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Intra-organism biodiversity is thought to arise from epigenetic modification of constituent genes and
post-translational modifications of translated proteins. Here, we show that post-transcriptional
modifications, like RNA editing, may also contribute. RNA editing enzymes APOBEC3A and
APOBEC3G catalyze the deamination of cytosine to uracil. RNAsee (RNA site editing evaluation) is a
computational tool developed to predict the cytosines edited by these enzymes. We find that 4.5% of
non-synonymous DNA single nucleotide polymorphisms that result in cytosine to uracil changes in
RNA are probable sites for APOBEC3A/G RNA editing; the variant proteins created by such
polymorphismsmay also result from transient RNA editing. These polymorphisms are associatedwith
over 20% of Medical Subject Headings across ten categories of disease, including nutritional and
metabolic, neoplastic, cardiovascular, and nervous system diseases. Because RNA editing is
transient and not organism-wide, future work is necessary to confirm the extent and effects of such
editing in humans.

Our biodiversity has long been thought to come from alternative splicing
and post-translational modification of the thousands of proteins encoded
in the human genome. There are about 20,300 protein-encoding genes in
the genome, of which 19,267 have an approved HUGO gene name (as of
04/07/23)1,2. However, about 70,000 proteins result from splice variants,
and thousands more could result from post-translational modifications2.
The expansion of proteoforms from genes is multifactorial, we hypothe-
size, and it could be due to mechanisms beyond post-translational mod-
ifications. In this paper, we explore the ability of RNA editing, a post-
transcriptional modification, to contribute to human biodiversity.

RNA editing has been described as “any site-specific alteration in an
RNA sequence that could have been copied from the template, excluding
changes due to processes such as RNA splicing and polyadenylation.”3

There are two well-studied families of RNA editing enzymes that catalyze
single nucleotide substitutions4. The ADAR (adenosine deaminase acting
on RNA) family deaminates adenosine to guanosine-analog inosine (A > I)
in specific double-stranded RNA contexts5. Similarly, specific APOBEC
(apolipoproteinBmRNAediting catalytic polypeptide-like) family enzymes
deaminate cytosine to uracil (C >U) in single-stranded contexts6,7.

Two such APOBEC-family enzymes are APOBEC3A and APO-
BEC3G. The ability of APOBEC3 enzymes to edit RNA is a relatively recent
discovery, starting in 2015 with a paper by ref. 8. For a long time, these

enzymeswere primarily known for their ability to edit single-strandedDNA
(ssDNA) produced by viruses such as HIV (APOBEC3G) and parvovirus
(APOBEC3A)6. Perhaps because of this, knownAPOBEC3-mediated RNA
editing sites are rare. In a dataset taken from a paper by Asaoka et al., only
about 0.05% of bases across 2343 genes were considered APOBEC3A/G
RNA editing sites9. We contend that, beyond their effects on viruses, these
enzymes may also affect human health via the editing of healthy human
mRNA and the subsequent creation of protein variants.

Previous work has shown that APOBEC3A/G cytosine deaminases
preferentially target RNA and ssDNA substrates with stem-loop
structures7,10. Specifically, an optimal target contains a tri- or tetraloop,
with the edited cytosine at the 3’ end of the loop and a pyrimidine 5’ to it
(Fig. 1a)7,10. Specific cytosines for which APOBEC3 enzymes have high
affinity, such as c.136 in SDHB, have previously been observed to undergo
RNA editing even in normal physiological circumstances8,11. Additionally,
APOBEC3-mediated RNA editing activity is known to transiently increase
in monocytes, peripheral blood cells, and blood-brain barrier cells upon
environmental interferon exposure8,12–15. A combination of environmental
factors and a high-affinity site can lead to high levels of editing; editing was
observed in over half of SDHB transcripts in megakaryocyte-erythroid
progenitor (MEP) cells exposed to interferon-1 and hypoxic conditions8.
Thousands of cytosines are known targets of APOBEC3-mediated editing,
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editing at many of which result in non-synonymous or nonsense
mutations8,9,12. Therefore, variant proteins that impact human health could
be created by APOBEC3-mediated RNA editing at high-affinity sites and at
an increased rate during and following tissue inflammation.

There is a growing body of evidence supporting the influence of C >U
RNAediting onhumanhealth.APOBEC3-mediatedRNAediting sites have
been found in genes with known relationships to neoplasms, hypertension,
and nervous system disorders, including amyotrophic lateral sclerosis
(ALS), Alzheimer’s, Huntington’s, and Parkinson’s disease8,12. Correlation
betweenAPOBEC3-mediated C >URNAediting and diseases like epilepsy
and sporadicCreutzfeldt-Jakobs disease (sCJD) has been found inmice, and
a link between RNA editing and autoantigen creation in autoimmune dis-
eases like systemic lupus erythematosus (SLE) has been suggested in
humans16–18.

However, this area of research is still relatively young.Most articles and
tools on RNA editing still focus on ADAR-mediated A > I editing. For
instance, the publicly availableRADARdatabase catalogsA > IRNAediting
sites with manual annotations, and this tool has been used alongside data
from The Cancer Genome Atlas to identify protein variants that may affect
tumor cell viability and drug sensitivity19,20. Although at least one study
attempted to collate knownAPOBEC3A/G editing sites, no comprehensive
database like RADAR yet exists for C >U editing events, and studies on
APOBEC3 editing tend to remain narrowly focused on one or two diseases
at a time9.

To address this gap in knowledge, we have developed RNAsee (RNA
site editing evaluation), a program that combines machine learning and
rules-basedmethods to predict APOBEC3A/G-mediated RNA editing sites
in transcripts of human genes21. In this paper, we will compare RNAsee-
predicted APOBEC3A/G-mediated C >U editing sites with publicly avail-
able data onhumanprotein variants from theClinVar database, particularly

pathogenic variants, to help open the conversation on the extent to which
C >U RNA editing may contribute to human disease.

Results
Performance of RNAsee
To assess the performance of RNAsee in predicting APOBEC3A/G editing
sites, we first benchmarked ourmodels on the testing set, whichwas split 7:3
from the training-testing data and contained a 1:3 ratio of editing to non-
editing sites (see Methods: Performance benchmark for RNAsee). Using a
score threshold of≥10 for the rules-basedmodel and a probability threshold
of >0.5 for the random forestmodel,we calculated recall, precision, F1 score,
and Matthew’s correlation coefficient (MCC) metrics for the two primary
and two consensus models. The recall of the models was highest for the
union model (82.8%) and lowest for the intersection model (46.5%),
whereas the reverse was observed with precision (90.9% for intersection,
76.8% for union). Recall and precision of the other models are shown in
Fig. 1c, d.On this dataset, F1 scoreswere highest for the unionmodel at 0.80,
then random forest at 0.75, rules-based at 0.69, and intersection at 0.62.
MCC scores showed the same pattern, being highest for union at 0.73, then
random forest at 0.68, rules-based at 0.62, and intersection at 0.58.

Because APOBEC3-mediated editing sites are rare by our estimation,
makinguponly about 0.2%of the cytosines in the genes fromourdataset,we
were concerned that these results would be overly optimistic for a real
prediction scenario. Therefore, we also benchmarked our models on a
proportional set containing a 1:468 ratio of editing to non-editing sites (see
Methods: Performance benchmark for RNAsee). Because no editing sites
were included in this set that were not in the previous set, the recall was the
same as on the testing set. Precision changed substantially, with the union’s
precision lowering to 5.5% and the intersection model’s falling to 26.5%;
however, these results still represent over 20x and 100x enrichments of

Fig. 1 | Benchmarking results of RNAsee. a APOBEC3A and APOBEC3G pre-
ferentially edit cytosines in stem-loop structures. The edited cytosine is outlined in
black. In (b–d), red represents the rules-based, blue the random forest, yellow the
union, and green the intersection model. (b) When tested on the proportional set,
the random forestmodel had anAUROCof 0.962, and the rules-basedmodel had an
AUROCof 0.892. The random forestmodel also outperformed on average precision,
with an AUPRC of 0.174 compared to the rules-based model’s 0.147 and dataset
baseline of 0.00213. The rules-based model’s curve was similar to or higher than the

random forest’s at intermediate recall values, but lower at extreme values. The recall
(c) and precision (d) of the two primary models and two consensus models were
assessed on the testing set (editing:non-editing site ratio of 1:3) and the proportional
set (editing:non-editing site ratio of 1:468). Because both sets contained the same
positive sites, the recall was the same on both sets. The intersection model was
the most precise on both sets, making it useful for selective studies; the union
model had the greatest recall, so it can be used to survey potential editing sites more
broadly.
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positive sites relative to the baseline, respectively. These results are also
shown in Fig. 1c, d. F1 andMCC scores similarly fell: F1 scoreswere 0.34 for
intersection, 0.17 for rules-based, 0.12 for random forest, and 0.10 for union,
andMCCscoreswere 0.35 for intersection, 0.24 for rules-based, and0.21 for
random forest and union.

Finally, for a more general assessment of our primary models, the area
under the receiver-operator characteristic (AUROC) and the area under the
precision-recall curve (AUPRC) metrics were calculated on the propor-
tional set (Fig. 1b). Because the consensus models have two thresholds (one
corresponding to each primary model), they were not included in these
assessments. The AUROC of the random forest model was 0.962, which is
higher than the rules-based model’s AUROC of 0.892. However, the two
curves overlapped at the highest thresholds (lowest false positive rates),
including the points atwhich the thresholds for the rules-based and random
forest models were set; the separation at lower thresholds/higher false
positive rates is likely due to the rules-basedmodel’s strict exclusion criteria,
which limits itsmaximumrecall (seeMethods:RNAsee).TheAUPRCof the
random forest model was also higher at 0.174 compared to the rules-based
model’s 0.147 and the baseline AUPRC of 0.00213.

Identification of possible editing sites
To start, we needed a set of nucleotide polymorphisms that result in protein
variants. We extracted an annotated set of DNA mutations from the
ClinVar database22.Wepared this setdown to only include single nucleotide
polymorphisms (SNPs) that were exonic and non-synonymous. Then, we
examined the relative frequency of different polymorphisms (Fig. 2a, b).

Among 622,622 non-synonymous SNPs, C > T (21.3%) and G >A
(21.1%) were by far the most frequently observed polymorphisms. Both of
these types of SNPs may result in C >U changes in RNA, depending on
which DNA strand is transcribed. Therefore, to determine which of these
SNPs could correspond with C >U editing, we needed to refer to the RNA
sequences.

We examined coding sequence files for each gene with an SNP.
Entries in genes with no good coding sequence file found were excluded,
leaving 617,363 SNPs across 9228 genes. This set is the set of all exonic
SNPs. Of these, 101,565 (16.5%) were associated with a C > U RNA
change and were included in the set of C > U SNPs. We used the most
sensitive RNAsee model, the union model, to analyze each cytosine in
that set. RNAsee returned 4600 SNPs, 4.5% of the C > U SNPs, as
potential APOBEC3A/G-mediated RNA editing sites. These SNPs were
included in the RNAsee predicted set. Of these 4600 sites, 62 (1.34%) are
known APOBEC3-mediated RNA editing sites included in the Asaoka
et al. set9.

Each entry was annotated with a pathogenicity tag, which we sorted
into three bins: pathogenic, benign, and unspecified. The proportions of
these tags in the sets of all exonic SNPs, C >U SNPs, and RNAsee predicted
siteswere calculated (Fig. 2c, d).Of the changes in theC >USNPs set, 19,285
(19.0%) were tagged as pathogenic, 9459 (9.3%) were tagged as benign, and
72,821 (71.7%) were unspecified. The percentage of pathogenic SNPs were
higher in the RNAsee predicted set; in this set, 1046 (22.7%) of SNPs were
tagged aspathogenic, 3132 (68.1%) asunspecified, and422 (9.2%) as benign.
This also meant that a higher percentage of pathogenic C >U SNPs were

Fig. 2 | Over two-fifths of non-synonymous SNPs in the ClinVar database may
result from C > U DNA editing. In (a, b), color represents the nucleotide change
represented. a The recorded nucleotide changes of all non-synonymous (NS)
single nucleotide polymorphisms (SNPs) in the ClinVar database were counted.
Like-to-like or non-specific changes were excluded. Cytosine (C) to thymine (T)
(21.3%) and guanine (G) to adenine (A) (21.1%)mutationsmay be associatedwith
C to uracil (U)mutations when transcribed into RNA, depending on which strand
is the template; the slices representing these changes are asterisked. The raw
number of each type of NS SNP is plotted in (b). In (c, d), orange represents
pathogenic SNPs, green benign, and yellow those of unspecified pathogenicity.

c Each ClinVar SNP is also associated with a pathogenicity label. These were
sorted into three bins: pathogenic, unspecified, and benign. The proportions of
each label among all exonic SNPs, the subset of exonic SNPs associated with C > U
RNA changes, and all SNPs returned as possible APOBEC3 editing sites by
RNAsee are shown. The raw number of SNPs per set are shown in (d). 22.7% of the
potential editing sites returned by RNAsee were labeled as likely pathogenic or
pathogenic, whereas only 9.2% were labeled as likely benign or benign. This
suggests that C > U RNA editing has a substantial possibility of negatively influ-
encing human health.
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predicted editing sites (5.4%) than unspecified (4.3%) or benign (4.5%). The
percentage of benignSNPswas relatively consistent between the sets, but the
percentage of pathogenic sites was highest in the RNAsee predicted set and
lowest in the set of all exonic SNPs.

Associations with disease
Of101,565 sites in theC >USNPsset, 72917 (71.8%)were associatedwith at
least one disease, condition, or phenotype in ClinVar. To determine which
areas of health are most likely to be affected by APOBEC3A/G-mediated
RNA editing, we decided to survey these conditions.

We labeled each SNP with theMedical Subject Headings (MeSH) that
most closely matched its associated conditions. In total, there were 6534
unique conditions associatedwithC >USNPs. 575 conditions (8.8%) could
not be matched with a good single MeSH equivalent and were labeled “Not
found.” In total, 7181 SNPs (9.3%)were associatedwith “Not found” at least
once, including 401 SNPs considered pathogenic.

The top-level subject headings corresponding to the initialMeSH labels
were found for each SNP,with each top-level term labeling an SNPnomore
than once. We counted the number of times each top-level subject heading
or “Not found”was associated with an SNP in the C >U SNPs and RNAsee
predicted sets. Because this work is focused on the potential effects of RNA
editing onhumanhealth,we focused on those SNPs labeledpathogenic.The
top ten most common top-level MeSH subject headings associated with
pathogenic SNPs in theC >USNPs andRNAseepredictedsets are shown in
Fig. 3a, b, respectively.

In both sets, the most common associated heading was congenital,
hereditary, and neonatal diseases and abnormalities. Because ClinVar
pathogenic variations are thought to be causally linked to their associated
conditions, all conditions associated with these variations should either be
congenital or result from a de novo tissue mutation, for instance, in a
neoplasm. Nervous System Diseases and Nutritional and Metabolic Dis-
eases were the second and third most common subject headings in both
groups, which may mean C >U RNA editing is most likely to negatively
influence human health in these two areas. The proportions ofmost subject

headingswere similarbetween the twogroups,withonly slightdifferences in
their relative rankings.

To further elucidate the potential effects of APOBEC3-mediated RNA
editing on human health, we wanted to examine the proportion of diseases
with any possible influence from APOBEC3-mediated RNA editing. To do
this, we counted the number of third-level MeSH headings (grandchildren
of top-level headings) with at least one predicted editing site. To find an
upper bound on the number of conditions affected, we also counted the
number associated with at least one C >U SNP (Fig. 4).

Almost all top-level types of non-traumatic, non-infectious conditions
recognized by MeSH had at least one grandchild term associated with at
least one predicted editing site. Some types of diseases had as few as 4% of
their grandchild terms with an associated editing site (otolaryngologic
diseases, respiratory tract diseases), whereas 72% of third-level nutritional
andmetabolic diseaseswere associatedwith predicted editing sites. Notably,
some top-level headings with a large number of predicted editing sites had a
lower percentage of diseases with associated predicted editing sites.

Discussion
We searched a list of known non-synonymous DNA SNPs to see which of
those polymorphisms, and the resultant variant proteins, could also be
caused by APOBEC3A/G-mediated RNA editing. We found that about
4.5% of known SNPs that result in C >UmRNA changes are also potential
APOBEC3A/Gediting sites. IfAPOBEC3A/GRNAediting regularly occurs
at even a fraction of these sites, this could result in meaningful effects on
human health. It has previously been demonstrated that interferon-rich
environments, such as inflamed tissues, increaseAPOBEC3-mediatedRNA
editing in a variety of cell types8,12–15. Transient increases in RNA editing
could result in the production of variant proteins, which could affect
recovery time and result in sequelae following periods of inflammation.

We only examined those SNPs in ClinVar that are transcribed into
RNA and, ultimately, translated into proteins. The effects on human health
associatedwith these SNPs should, therefore, largely result from the creation
of variant RNA and proteins. RNA editing can result in over 50% transcript

Fig. 3 | Potential pathogenic APOBEC3A/G targets are associated with similar
diseases to the set of all C > U SNPs. The number of times the top ten most
common top-level Medical Subject Headings (MeSH) are associated with the
set of pathogenic C > U SNPs (a) and the pathogenic RNAsee predicted set (b)
are shown, with each colored slice representing a different subject heading.

The most common types of conditions are similar between the two groups,
with congenital abnormalities, nervous system diseases, and nutritional and
metabolic diseases being the most common types of conditions associated with
both sets.
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alteration when a high-affinity sequence and activating environmental
factors are involved8.We contend, therefore, that transient instances of high
editing activity could cause the transient creation of these same variant RNA
and proteins. This, in turn, could result in similar dysfunctions on the
cellular or tissue level as are observed in theDNASNPs recorded inClinVar.
Of course, these effects would be less universal andmore transient, but they
could still have serious consequences if they occurred in the wrong tissues,
such as the brain or heart, created the wrong type of variant protein, such
as plaque-forming proteins or autoantigens, or occurred alongside a

heterozygousDNAmutation affecting the same gene, altering thewild-type
RNA and increasing the expression of a dosage-sensitive mutation such as
Ptenmutations23.

Our results further support the validity of considering the sites we
examined as potential RNA editing sites. Firstly, we primarily examined
those 4600 sites returned by RNAsee as potential editing sites. If RNAsee
performed in the application as it did in benchmarking, we would expect at
least 250 (5.5%) of these sites to actually undergo RNA editing, resulting in
the creation of variant transcripts and proteins (see Fig. 1d). Therefore, our

Fig. 4 | Proportion of conditions associated with at least one potential APOBEC-
mediated RNA editing site. a For select top-level MeSH terms, the number of
grandchild terms with at least one predicted APOBEC3A/G editing site was cal-
culated (blue). In addition, the number of grandchild terms with at least one
associated C > U mutation, but no predicted editing site, was found (orange).
This was divided by the total number of grandchild terms for each top-level
term to approximate the percentage of diseases associated with each top-level
term that could be influenced by C > U RNA editing at a known site of genetic
variation. The total number of terms counted can be found at the end of each bar,

and the tree number of each term can be found in brackets at the end of its label.
Additional graphs, showing the percent of child terms for each second-level term,
are provided for the child terms of the top five most common top-level terms:
bMusculoskeletal diseases, cnervous systemdiseases, d congenital, hereditary, and
neonatal diseases and abnormalities, e nutritional and metabolic diseases,
and f pathological conditions, signs and symptoms. C > U RNA editing may play a
role in at least one disease for almost every category of non-acquired human
disease.
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results support the overlap of RNA editing with DNAmutations. Secondly,
our work suggests that some level of C >U deamination is likely con-
tributing to the population of DNA SNPs recorded in ClinVar; over 40% of
SNPs are associated with a C > T change on one strand, as opposed to less
than 20% of SNPs associated with the other form of deamination, A > I/
A >G (see Fig. 2a). APOBEC3A is a major driver of C >U deamination in
DNA, and previous works suggest that APOBEC3A edits RNA at similar
sites as DNA7,10,24. Therefore, it is reasonable to conclude that, though the
ClinVar SNPs were primarily found in DNA, they include a population of
mutations that result from APOBEC3A DNA editing and are thus, when
transcribed, likely to also undergo APOBEC3-mediated RNA editing.

When the union method of RNAsee was benchmarked, it returned
about 3.2% of cytosines in the proportional set as potential APOBEC3A/G
editing sites, including false positives. However, when run on C >U sites in
the ClinVar database, it identified 4.5% (4600) of C >U SNPs and 5.4%
(1046) of pathogenic C >U SNPs as potential editing sites. This increased

percentage supports the idea that some of the C > T and G >A poly-
morphisms recorded in ClinVar result from APOBEC3-mediated DNA
editing, leading to a sample that was biased towards higher APOBEC3A/G
editing affinity. APOBEC3A is already known to extensively edit DNA in
neoplasms, but in this work, Neoplasms was only the ninth most common
subject heading associated with SNPs that result in C >U changes in RNA
and sixthmost common subject heading associatedwith RNAsee-predicted
editing sites (seeFig. 3)10. This suggests thatC >UDNAediting likely factors
into the creation of pathogenic SNPs and variant proteins beyond its known
activity in neoplasms. APOBEC3A/G RNA editing at the same sites could
likewise influence human health in varied areas.

We believe that these results, alongside existing evidence, support the
significance ofAPOBEC3A/GRNAediting tohumanhealth (Fig. 5). Strong
evidence suggests that expressionofAPOBEC3enzymes increases in certain
tissues when exposed to hypoxia or increased environmental
interferons8,12–15. These conditions may be limited in area and duration, as

Fig. 5 | Selected evidence for the influence of RNAediting onhumanhealth. In the
traditional model of biology, protein diversity results from mutations in DNA and
post-translational modifications, and the expression of genes is regulated via epi-
genetics and transcription factors. We propose adding RNA editing to this view.
Current evidence suggests that APOBEC-family enzymes are expressed when some
cell types are exposed to environmental IFN. Some APOBEC enzymes, such as
APOBEC3A and APOBEC3G, have been shown to edit human RNA. This editing
has been shown to cause non-synonymous changes in mRNA, and we used RNAsee
to predict additional sites thatmay also undergo editing. The effects of this editing on
human health are still under-researched, but some prior work has suggested links
between APOBEC-mediated RNA editing and certain autoimmune and

neurological disease. Our predictions additionally suggest that at least one potential
editing site is associated with most disease categories recognized in MeSH subject
headings. It is essential that futurework attempts to investigate and confirm or refute
the links between RNA editing and human health as proposed in this and other
works. The box shape of evidence boxes represents the type of study the information is
taken from. Rounded edges are computational (pred)ictions, cut corners are (corr)
elational studies, and square corners are (exp)erimental studies. * Results 2: Identi-
fication of possible editing sites. PBMC: peripheral blood mononuclear cell; BMVEC:
brain microvascular endothelial cells; IFN: interferon; SLE: systemic lupus erythe-
matosus; sCJD: sporadic Creutzfeldt-Jakob disease.
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may be observed in acute viral infection; theymay also bemore widespread
and long-lasting, as may be the case in chronic hypoxia resulting from
emphysema or widespread inflammation resulting from autoimmunity.
Such periods of increased enzyme expression provide increased opportu-
nities for APOBEC3A/G-mediated mRNA editing events to occur,
particularly in optimal stem-loop structures, and the effects on health may
vary based on the location, duration, and intensity of the enzymatic
activity8,10.

These editing events have previously been shown to occur at locations
that result in variant proteins due to missense or nonsense mutations12.
Beyond these known sites, we have found that a much higher percentage of
non-synonymous SNPs in the ClinVar database are associated with a C > T
change on one DNA strand than is expected by random chance, which, we
reason, indicates thatC >U ssDNAediting has contributed greatly to the set
of known human SNPs. Since similar substrates are targeted and similar
sites are edited by APOBEC3A/G enzymes in DNA and RNA, this suggests
more frequent RNA editing is likely occurring at some or all of the 16% of
non-synonymous SNPs associated with C >U RNA changes7,10,24. RNAsee
specifically suggested that 4600 of these sites, or 4.5% of all C >U SNPs, are
particularly probable editing sites, and 62 of those sites are known editing
sites included in the Asaoka et al. dataset9.

Theultimate question is: does this editing actually affect humanhealth?
Ourwork suggests it does. Of those sites suggested as probable RNA editing
sites by RNAsee, 1046 were tagged as pathogenic, and an additional 3132
have unknown or unspecified pathogenicity. Over 20% of third-levelMeSH
subject headings associated with nutritional and metabolic, neoplastic,
cardiovascular, and nervous system diseases (along with 6 other categories
of disease) were associated with at least one predicted editing site. In
addition, more studies are finding links between APOBEC-mediated RNA
editing and human disease. For instance, APOBEC-mediated editing has
been correlated with epilepsy and sCJD in mouse models16,17. One study on
the linkage between SLE and RNA editing even suggested RNA editing as a
mechanism for autoantigen formation in autoimmunediseases18.Therefore,
there is a high likelihood that RNA editing affects human health in some or
all of the areas of disease noted in this study, particularly when there is an
environmental pressure causing increased APOBEC3 activity.

This paper uses the effects on the health of DNA SNPs to infer the
effects of RNA editing. However, as noted, RNA editing is a more transient,
less universal process than DNA mutation, and, in real life, its effects may
vary based on the enzyme’s activity, the duration of this activity, and the
tissue affected. On the other hand, this paper only considers the activity of
the APOBEC3A/G enzymes. If APOBEC3A and APOBEC3G could cause
polymorphisms at someof the loci identified in this paperandmediate some
of the disorders noted, it seems likely that other APOBEC or ADAR-family
enzymes are simultaneously editing RNA at entirely distinct sites, activated
by distinct conditions, andwith distinct effects on health. Therefore, to fully
explore this mechanism behind protein diversity, future research should be
devoted to (1) describing the sites at which RNA editing occurs, (2) finding
the conditions in which these enzymes are most active, and (3) identifying
the effects of variantRNAorproteins resulting fromRNAeditingonprotein
diversity and human health. In this way, we can add to our basic under-
standing of human molecular biology.

Classically, our biodiversity is thought to come from our constitutive
genetics, epigenetic phenomenon, transcriptional differences, and post-
translational modification of proteins. Here, we have shown evidence that
RNA editing could also play a role in creating the variant proteins that
contribute to human disease. Previous works have shown that the extent of
RNA editing is sensitive to environmental factors such as interferon pre-
sence and hypoxia, and, in an era where worries about our changing
environment are ever- increasing, understanding how environmentally
sensitive mechanisms like RNA editing affect our cells is essential8,12,14,15.
Future researchwill apply our analysis to the transcriptomes and proteomes
of specific disease conditions in order to further clarify the functional
and predictive role of APOBEC-mediated C >U RNA editing in human
disease.

Methods
Extraction of disease variant data
The ClinVar database, maintained by the National Center for Biotechnol-
ogy Information (NCBI), collects information regarding DNA variants
found in patient samples, including assertions of clinical significance and
evidence to support those assertions22. We extracted the annotated set of
DNAmutations fromClinVar onMay 18, 2022, via FTP25. All variants that
were not SNPs (Type of single nucleotide variant) were excluded. Two
records were provided for each variant corresponding to the GRCh37 and
GRCh38 reference genomes. Records corresponding to GRCh37 were
excluded. Finally, because this study was intended to examine RNA editing
as a potential source of protein diversity in human cells, all DNA variants
that would not result in protein variants (including non-exonic or exonic
but synonymous variants) were excluded.

For each SNP, we extracted the following information: the gene, allele
ID, any amino acid change resulting from themutation, assertion of clinical
significance, rsID, original andmutant nucleotides, and a list of phenotypes
associated with the variant. To get a baseline for the frequency of different
SNPs, we used the original and mutant nucleotides (found in the Refer-
enceAlleleVCF and AlternateAlleleVCF columns) for each SNP. Entries
with non-specific nucleotides (e.g., A > X) or like-to-like nucleotide changes
(e.g., A > A) were excluded. Entries without any associated amino acid
change recordedwere also excluded.We also binned the clinical significance
into three categories (pathogenic, benign, or unspecified) based on whether
the significance tag contained the words pathogenic, benign, or neither.

Coding sequence files were obtained from the consensus coding
sequence (CCDS) database26. An attempt was made to download a human
coding sequence file for any gene with at least one SNP that matched the
inclusion criteria. If the said file did not exist or was incompatible with the
data contained within ClinVar (i.e., the original amino acid in the record is
not coded for by the codon at the corresponding location in the coding
sequence file), variants in that gene were excluded. Out of 622,222 SNPs
matching the inclusion criteria, 617,363 exonic single nucleotide poly-
morphisms across 9228 genes were analyzed. The amino acid change
recorded in each entry and the corresponding codon in the coding sequence
file were used to determine whether each SNP could be associated with
C >U RNA editing. Those DNA polymorphisms that resulted in a C >U
change in the transcribed mRNA were included in the C >U set and ana-
lyzed using RNAsee. In total, 101,565 sites were assessed for their likelihood
of being APOBEC3A/G editing sites.

RNAsee
RNAsee is a publicly available Python package. It can be found at https://
github.com/ram-compbio/RNAsee. We previously developed RNAsee to
identify potential APOBEC3A/G editing sites. RNAsee v1was a rules-based
method that used a simple stem-identification algorithm and a minimum
free energy score assigned by ViennaRNA to rank cytosines within a gene
from most to least likely to undergo RNA editing 21,27. During the devel-
opment of RNAsee v2, we decided to utilize the set of known APOBEC3-
mediated RNA editing sites published in Asaoka et al. to both improve and
benchmark RNAsee9. All cytosines identified by Asaoka et al. were con-
sidered editing sites, and all other cytosines in the same genes were con-
sidered non-editing sites9.

We refined the rules-based model to score sites based on sequential
features commonly observed in this dataset in addition to the presence and
strengthof a stem-loop structure.Wedeveloped a scoring algorithm, andwe
trained a scoring threshold for the rules-based model for best F1 score on a
subset of the dataset.

We also added a machine-learning model to RNAsee. Four types of
classification models were initially considered: support vector machines,
logistic regression, decision tree, and random forest. We also considered
different methods of vectorizing the sequence surrounding the potential
editing site based on the number of nucleotides included (a 25- or 15-
nucleotide stretch surrounding the site) and the method of encoding
nucleotides (4 or 2 binary integers per nucleotide). Finally, we attempted to
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accommodate the highly imbalanced class sizes between editing and non-
editing sites (1:468) by downsampling non-editing sites and/or using
SMOTE-based upsampling of editing sites. Ultimately, based on initial
benchmarking performance and area under the receiver-operator curve
(AUROC) figures, we chose a random forestmodel that takes as input a 25-
nucleotide stretch surrounding a cytosine, vectorized into two binary inte-
gers per nucleotide (isPurine and pairsGC), trained on a set of sites
downsampled for non-editing sites and with an increased proportion of
non-editing sites that received high scores when scored by the rules-
based model.

RNAsee v2 includes twoprimarymethods and twoconsensusmethods
for editing site identification:
• Rules-basedmodel. The rules-basedmodel assigns a score to cytosines

if, and only if, they are found at the 5’ end of the loop of a stem-loop
structure. The stem-loop structure is defined as a series of paired
nucleotides surrounding a three to four nucleotide loop, with a single
mismatch, or bulge, allowed two nucleotides 5’ to the cytosine. Scores
are then calculated basedon the strength of the stem (3*(the number of
GC pairs)+ (the number of AU pairs)) and the presence or absence of
specific sequential features (+2 for a uracil in the loop or a purine 5’ to
the cytosine and−2 for a guanine in the loop). If a cytosine receives a
score of greater than nine according to these rules, it is considered an
editing site.

• Random forest model. The random forest model was created as an
instance of the RandomForestClassifier class from scikit-learn28. The
model takes as input a 50-bit vector representing 15 nucleotides
preceding and 10 following a cytosine. Every nucleotide is represented
by 2 bits; one for whether that nucleotide is a purine and another for
whether it can participate in GC pairing. The model was trained and
tested using a 70–30 training/testing split of known editing and non-
editing sites. A site is considered an editing site if its probability of being
an editing site is over 0.5.

• Consensus models. The intersection and union models combine the
outputs of the two primary methods using simple set operations. The
intersection method outputs only sites returned by both primary
models, and the union method outputs all sites returned by either
primary model.

Performance benchmark of RNAsee
Two datasets were used to benchmark RNAsee: the testing set and the
proportional set. The former included all sites in the random forest model’s
testing set. It contained a 1:3 ratio of editing tonon-editing sites. Because this
ratio is greatly different from that found in the whole Asaoka et al. dataset,
we also created the proportional set9. This set contains all sites found in the
testing set plus additional non-editing sites to bring the ratio of editing to
non-editing sites to 1:468, similar to the original ratio.

To ensure our benchmarking results would not be skewed by sequence
redundancy in our positive and negative datasets, we assessed the sequence
identity of each positive-positive and negative-negative pair on the 25
nucleotides used by the machine learning model around each cytosine (15
nucleotides before and 10 after the C). Less than 0.01% of pairings had over
75% sequence identity (at least 19 nucleotides in common) in both sets. In
the positive dataset, about 50.6%ofpairings hadover 30%sequence identity,
whereas 28.8% did in the negative dataset. This higher level of identity
among positive sequences is expected, given they are all edited by APO-
BEC3A/G enzymes, the activity of which is specific to certain sequential and
structural features. Therefore, we do not expect that sequence redundancy is
significantly biasing the model.

Duringbenchmarking, eachmodelwas used to predictwhich cytosines
in bothdatasets areAPOBEC3 editing sites. Thenumber of non-editing and
editing sites in each model’s predictions were tallied and used to calculate
metrics including recall, precision, F1 score, and MCC. For the primary
models, AUROC and AUPRC figures were also calculated.

Because this paper focused on fully exploring the potential effects of
APOBEC3A/G-mediated RNA editing on human health, we decided to use

the union model, which showed the highest sensitivity (82.8%).
For each SNP in the C >U set, the original cytosine in question and its
sequential context were passed as input to the union model. All sites
returned by the union model were considered potential APOBEC3A/G
editing sites.

Association with MeSH subject headings
The diseases and phenotypes associated with each site in the C >U set were
extracted. All unique conditions were extracted into a single list. For each
term in this list, the most relevant MeSH subject heading (descriptor or
supplemental concept record)was found. The investigatorwas blinded as to
which sites, predicted or otherwise, each term was associated with during
this process. MeSHmappings were used to associate supplemental concept
records with tree terms unless a mapping contained a qualifier that sug-
gested the supplemental concept record was not a child of themapped term
(such as “abnormalities”). Each term was then associated with the chosen
subject heading and every parent subject heading up to the top level. If no
single subject heading encapsulated the given term, that termwas associated
with the phrase “Not found.” “Not found”was treated as a top-level subject
heading for analysis purposes. Finally, the terms were re-associated with
the SNPs.

The number of times each subject heading appeared across all SNPs
was counted. Each subject heading was counted up to once per SNP, even if
that SNP was associated with multiple conditions corresponding to that
subject heading. Using the same method and the same list of condition-
subject heading associations, the number of times each subject heading
appeared across the union set was also calculated. Additional counts were
also generated for the subsets of pathogenic, benign, or unspecified SNPs in
each set.Analysiswasprimarily carriedouton the counts of top-level subject
headings.

Additionalfigureswere calculated for the percentage of diseaseswith at
least one C >U SNP and/or editing site associated. For the purposes of this
work, the third level of MeSH subject headings (grandchildren of top-level
terms) were considered to represent individual diseases. For each top-level
term and select second-level terms, the number of associated third-level
termswas counted. If at least one C >U SNP or editing sitemapped directly
to a third-level term or to child terms of that third-level term, the term was
counted as having a C >U SNP or editing site. The percentages of diseases
with at least one associatedC >U SNP and diseases with at least one editing
site were then calculated by dividing these counts by the total number of
third-level terms.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The data used in thiswork are publicly available. TheRNAediting sites used
to train and assess RNAseewere originally collated inAsaoka et al., and they
may be accessed therein9. Information on known SNPs were collected from
the ClinVar database, which can be accessed via https://www.ncbi.nlm.nih.
gov/clinvar/. RNA coding sequences were sourced from the consensus
coding sequence (CCDS) website, which may be accessed via https://www.
ncbi.nlm.nih.gov/projects/CCDS. The CCDS files and ClinVar data used in
this paper and the scores assigned to each site by RNAsee are available via
http://compbio.buffalo.edu/data/mc_rnasee_biodiv/. The numerical source
data behind the graphs can be found at http://compbio.buffalo.edu/data/
mc_rnasee_biodiv/ as well. All other data were available from the corre-
sponding author on reasonable request.

Code availability
The RNAsee Python package is available on GitHub at https://github.com/
ram-compbio/RNAsee and at http://compbio.buffalo.edu/software/rnasee.
The exact version used here is accessible through https://doi.org/10.5281/
zenodo.1089251529.
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