CXCL8 for neutrophils, COL1A1/ALPL/FAP for
tumor/fibroblasts, FLT3/CD1C/DNASE1L3 for dendritic cells,
MS4A1/JCHAIN for B cells, ESAM/PLVAP/CD34 for endothelial cells,
TOP2A/H1-5/MKI67 for cycling cells, and FCER1A/GATA2/MS4A2 for

mast cells. In addition to the use of canonicalmarkers, singleRand reference
mapping to a canine leukocyte atlas was completed to provide support for
immune cell classifications21,63. Further high-resolution cell identification
was completed through subclustering analysis on cells within each major
population (Tumor/fibroblast,macrophage/monocyte, osteoclast, dendritic
cell, andT cell). Cell type gene signatures, as determined in this datasetusing
the FindAllMarkers() function (Wilcoxon Rank Sum test), can be found in
Supplementary Data 1. In addition to the full gene signatures, we provide
curated short cell type gene signatures in Supplementary Data 2 and Sup-
plementary Table 1.

Feature visualization
Feature expression was visualized using violin plots, feature plots, and dot
plots. Selected featureswere chosenbasedonprior biological knowledge and
classification of features as statistically significant using the FindAllMar-
kers() function. Y-axis scales for violin plots within a figure are on fixed
scales. Featureplots shownormalized expression for each featureonvariable
scales. For all feature plots, gray/light purple coloration indicates low
expression and dark purple coloration indicates high expression. Dot plots
use scaled expression data which depicts deviation from the average value
for a gene across the cells being sampled.

Differential gene expression analysis
Differential gene expression (DGE) analysis was completed using pseudo-
bulk conversion followed by aDESeq2 pipeline64. Prior to running DESeq2,
low abundance features, defined as features with less than 10 raw counts
across all cells sampled, were filtered out. Features that had an adjusted P
value of less than 0.05 (as determined using a Benjamini and Hochberg
correction method) and a log2(fold change) greater than 0.58 were con-
sidered to be statistically significant65.

Gene set enrichment analysis
When completing follow-up gene set enrichment analysis (GSEA) on the
gene lists generated from DGE analysis, the significantly upregulated and
downregulated features were processed separately. The upregulated and
downregulated gene lists were used as input for evaluation using the clus-
terProfiler and msigdbr R packages to infer pathway activity66,67. Terms
which reached an adjusted P value of 0.05 or lower (Benjamini and
Hochberg correction method) were discussed as significantly enriched.

In addition to using GSEA following DGE analysis we also used the R
package singleseqgset to complete GSEA on cell type clusters. The analysis
used a competitive gene set enrichment test which was based on a Corre-
lationAdjustedMEanRAnkgene set test68. The log2(fold change) andmean
expression for every feature within each cell type was calculated and used to
complete GSEA. P values were corrected for multiple comparisons using a
false discovery rate (FDR) method and corrected P values were filtered to
only retain terms in which at least one cell type had a value less than 0.05.
The enrichment values were scaled, and the top pathways (weighted by P
value) were plotted using a heatmap.

Copy number variation analysis
Copy number variation (CNV) analysis was completed using CopyKAT on
cells that contained more than 2000 unique molecular identifiers (UMIs)14.
Briefly, the approach segmented the human genome into 220-kb variable
genomic bins to establish a genome-wide copy number profile for each
single cell at an approximate resolution of 5Mb. Eash sample was run
individually with a known normal cell population consisting of osteoclasts,
neutrophils, macrophages, and T cells when inferring CNV status. Indivi-
dual cell classifications were extracted from the CopyKat output files,
transferred to the integrated dataset, and CNV status was visualized in the
UMAP space. This approachwas only used to infer if a cell was aneuploid or
diploid. Individual chromosomal mutations were not evaluated due to
incompatibilities of the software across species.

To supplement the CopyKAT analysis we also applied the inferCNV
algorithm to the dataset which yielded similar results in terms of aneuploid
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anddiploid classifications15. Briefly, the inferCNVapproachwas runwith an
ordered genefile generatedusing the EnsemblCanFam3.1.104 gene transfer
format (.gtf) file that was used to build the reference used for alignment of
the single-cell data. An infercnv object was then created using the canine
gene positions with endothelial cells and macrophages selected as the
“normal” reference populations. InferCNV was then run using the default
settings with the recommended “cutoff” argument set to 0.1.

Regulon activity
The python implementation of Single-Cell Regulatory Network
Inference and Clustering (pySCENIC) was used to infer activity of
gene regulatory networks within cell types69,70. To complete this
analysis the gene symbols were converted from canine to human
using the convert_orthologs() function from the orthogene R
package71. During conversion, genes that had duplicate mappings in
either canine or human annotations were dropped from the matrix
and excluded from downstream analysis. The count matrices with
converted gene symbols were loaded into SCANPY and a standard
pySCENIC workflow with default settings was followed72. The
regulatory feather files used in the analysis were obtained from
https://resources.aertslab.org/cistarget/, with file names being
hg38__refseq-r80__10kb_up_and_down_tss.mc9nr.feather hg38__
refseq-r80__500bp_up_and_100bp_down_tss.mc9nr.feather. After
predicting regulon activity with pySCENIC, regulon specificity
scores (rss) were calculated using AUCell and the rss values were
used to infer regulon activity in the cell types analyzed73.

Cell-cell interaction inference analysis
The R package, CellChat, was used to make inferences about cell-cell
interactions within the tumor microenvironment35. Using a list of known
human receptor-ligand pairs provided through CellChat, we calculated the
interaction scores (strength and weight) which represent the probability of
two cells interacting. Analysis was initially completed on the final fully
annotated dataset with 41 cell types and secondarily completed on a subset
of only the immune cells (exclusion of the major cell types: osteoblast,
cycling osteoblast, endothelial, and fibroblast). Prior to analysis the raw
count matrices were extracted and the gene symbols were converted from
canine to human as described in the “Regulon activity” section. Broadly the
analysis evaluated the interactivity between ligand expressing cells (senders/
outgoing signals) and receptor expressing cells (receivers/incoming signals).
Inferences regardingpotential interactivitywere thenmadebasedon the law
of mass action using the average expression values of receptors and ligands
within cell types. Statistical enrichment of interaction networks was deter-
mined using permutation testing and an adjusted P value < 0.05was used to
determine significance. Following identification of enriched cell-cell inter-
action networks, we further classified each enriched pathway as “immune
specific”, “immune related”, and “non-immune” based on reported
expression patterns of receptors and ligands (Supplementary Table 2).
Analysis of the immune cell subset involved further classifying a subset of
interaction networks (PD-L1, CD80, and CD86) as immune regulatory.

Human OS homology analysis
Six treatment-naive humanOS samples were obtained from theNCBIGEO
database accession GSE16245412. The count matrices reported from the
previous study were loaded in as Seurat objects and were filtered using the
same parameters as used to preprocess the 6 canineOS tumor samples. The
human dataset was annotated using low resolution unsupervised clustering
while referencing the primary article in an attempt to recreate the original
annotations. Prior to integrating data across species, the raw countmatrices
from each dataset were extracted and canine gene symbols were converted
from canine to human as described in the “Regulon activity” section. Fol-
lowing conversion of gene symbols, the 12 OS samples (6 human and 6
canine) were integrated into one object using the same Seurat alignment
workflow described above, with the exception that 3000 variable features
were selected as anchors. SCTransform normalized counts were then used

to complete hierarchical clustering using the hclust() function with method
set to “complete”. Subsequent cell type gene signatures were established
using FindAllMarkers() andDGEanalysis contrasting cell typeswithin each
species was completed within the respective dataset. The resulting cell type
gene signatureswereused to calculate a Jaccard similarity index,whereas the
adjustedP valueswere assigned a sign (+/−) based on the log2(fold change)
then the signed P values were used to generate scatter plots.

Statistics and reproducibility
Raw data from a total of 8 canine scRNA-seq osteosarcoma samples were
generated in this study. Two of the 8 samples were technical replicates,
which were considered as one sample when completing computational
analysis to retain a total of 6 biological replicates. Biological replicates were
used for pseudobulk differential gene expression analysis, while cellular
replicates were used for all other analysis completed in this study. Detailed
descriptions of the statistical analyses and significance thresholds used in
this study are provided in the respective methods section.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Raw sequencing data are available on the NCBI Gene Expression Omnibus
database under the accession number GSE252470. The annotated dataset is
available for browsing at theUCSCCell Browser (https://cells.ucsc.edu/?ds=
canine-os-atlas)74, and the processed data (Seurat v4.3.0 RDS objects) are
available on Zenodo (https://doi.org/10.5281/zenodo.10666968)75. Results
of all differential gene expression analysis and cell type gene signatures are
provided in Supplementary Data files.

Code availability
A project specific GitHub page containing all analysis code and software
versions used to analyze the data presented in thismanuscript is available at
https://github.com/dyammons/canine_osteosarcoma_atlas75. Any addi-
tional data requests can be made by contacting a corresponding author.
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