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Materials discovery of ion-selective membranes
using artificial intelligence
Reza Maleki1,10, Seyed Mohammadreza Shams2,10,

Yasin Mehdizadeh Chellehbari3, Sima Rezvantalab4, Ahmad Miri Jahromi2,

Mohsen Asadnia5, Rouzbeh Abbassi6, Tejraj Aminabhavi 5,7 &

Amir Razmjou 8,9✉

Significant attempts have been made to improve the production of ion-selective membranes

(ISMs) with higher efficiency and lower prices, while the traditional methods have drawbacks

of limitations, high cost of experiments, and time-consuming computations. One of the best

approaches to remove the experimental limitations is artificial intelligence (AI). This review

discusses the role of AI in materials discovery and ISMs engineering. The AI can minimize the

need for experimental tests by data analysis to accelerate computational methods based on

models using the results of ISMs simulations. The coupling with computational chemistry

makes it possible for the AI to consider atomic features in the output models since AI acts as

a bridge between the experimental data and computational chemistry to develop models that

can use experimental data and atomic properties. This hybrid method can be used in

materials discovery of the membranes for ion extraction to investigate capabilities, chal-

lenges, and future perspectives of the AI-based materials discovery, which can pave the path

for ISMs engineering.

The traditional research and development (R&D) methods can hardly fulfill the ever-
growing demand for innovative materials and energy resources. The outpaced R&D
methods are delayed by several factors, such as arduous and expensive experiments and

time-consuming computer simulations1. These empirical and computational approaches can
contribute to each step of the multi-stage conventional methods (e.g., discovery, development,
property optimization, etc.)2,3. Considering probable iteration between stages, novel chemicals
and resources will be held well behind the soaring demand4. During recent decades, advances in
various sciences have led to an increased focus on energy-efficient materials and methods,
especially membrane separation technology. Membrane technology, given its simplicity, scal-
ability, and small footprint, has been a focus for many applications, including water and was-
tewater treatment, gas separation, filtration, pharmaceuticals, batteries, and fuel cells5. Ion
separation becomes essential for the mentioned applications. Ion-selective membranes (ISMs)
are utilized into various processes, from biological membranes to industrial separations. ISMs
enable the recovery of raw materials from natural resources and/or wastewater sources6–8.
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While handling a large amount of data with multiple steps,
neither the traditional experimental nor the computational
approaches are feasible. To accelerate the data management,
artificial intelligence(AI), with its inherent capabilities in the
handling of a large amount of data, seems applicable in various
fields such as drug discovery9,10, disease diagnosis11–13, advanced
energy materials14, catalysts15,16, gas and oil industry17,18. Asso-
ciated limitations of the conventional methods (like time-
consuming experimental and computational works, high experi-
mental work costs, unsafe work conditions with toxic materials,
and high pressure and temperature conditions) accentuate rapid
and accurate methods. AI and its subgroups are proven effective
tools for finding quick and efficient solutions under various
situations. For instance, KiJeon Nam et al.19 used Deep Learning
to evaluate the optimal conditions for an effluent treatment unit,
including membrane bioreactor (MBR), and by using the optimal
conditions, they could save up to 4% on the energy consumption
of this unit. Besides that, using AI for material discovery can be
very useful. New material discovery dating back to the human
history that started in the Stone Age and continuing till date20.
The AI-related techniques in material discovery are investigated
by Yang et al.21 together with a brief history of AI development.
Accelerating the discovery of new materials and maturing and
implementing these technologies into deployment will require a
radical departure from the traditional forms of discovery. It also
requires a broad effort that brings a different variety of indivi-
duals working across their specialties. Hence, material discovery
and development cross-cutting the entire separation technology
portfolio from membranes and zero-carbon emissions to valuable
metal separation, delivery, and other end-uses.

One of the most important areas that can use the capabilities of
AI for material discovery is membranes that are used to extract
valuable metal ions22,23. The growing demand for purification
methods has developed the intense applications of AI and
machine learning (ML) in ISMs’ progress. A model trained by AI
and ML provides an efficient avenue to reduce computational
power consumption. AI and its subsets have been extensively
used in several membrane separation technologies24–26. As shown

in Fig. 1, the AI methods can be utilized in every step of the
valuable metal ions separation process, the same as Li separation,
including discovering the new materials27, optimizing process
parameters19,28,29, and finally improving the existence of metal
ions extraction methods30–33. Consequently, in the presence of
rich databases, intelligent methods can take a further step and
interfere in discovering the new ISMs. In this sense, AI and ML
can help researchers improve the selectivity of ISMs without
sacrificing permeability. It can be the dawn of a new era in
membrane technologies and purification processes.

In the previous works, the performance of some ISMs has been
investigated using AI tools. However, no comprehensive study of
the application of AI in ISMs material discovery has been
reported. In fact, only some limited works have been performed
on some case studies. Given the growing use of AI in this field, a
review work that can comprehensively study the application of AI
in ISMs material discovery can be of great help to further
research. Having such review work, subsequent studies using AI
tools can be performed more accurately, and better perform ISMs
material discovery. The current review aims to critically discuss
the immature development of AI and ML techniques in mem-
brane technologies, especially in designing and discovering new
ISMs with higher selectivity and permeability towards the desired
ions. In this regard, we review the limitations and capabilities of
AI and ML that could be used to design more efficient ISMs.
Finally, using atomic properties obtained from MD and DFT
calculations, one can pave the path for developing AI and ML
approaches to discover more efficient ISMs.

Data preprocessing and AI feature engineering
One of the essential steps of material discovery is data gathering.
Generally, the volume and reliability of data conduct the ML
results to the practical and direct path. Therefore, data pre-
processing and feature engineering are needed. By implementing
these two steps, machines can better understand the material
specification relationships and optimize the process parameters
and material predicting models to improve the existence of

Fig. 1 Schematic representation of the application of AI methods for the discovery and design of new ISMs. AI can optimize current ISMs or suggest
new ISMs based on computational (or experimental) data. Optimization and discovery of new materials in this method are based on a model that AI builds
from related computational (or experimental) datasets. Based on this model, AI can determine the optimal conditions for ion separation (including
ISMs type).
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valuable metal ions extraction methods1,20,34. Data collection and
data cleaning are the two main steps of data preprocessing, and
there are many types of data collection, but researchers need to
collect representative data. It would be most reasonable to choose
appropriate data for specific problems. Accordingly, to reach an
accurate and efficient predicting model to improve the efficiency
of data analysis, data cleaning is necessary to be free from irre-
levances and incorrect information1.

In order to build a complete ML dataset, one can select and
mine the appropriate data relay on high-throughput theoretical
simulations from the existing database. Some open-source data-
bases generally provide guidelines, standards, or recipes to facil-
itate any new product’s preparation. The MGI project1,34 in 2011
proposed a comprehensive environment for researchers to deepen
their investigation of materials and build a unified database to
predict new materials’ properties. The open-source databases
such as AFLOWLIB and Materials Project are the global database
and power analysis tools for researchers, particularly for inor-
ganic materials35,36such as in Harvard Clean Energy Project37,
ZINC, and GDB38 for organic molecules and organic solar cell
materials. On the other hand, NanoHUB is an open-source
database focusing on nanomaterials and Open Quantum Mate-
rials, and Cambridge Structural Databases36, which contain a
substantial amount of data on the structural properties of mate-
rials, are a good choice for sample input data for the ML
approach. Also, Atomic Simulation Environment, Python Mate-
rials Genomics (pymatgen)39, Automated Interactive Infra-
structure and Database (AiiDA)40 are the open-source automated
environments that could provide many simulation tasks.

The first vital issue in material discovery is sufficient knowl-
edge about the features. Different mechanism of the various
membranes leads to multiple application areas and features.
Therefore, the machine must interpret the input and output data
of the ML infrastructure through the modified learning process20.
Accordingly, feature engineering presents the most precise cor-
relation between the features and labels to approach the best
performance. The following parts will introduce the two main
steps of data preprocessing and the essential features in the
material discovery of ISMs. feature the selection and how they can
function in ISMs discovery as artificial intelligent (AI) tools for
feature engineering.

Feature selection in materials discovery of ISMs. The choice of
input and output data in ML procedures is crucial. The machine
should utilize and benefit from the data integration to reconstruct
the datasets and ensure a meaningful correlation between the
volume and reliability of data entering and exiting the ML
infrastructure1. In the predictive modeling process, feature
selection is a useful tool for identifying and removing irrelevant
data and selecting appropriate variables from those that do not
contribute to the accuracy of the models, resulting in better
accuracy in the model1.

As shown in Fig. 2, descriptors are the appropriate features
extracted from the process of feature engineering. Feature
engineering helps to develop some meaningful descriptors that
are relevant to the output. As a result, the quality of predicting
model would be related to the quality of significant input
material-specific features. Therefore, creating a set of meaningful
descriptors is crucial. Currently, manually creating a set of
significant features depending on the properties of experimental
studies and using relevant mathematical and physical assessments
to implement those features into numerical vectors are the two
main ideas for determining descriptors for the experimental
candidates’ properties1,41. Ghiringhelli et al.41 consider four
primary standards for a descriptor with the minimum

dimensions, characterizing the material the same as the
property-relevant elementary process, characterizing and select-
ing materials based on similar descriptor values, and the
simplicity of determining the descriptors41.

The purpose here is to highlight and collect the trends in
research progress related to the ISMs. Mainly, ion transport
mechanisms inside the nanochannels play essential roles in
designing ISMs. The main highlight is to emphasize the
fundamental concept of ion transport within the membranes
and achieve better results are nanochannels size and geometry,
material design, and fabrication methods.

Descriptors for ISMs. In the process of feature engineering, a large
number of data has been accumulated from the experimental and
computational investigations that are incomplete, complicated,
redundant, and inconsistent. Therefore, data cleaning and data
preprocessing need to be undertaken to develop an efficient ML
predicting model and reduce the extent of calculation. In order to
express different mechanisms, organize independent variables,
and find relationships between the hidden data and other
meaningful features, high-performance descriptors should be
designed. As the membranes are well-known for their size, dis-
tance, surface charge, chemistry and morphology of the nano-
channels, and driving force, they have been actively utilized for
ion transport mechanism, especially for predicting the ions
selectivity7. In order to achieve practical applications, suitable
descriptors must be chosen depending on the different situations
such as discussed below.

Effect of nanochannel size: During the membrane fabricating
process, high permeability, high ion selectivity, controlling the
size of the nanopores, and providing a large number of uniformly
sized nanopores, should be considered crucial parameters7,42. The
nanochannel size is considered the most critical parameter in
controlling ion selectivity. Increasing the size of the nanochannels
decreases ion selectivity. The dehydration process has a crucial
impact on ion selectivity when the surface of nanochannels is
neutral. The separation of ions thus occurs when the ions lose
part of their hydration layer to enter the membranes, which
means that the size of the nanochannels must be smaller than the
hydration ionic diameter43–45. Hence, for the non-charged
nanochannels with less than 0.74 nm, alkali metal ions must
lose some of the associated water molecules or part of their
hydration layer to enter the channel41.

The monovalent ion selectivity becomes more critical when
there is no charge on the nanochannels walls. Abraham et al.46

prepared stabilized graphene oxide membranes with a pore size
smaller than the hydration ionic diameter to observe that
reducing the spacing size resulted in significantly decreasing ion
selectivity and permeation rate. The GO membrane exhibited a
lower permeation rate for Ca2+ and Mg2+ ions than Li+, Na+,
and K+ ions, but no identifiable monovalent ion concentration
exists. Based on these results, detectable ion transportation can
happen when at least three layers of water molecules surround the
ions. There is no permeation rate with a d-spacing below 0.7 nm
for the GO membranes. In a further work42, with no charge
density of polyethylene terephthalate (PET) membranes, a
substantial increase in Li-ion transport and a considerable loss
in Li-ion selectivity was observed when the thickness of the
membrane was decreased, and the nanochannels size of PET
membrane was increased from 0.6 nm to 1 nm in diameter. Other
critical descriptors such as different classes of porous materials,
such as the covalent/metal−organic frameworks (C/MOFs) with
a narrow distribution of pore sizes are suitable for the ion-
selective separation. Angstrom-sized windows and nanometer-
sized cavities are the essential parameters for finding a suitable
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MOF, showing excellent ion selectivity45–47. As a result, such
geometrical descriptors (size of nanochannels, thickness, distance,
and different materials) highly indicate the resulting ions’
selectivity and permeation rate. Hence, it is sensible to utilize
these geometrical descriptors for ML.

Effect of nanochannel surface charge: In order to achieve practical
application, suitable descriptors must be chosen depending on the
different situations. Another significant descriptor should be con-
sidered when the nanochannel surfaces possess the negative charges
introduced through the functional groups on the inner surfaces of
the nanochannels. As a result, ion affinity to the functional groups is
substantially effective in controlling ion selectivity48. Based on the
literature, reducing the negative charge density of the functional
groups in the nanochannels causes a significant drop in the selec-
tivity of ions and permeation rate48,49. According to Wen et al.49 it
is not clear how the distribution of carboxylate acid as functional
groups and their arrangement in the membrane structure can
change Li-ion selectivity and transportation rate. In another
investigation, Zhao et al.50 introduced sulfonate groups between
graphene sheets of the rGO-SDDS-rGO membrane that exhibited
Li+ to multivalent cation selectivity of around five, and poor
selectivity of about one for Li+ to monovalent cations.

Effect of nanochannel morphology: The functional groups onto
the nanoscale membranes are not always applicable since other
aspects of descriptors, such as morphology and the intrinsic
nature of the nanopores, have a significant impact. These are the
important contributing factors that need to be considered51. To
investigate the transport of ions in nano/subnanometer size
membrane, morphological defects are important for under-
standing ion selectivity. Morphological effects such as breaking
the symmetry of nanochannels can affect ion conductivity and
transportation in nanochannels with the charged surfaces52,53.

Effect of the driving force: The driving forces, including applied
potential, pressure, temperature, and concentration difference, are
the primary descriptors for studying ion mobility within nano-
scaled membranes. Upon applying the electrical potential
between two sides of the nanochannels, increasing the potential
and power density causes the enrichment of some ions on one
side and depletion of the others on the other side54. Therefore, in
designing ISMs, the current operating limitation is considered
one of the restrictions. Recently, Razmjou et al.47 demonstrated
that electric field power has a straightforward relationship with
the diffusion coefficient in the case of vermiculite membrane with
0.4 and 0.8 nm interlayer spacing. As shown in Table 1, in some

Feature Engineering Model Building Application 

Raw data
• Experimental Data
• Computational Data
• Open-Source 

Databases
• Pymatgen
• AFLOWLIB
• ….

Models
• Algorithms 
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• Reaction Conditions 
• Crystal Structure
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• Shape
• Permittivity
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Fig. 2 Stages of AI-based ISM discovery. The main descriptors should be selected from the raw datasets. This step is performed using feature
engineering. Data screening, determination of input, output and, communicated descriptors are done in this step. After that, AI can train models that can
predict the performance of different ISMs. The accuracy and reliability of the model are crucially dependent on feature engineering.

Table 1 Different descriptors and labels for the AI methods
in ISMs application.

Membranes Important descriptors Optimized labels Ref

PET membranes ∙ Nanochannel size
∙ Nanochannel
thickness
∙ Driving forces
∙ pH
∙ Surface charge
density

✓ Ion transport rate
✓ Ion selectivity

43

ZIF-8 and UiO-
66 membranes

∙ Pore size
∙ pH
∙ Applied voltage
∙ MOF chemistry
∙ Ion dehydration
mechanism

✓ Ion transport rate
✓ Ion selectivity

46

Graphene-based
membranes

∙ Interlayer spacing
∙ Sieve size
∙ Membrane’s
thickness
∙ Channel size
∙ Temperature

✓ Ion transport rate
✓ Ion selectivity

46

2D-Vermiculite
membranes

∙ Angstrom-sized
windows
∙ Nanometer-sized
cavities
∙ Interlayer spacing
∙ Driving Forces
∙ pH

✓ Ion transport rate
✓ Ion selectivity

47

PET membranes ∙ Membrane
surface charge
∙ Ion type
∙ pH
∙ Subnanometer
Pore Size

✓ Ion transport rate
✓ Ion selectivity

49

rGO-SDDS-rGO
membranes

∙ Channel dimension
∙ Functional groups
∙ Hydrated ion
diameter
∙ Ion
dehydration energy

✓ Ion selectivity 50

Polyimide
membranes

∙ Surface charge
∙ Wettability
∙ Pore size

✓ Ion conduction 53

MXene ∙ Channel dimension
∙ Charge density
∙ Membrane thickness
∙ Hydration radius

✓ Ion transport rate
✓ Ion selectivity

112
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studies, the effect of the driving force is considered as an
important descriptor of ISMs. Table 1 also presents the descrip-
tors and labels of other important studies on ISMs.

Energy-based descriptors. Computational simulation methods can
evaluate various materials’ properties by performing simulations
instead of actual material synthesis20. Several factors play sig-
nificant roles in the design of ISMs through the experimental
investigations. Although ion transportation mechanisms inside
the nanochannels have been well-studied, other widely descrip-
tors called energy-based descriptors implement the interaction
behavior between the membranes and the ions. To provide more
information in describing the actual behavior and interaction
between the materials and ions for a given framework, energy-
based descriptors can enhance the models’ performance using

molecular dynamics (MD) simulations and density functional
theory (DFT) calculations. Simulations can produce some critical
characteristics of the materials without performing the actual
experiments. The recent MD simulations exhibited no ion
transportation in graphene oxide (GO) membranes55 with
d-spacing of below 0.7 nm, wherein it was shown that imple-
menting the charged functional groups in GO nanochannels has a
negligible effect on the ion transportation and ion selectivity. At
the same time, at least two layers of water are essential for ion
transportation55. DFT modeling was applied to obtain and
characterize organic molecules’ quantum mechanical character-
istics and electronic properties such as electron affinity, the
highest and lowest occupied molecular orbital, reaction proper-
ties, structural information, and atom numbers56. For instance,
Zhang et al.57 revealed the mechanism of lithium ions adsorption

Table 2 Different descriptors for energy-based AI models.

Application Membranes Important descriptors Labels Ref.

MD PET membranes ∙ Average pore radius
∙ Electrostatic interaction

✓ Ion transport rate
✓ Ion selectivity

42

MD - ∙ Pore size
∙ Energy barriers
∙ Ion type
∙ Membrane surface charge
∙ Ion dehydration mechanism

✓ Ion transport rate
✓ Ion selectivity

43

MD 2D-Vermiculite membranes ∙ Channel dimension
∙ Inter-surface distance
∙ Driving forces

✓ Ion transport rate
✓ Ion selectivity

47

MD Graphene oxide (GO) membranes ∙ Channels dimension
∙ Different layers of water
∙ Ionic charge

✓ Ion transport rate
✓ Ion selectivity

112

DFT Manganese oxide (λ-MnO2)/graphene ∙ Electronic conductivity
∙ Band gap
∙ Degree of hybridization
∙ Diffusion energy barrier

✓ Ion selectivity
✓ Ion conductivity

56

Select modelIf verified
Verifying the model 

prediction
with RSME, R2, …

AI Algorithms
(ANN, SVM, Liner regression and …)

Machine Learning 

Databases

Training model with 
historical data

If d
id

n
’t v

erify

Computational 
results

(MD, DFT)

Experimental
results

Fig. 3 The roadmap of selection AI algorithms for ISMs discovery. The validation criteria in this roadmap are parameters such as R-squared and Root-
mean-square deviation (RMSE), which show the accuracy of the models. AI algorithms should be able to create models that have good accuracy based on
experimental and computational datasets. Part of the dataset is used to train the model and part of it is used to test and validate the model. Validated
models that have good accuracy can be used for ISMs discovery.

COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-022-00744-x REVIEW ARTICLE

COMMUNICATIONS CHEMISTRY |           (2022) 5:132 | https://doi.org/10.1038/s42004-022-00744-x | www.nature.com/commschem 5

www.nature.com/commschem
www.nature.com/commschem


through λ-MnO2/graphene composite by implementing DFT
calculations combined with electrochemical adsorption experi-
ments. DFT was used to calculate the geometric and electronic
structure of the composites. Furthermore, DFT calculations were
implemented to study electronic conductivity, ionic conductivity,
and ion selectivity. Sendek et al.58 investigated the solid lithium
conducting materials with fast single-crystal Li-ion conductivity
using the DFT simulations guided by the ML-based methods.
Good prediction results and in-depth understanding were pos-
sible. Table 2 outlines studies with energy-based descriptors used
for AI methods in ISMs.

AI tools for modeling the ISMs for ions recovery. Apart from the
traditional one-by-one theoretical, experimental, and computa-
tional material simulation methods, AI could be a great approach
that can accommodate the massive data requirement for material
design, discovery, and its challenges. Screening the large material
design, processing the material’s characterization, reducing the
prediction time of simulations, analyzing the characterization
dataset, predicting the property of complex material systems,
mapping accurately to the multi-dimensional synthesis recipes of
materials, handling huge amounts of data, and extracting the
significant scientific principles and intrinsic information from
different material designs, are the reasons why AI is accurately
applicable in material design20,59. All of the information men-
tioned above can contribute to the dataset of the high volume of
experimental and computational findings. By applying the sui-
table ML methods, all of the valuable information of one data
point can be analyzed and discovered in a significantly lesser
time20. However, the AI has made no effort to predict ISMs,
including selectivity and membrane performance. The accuracy
of AI is highly dependent on the quality and quantity of data,
requiring high volume data mining due to lack of standardized
databases on membranes. Given the high number of parameters
and the complexity of the membrane processes, ML approaches
can be valuable, which are increasingly applied in many complex
systems. Therefore, implementing MI and AI to establish a

specified platform for membrane design is necessary. Figure 3
shows a roadmap for selecting the appropriate AI algorithm to
have an accurate model.

Bowen et al.60 developed a single artificial neural network to
predict the performance of nanopore membranes by investigating
the effect of charge, steric hindrance, dielectric, transport effect,
ions concentration, composition, pH, and operating pressure as
the primary descriptors, and the results agree with the
experimental data. In another investigation, Darwish et al.61

implemented the ANN model to predict the rejection of Na+ and
Mg2+ ions through the nanopore membranes at different
concentrations and pressures to demonstrate that the ANN
model can predict experimental results successfully and the ANN
could successfully predict the nonlinear behavior of rejection vs.
pressure and flux. Fu-HengZhai et al.62 developed a protocol for
designing anion exchange membranes (AEMs) with predictable
OH- conductivity using deep learning. They were able to predict
the conductivity of OH-ions with poly (2,6, dimethyl phenylene
oxide)-based AEMs grafted with a cationic group. In another
investigation, the ML-based prediction model was used with the
DFT-MD simulations to discover many new solid materials to
predict superionic Li-ion conduction59. DFT was used to obtain
the electrochemical properties of molecular materials with very
accurate results. However, DFT computations may not be precise
for high-throughput screening since they may take longer. Allam
and Cho et al.56 tried to facilitate the design of carbon-based
molecular materials through the DFT-ML framework by devel-
oping a high-throughput screening method.

ML capabilities for the analysis of ISMs
The ML attempts to understand the hidden laws and relation-
ships between the groups based on the previous information and
classify them into individual groups63. Experimental data and
simulation results may be obtained from the dataset. For
the learning process, various ML methods enclose multiple
algorithms such as supervised (including regression and

Fig. 4 Schematic illustration of the coarse-grained MD-Bayesian ML method for optimizing conductivity of polymer electrolytes (reproduced from
Wang et al.75). In this approach, using the coarse-graining process, new materials are designed (stage 2) using the discrete chemical species (anions,
backbone polymers, and secondary site of polymers) obtained from stage 1. Afterward, the relationship for properties was predicted using the Bayesian
optimization (BO) in stage 3. Reprinted with permission from75. Copyright 2020 American Chemical Society.
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classification), unsupervised (e.g., K-nearest neighbors and prin-
cipal components analysis), and reinforcement learning algo-
rithms (e.g., Q-learning and Markov decision process)64. In the
following, we discuss these individually.

Modeling of the ISM. Intelligent methods and especially the ML
techniques are able to model, select effective parameters and even
optimize them to boost the performance based on a wide variety
of datasets from the various regions of membrane technology.
The ML and its subclasses can step into the post-treatment
process and even the design of selective membranes. It is worth
mentioning that similar studies have been carried out to model
the proton exchange membranes that can be instructive for future
studies for ISM investigations65–67. ISMs are the main parts of
ion-selective electrodes (ISEs), mostly polymeric plasticized
membranes68. In this regard, the search for ligands with higher
selectivities towards the ions is essential. Recently, quantitative
structure-property relationship (QSPR) modeling has been uti-
lized to accelerate the discovery of new ligands for Mg2+/Ca2+69

and Li+/Na+70 selectivities. The applied methods have shown the
ML capabilities in discovering and predicting the new
materials with better performance. In another study71, a super-
vised ML algorithm based on multilayer perceptrons (Adam
optimization72) was trained using a combinatorial database
including experimental and computational fluid dynamics (CFD)
simulation results, where the authors claimed that the method
could accelerate the parameter fitting process as valuable infor-
mation for understanding the kinetics and thermodynamic
parameters of ISMs. Using machine learning and deep learning,
one can create a new framework for a deeper understanding of
membrane–solvent interactions by visualizing the effect of dif-
ferent solute functional groups on rejection. This enables the
design of membranes with improved selectivity73,74.

Optimization. The ultimate goal of every membrane process is to
optimize the determinant variables in the trade-off between
selectivity and permeability to reach a high separation ratio. The
effective parameters can be detected in the membrane materials
to process conditions. In an interesting report, Wang et al.75

using the results from coarse-grained MD simulation coupled
with Bayesian optimization (BO) method (Fig. 4) determined the
optimal conductivity of solid polymer electrolytes for Li ion.
Figure 4 shows the results of this work. Using the expandable (to
micro properties) CGMD-BO model, they reduced the need time
to minutes for obtaining the desired conductivities that are
dependent on all the molecular properties of the anions (anion
size, salt concentration, and anion involved vdW interaction
strengths), backbone polymer chain (monomer size and polymer
involved nonbonding interaction strengths) and secondary sites
of the polymer chain (molecule size and secondary site involved
nonbonding interaction strengths). The authors claimed that the
trained model could accurately predict the conductivities of the
common electrolytes.

Reduction of computational cost using ML. One of the
important features of ML techniques in ISMs is ML-driven
molecular and atomic simulations to discover the new ISMs. ML
can assist the molecular dynamics simulations, while the DFT
provides initial screening and predictors to reduce the simulation
consumption. For example, Sendek et al.58 screened 21 candidates
from a large material dataset (12,000+) for solid-state lithium
conductors. They developed a classification model using logistic
regression based on the published data in the literature. Two
main conductors were detected as nitride- and oxygen-based
materials. The comparison between the randomly chosen and
ML-selected materials represents that ML-selected samples could
also be conductors.

Prediction. As mentioned previously, ML methods can predict
various aspects of membrane technology, such as membrane
fouling76,77 and the lifetime of a membrane32. Liu et al.33 col-
lected 1815 vectors for PVDF/PES/PSF membranes and con-
sidered various features such as basic materials (including
polymer and solvent), membrane fabrication (containing phase
inversion technique, exposed time, relative humidity, the thick-
ness of the wet membrane, casting and coagulation temperatures,
and non-solvent), membrane structure (including thickness,
porosity, surface contact angle, and roughness), and operation

Experimental

Theoretical 
Models

Computational 
Sciences

Elements  & 
Compounds

Databases

Machine 
Learning

Materials 
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Materials 
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Applications

Computational, Experimental or Theoretical Verifications 

Fig. 5 Using computational and experimental data for Ai-based material discovery. Computational chemistry can improve the datasets used in material
discovery with theoretical studies, and along with the properties that can be observed in the laboratory, atomic properties (which can be studied in
computational chemistry) can also be entered into the dataset. In this way, the accuracy and reliability of the AI-based material discovery will increase92.
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(operating pressure and separating substances properties such as
partial charge, molecular weight, radius, and concentration) to
predict the membranes performances with Random Forest (RF)
algorithm. The results showed that the fabrication of membranes
for salts is more complicated than for the macromolecules. The
same authors previously conducted another study for the com-
bination of 166 hydrophilic and 175 hydrophobic monomers to
predict hydrocarbon-based sulfonated copolymers as proton
exchange membranes and designed four novel copolymers to
predict their performance better than the Nafion 117. Similarly,
AI methods have been used for ion transport in polymeric elec-
trolytes, which can be enlightening for investigations on ion
transport through ISMs. In a series of studies78–80, important and
effective parameters were identified in the final properties of the
Li selective electrolyte polymer blend. The objective function was
defined considering the molecular weight of the polymers and
their compositions, polarity, and compatibility as the variables.
The Bayesian ML method, in combination with MD simulations,
was used to predict the trade-off between ion transport and
mechanical properties. Additionally, the authors trained the CNN
model data obtained from the coupled Kinetic Monte Carlo
(KMC) simulations for the nanoparticles’ diffusivity81. The
results showed that a data-driven approach could predict ion
transport for a wide range of nanoparticle microstructures.

Cross-validation. To prevent overfitting in the process of ML
algorithms, it is necessary to use cross-validation methods, which
prevent the incorrect predictions by an ML algorithm. Therefore,
if cross-validation is not used to improve the training quality of
ML models, these models cannot make accurate predictions, and
the results obtained from these methods are not reliable. One of
the most widely used methods is k-fold cross-validation, in which
input data are divided into several parts, and the desired model is
taught using an amount of data. Finally, the accuracy of the
model in predicting the selected parameter is checked using the
other part. In addition to ensuring the predictions made, this is
also used to optimize the model parameters. For example, cross-
validation leads to optimizing the number of neighbor points
required in the k-nearest neighbor classifier algorithm. Therefore,
the predictions made by this algorithm have the slightest devia-
tion from the actual data82–84.

Limitations of AI in the design of ISMs
AI has the ability of a computer to think and learn and is a major
breakthrough in technology due to the increase in the computing
power of computers. The increasing use of AI technology in
various fields is undeniable13,85–87. With the help of AI algo-
rithms, different data patterns can be examined and used to
modify the structure and function of different materials. In fact,
with the help of AI, the properties of various materials, including
ISMs, can be engineered. However, AI algorithms examine a large
number of data and discover specific trends and patterns
unknown to humans. Despite all the advantages and popularity of
these methods, the use of these algorithms is limited. If not taken
into account, there are important points that will cause a lot of
errors in the calculations, and in this regard, AI algorithms need a
large and high-quality dataset88–90.

Lack of big data for modeling of ISMs. The quality and per-
formance of AI algorithms depend on input data because AI uses
the existing information to learn, and they require large educa-
tional datasets. In AI algorithms, data is used to train and test the
algorithms. If the amount of data used is small, AI algorithms can
cause significant errors in predictions due to a lack of proper
learning of AI algorithms in the absence of sufficient data.

Suppose the amount of data used to predict the various properties
of materials is small; in that case, AI algorithms cannot draw
comprehensive patterns, which leads to unrealistic predictions of
the properties of new compounds and thus may not achieve the
desired goal. Using different datasets that have made the prop-
erties of other materials available to the public can largely solve the
lack of data in developing the use of AI to design and build ISMs.

Lack of atomistic properties data. The problem of AI algorithms
that causes unrealistic and erroneous predictions is not con-
sidering different materials’ atomistic and quantum properties for
designing and constructing ISMs. Since different molecular and
quantum properties such as bandgap, electronegativity, atomic
radius, valance electrons, etc., determine many properties of the
materials, their non-use in AI algorithms creates unrealistic
relationships between the data. As a result, errors occur in the
predictions. These algorithms can examine the data to design and
develop comprehensive and deep relationships between various
properties of the materials and their properties. As a result, the
errors resulting from the predictions made by AI algorithms are
minimized and the projections made are closer to reality. The use
of atomistic and quantum data provides the best conditions for
the use of AI in the designing and manufacturing of ISMs, which
will be discussed in the next section.

The role of computational chemistry in AI-based engineering
of ISMs
Computational chemistry is important in investigating materials
and designing ISMs51 since the computational chemistry methods
provide properties of materials that are impossible to achieve via
experiments. Using these methods, one can access more features
of the materials. Given that the use of AI and ML requires a large
amount of data, using data existing in this field is an important
part of the AI to data analysis91. Different databases such as
AFLOWLIB, Pymatgen and Materials Project are needed to teach
AI models to predict the properties of membranes correctly, and
consequently select the optimal membrane to separate the ions.
These databases can include data related to the band gap, elec-
tronegativity, atomic radius, valance electrons, etc. In addition to
databases, open access codes such as NanoHUB36 that have been
used before and have shown good results can be used to achieve
more accurate outcomes and prediction. Figure 5 shows how
computational and experimental methods or theoretical ver-
ifications can relate to methods based on AI. Many compounds
can be prepared by combining atomic elements, which can be
studied experimentally, theoretically, or computationally. The
results of these experiments and computational or theoretical
methods can provide us with a vast set of data. By screening this
data and using the ML, materials with unique properties can be
identified and selected92.

Improving membrane designing using advanced computa-
tional methods (MD, DFT, etc.). The MD and DFT calculations
provide a series of molecular information related to atomic
properties93. This type of information is not available through
experimental tests or AI. Therefore, this method makes it possible
to have a deeper and more accurate ISMs design by considering the
quantum and atomic properties94. Given that AI has limitations,
such as the inability to observe quantum properties, the use of MD
and DFT can overcome these limitations to an acceptable level.
AEM is one type of ISMs95. Computer simulation is one of the
main tools for studying the microscopic interaction of cationic
groups in AEM systems96. Recently, Chen et al.97 investigated the
effect of different cations and their structural properties on water
absorption in AEM using MD and DFT. This study showed that
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the structure of cationic groups has a significant effect on water
absorption of the AEM. Also, it was shown that creating a balance
between ion transfer and dimensional stability is alone not possible
by merging the cationic groups.

Assisting computational methods by ML. In this section, the
application of ML to improve the conventional DFT methods is
investigated. For this purpose, we should develop theoretical
points and secondly the practical application as well as the
positive effect of applying this novel idea98.

Improvement of DFT performance by utilizing ML from a theo-
retical viewpoint. DFT is one of the typical computational
methods based on quantum mechanics used in multi-electron
systems studies99. One of the most important strengths of DFT is
high accuracy in relevant calculations, which are widely used in
chemical analyses. Undoubtedly, the complexity of the compu-
tational methods and the occupation of large volumes of
resources by the processes of these complex calculations are the
main limitations of DFT calculations. DFT is based on non-
classical electron interaction, which can be a limitation of this
method100.and using DFT for various applications, including
material discovery and ISMs design, requires relatively high cost
and time. Therefore, researchers seek to replace part of the
computational process performed by DFT with AI such as ML.
Thus, using ML can be an excellent approach to improve some
DFT defects. DFT calculations can be reproduced using the ML if
sufficient data are available. By doing this, the deviation of DFT
values from the deviation of the results of the DFT calculations
from the experimental values will be more compact92,101,102.
However, an acceptable amount of data is required to use ML,
which is one of the important limitations of using ML. Nowadays,
there are many ambiguities in this area, and much research is
needed103. The study of this issue from a theoretical point of view
was done by Ramprasad104, and the compatibility of ML-based
data prediction with the leading scientific processes was
confirmed104. To conclude, the observations and data are ana-
lyzed at the beginning of the approach. Then a prediction can be
made according to the previous behavior. Finally, a quantitative
theory is presented according to the observations made. There-
fore, it makes sense to use ML to advance DFT calculations104.

Improvement of DFT performance by utilizing ML. Molecular
simulations in large-scale and long-time systems similar to
experimental conditions are not possible or costly. Recently,
Pattnaik et al.105 used deep learning (DL) to simulate large sys-
tems using the data from DFT on small systems. The forces
predicted in molecular simulation assisted with ML can be cal-
culated accurately by the qualitative dynamic properties of
materials. Diffusion describes random particle motion and has an
important influence on determining the functionality of
materials106. Recently, diffusion mechanisms were examined by
Elbaz et al.106 using the DFT and MD simulations. In con-
tinuation of this research, an attempt was made to overcome the
limitations of the usual computational methods by AI and ML to
conclude that the use of AI could provide a platform for the
investigation of diffusion mechanisms to be predicted fully
automatically using the existing datasets. Thus, combining ML
with DFT can reduce the problems encountered in the conven-
tional DFT methods, including computational complexity and
related costs. However, the accuracy of this novel method is much
lower than expected107, and the combination of ML with DFT
can cause fundamental changes in material science research (such
as material discovery and fabrication of ISMs)108.

New ISMs development using AI. Nowadays, AI is widely used
in materials science and sub-disciplines such as material dis-
covery and membrane fabrication109. Due to computational and
laboratory methods development, a considerable amount of data
with different complexity, quantity, and quality is being produced
today. It is vital to maintain and interpret such a considerable
amount of data and advance materials science. Still, researchers
have been using various ML algorithms to define the patterns and
relationships from such vast data92. Some sub-branches of AI and
their use in materials science and membrane fabrication are
introduced in the following sections.

Inverse design to achieve custom components. The inverse design
aims to find a substance or product with specific characteristics.
Inverse design is generally different from forwarding develop-
ment. In the conventional method, the target material is produced
during experiments, and its properties are further investigated.
However, the inverse design starts from the end. The desired
properties of the material are given as input, and the corre-
sponding material with these properties is suggested110. This
process can be difficult, and an optimal solution may not exist,
but one or more solutions may be offered110.

Use computer vision to analyze membrane images. Computer
vision in an AI system extracts data and information from ima-
ges. But today, it is used as an interdisciplinary technology in
various fields of science111.

Screening and big data. High-throughput screening uses a huge
amount of data to perform computational work and to identify
the properties of materials and the design of the target material.
Big data is a research method that extracts high volume and
complexity data. Due to its high complexity, this volume of data is
usually not easily analyzed and parsed. The five main features of
big data are volume, velocity, variety, veracity, and value (Fig. 6),
known as the ‘five V’s’92. Therefore, in ISMs, the target membrane
can be fabricated using these two ideas. Utilizing two sewing
processes is very important for using ML to design and select
materials. ML is one of the branches of AI that can automatically
learn a pattern using the data in a field and use this pattern in
different situations to provide the appropriate answer based on

Volume
Size of data

Velocity

Variety

Veracity

Value

Big 
data

Speed of data

generation 

Different types 
of data

Accuracy and 
reliability of 

data

Extracting useful 
information from 

data

Fig. 6 Five main features of big data. These features, are known as the
‘Five V’s’. Big data is described by ‘Five V’s’ including: Value, Volume (size
of data), variety (diversity of data), and veracity (Data accuracy and
reliability (, and velocity (speed of the data gathering)92.
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the new dataset97. Table 3 provides a brief description of the
recent articles.

Outlook
Membranes are selective barriers that separate compounds with
different physical or chemical properties. Usually, mass transfer
and separations are usually based on membrane due to many
advantages such as no phase change, no additives, low energy
consumption, and the compact equipment membrane that can
occupy a small space. Membranes and membrane processes play
an important role in the sustainable development of numerous
fields such as energy, environmental management, human health,
etc. Membranes are typically determined by their permeability and
selectivity. Permeability and selectivity depend on the size of the
pores and the properties of the membrane surface. Increasing the
pore size enables the membrane to increase permeability and
determines the membrane selectivity based on particle size. At the
same time, membrane’s selectivity depends on both the surface
charge and the membrane composition. To improve the efficiency
of membranes, especially in designing and discovering new ISMs
with higher selectivity and permeability towards the desired ions,
membranes’ surface and molecular structure can be engineered.
With the help of AI and the use of data obtained from previous
studies and published data about the unique properties of different
materials, the membrane performance can be further improved.

ML algorithms use statistics to find patterns within a large
volume of data, including numbers, words, pictures, etc. Using
ML to search for new materials is energy and time efficient, with
an added advantage of processing and analyzing data that could
not be performed by normal systems. This method finds the
relationships between the structure of the material and its func-
tional properties. Therefore, AI and ML reduce the number of
experiments and simulations to achieve the most efficient mem-
brane for ion extractions. Since data is the most important part of
any ML model, the quantity and quality of this data can greatly
impact the accuracy of predictions and the output of ML. By
using highly sophisticated data such as molecular and quantum
properties obtained from computational chemistry, the accuracy
of the predictions can be increased, and the results can be assured.
Previous studies have shown that the use of AI in engineering and
improving the efficiency of membranes has been very effective.
This expands the use of AI in the design and fabrication of
membranes.

Data availability
No datasets were generated or analyzed during the current study.
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