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Identifying opportunities for late-stage C-H
alkylation with high-throughput experimentation
and in silico reaction screening
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Enhancing the properties of advanced drug candidates is aided by the direct incorporation of

specific chemical groups, avoiding the need to construct the entire compound from the

ground up. Nevertheless, their chemical intricacy often poses challenges in predicting reac-

tivity for C-H activation reactions and planning their synthesis. We adopted a reaction

screening approach that combines high-throughput experimentation (HTE) at a nanomolar

scale with computational graph neural networks (GNNs). This approach aims to identify

suitable substrates for late-stage C-H alkylation using Minisci-type chemistry. GNNs were

trained using experimentally generated reactions derived from in-house HTE and literature

data. These trained models were then used to predict, in a forward-looking manner, the

coupling of 3180 advanced heterocyclic building blocks with a diverse set of sp3-rich car-

boxylic acids. This predictive approach aimed to explore the substrate landscape for Minisci-

type alkylations. Promising candidates were chosen, their production was scaled up, and they

were subsequently isolated and characterized. This process led to the creation of 30 novel,

functionally modified molecules that hold potential for further refinement. These results

positively advocate the application of HTE-based machine learning to virtual reaction

screening.
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The synthesis of novel compounds represents the bottleneck
in terms of time and effort for numerous small molecule
drug discovery projects1. Late-stage functionalization (LSF)

is a strategy that adds extra functional groups to drug molecules,
bypassing the necessity for entirely new synthesis or the
requirement for specific functional handles2. These subtle struc-
tural alterations simplify the process of understanding the rela-
tionships between the chemical structure and the biological
activity (structure–activity relationships, SARs). Additionally,
they allow for the enhancement of pharmacokinetic properties,
including absorption, distribution, metabolism, and excretion, in
lead compounds and drug candidates3. Importantly, these mod-
ifications can be achieved with lower synthetic costs4. None-
theless, it is worth noting that not all molecules readily lend
themselves to the desired functionalizations, making LSF a
challenging process in experimental terms. In response to this
challenge, we present a computational machine-learning frame-
work designed for predicting the reactivity of drug molecules.
This framework offers a more rational approach to LSF, poten-
tially reducing the time and experimental costs typically asso-
ciated with this endeavor.

An increasing number of experimental LSF methods have
recently been published that allow medicinal chemists to fluor-
inate, aminate, arylate, methylate, trifluoromethylate, borylate,
acylate, or oxidize structurally intricate molecules5,6. Alkylation
reactions have gained interest as they allow the introduction of
small cyclic and acyclic alkyl groups through carbon–carbon,
carbon–oxygen, or carbon–nitrogen bond formation7. In parti-
cular, Minisci-type alkylations8,9 are considered a valuable LSF
methodology for incorporating alkyl building blocks into het-
erocyclic systems, which often form the core of drug molecules10.

Originally described in the mid-20th century, Minisci reactions
have become a versatile tool in medicinal chemistry for the for-
mation of C–C bonds11. Using ammonium persulfate as the
oxidant and silver nitrate as the catalyst, alkyl radicals are gen-
erated from the corresponding carboxylic acids at elevated tem-
peratures. Upon radical addition to the heteroarene, the reaction
product is formed through aromaticity-driven oxidation of the
radical intermediate11. The scope of both, electron-deficient
heteroarenes and alkyl-donating coupling partners, has steadily
been expanded12,13. Various radical sources have been docu-
mented in the literature. These include alkyl carboxylic acids
capable of transferring alkyl groups, boronic acids suitable for the
incorporation of aryl groups, or sulfinates that were used to
transfer trifluoromethyl or tert-butyl fragments14,15. Employing
readily accessible and cost-effective carboxylic acids, without the
prerequisite for prefunctionalization, considerably broadens the
applicability of this transformation for drug discovery purposes16.
The growing emphasis on integrating sp3-rich building blocks
into pharmaceuticals17, coupled with the ready availability of
stable cyclic alkyl carboxylic acids, renders this approach parti-
cularly appealing for expanding hits into lead compounds and
optimizing drugs through LSF.

It has become apparent that by decreasing the count of aro-
matic rings within a drug candidate, the chances of achieving
clinical success can be heightened18. A higher proportion of sp3

centers allows for exploration of novel chemical territory, which
can potentially improve drug selectivity19. This shift can also
positively influence essential physicochemical properties, such as
solubility and metabolic stability20–22. While guidelines exist for
predicting reactivity in Minisci-type transformations, the chal-
lenge lies in the limited range of functional groups that can be
accommodated, along with the diverse array of C–H bonds and
electronic effects within complex molecules. These complexities
make the prediction of alkylation reactions a challenging task4,23.
Conducting individual reactions at the typical scale used in

medicinal chemistry (milligram scale) to enrich the reaction
database with pertinent transformation examples would be a
laborious and resource-intensive undertaking, yielding limited
value relative to the effort invested.

High-throughput experimentation (HTE) has emerged as a
valuable tool for systematically exploring and optimizing new
chemical transformations in a semi-automated manner24,25. To
effectively accomplish the miniaturization of reactions at the
nanomolar scale, it is essential to engineer the system with pre-
cision to handle extremely small quantities of materials and
ensure consistent and thorough mixing of the reaction
components26. Advanced technologies like ultra-high-
performance liquid chromatography-mass spectrometry enable
the analysis and the separation of minute quantities from
screening plates27,28. Another crucial aspect of HTE involves the
careful curation of all collected reaction data, including unsuc-
cessful transformations, in accordance with the FAIR principles
(findable, accessible, interoperable, and reusable)29. This
approach ensures the creation of high-quality datasets suitable for
machine learning applications30–32.

Graph neural networks (GNNs) that enable efficient learning
on three-dimensional (3D) molecular models have found various
applications in drug discovery and development33–35. In addition
to their prominent applications in quantum chemistry36,37, GNN
methods have been developed for the prediction of forward
reactions, starting from small substrates and leading to the
synthesis of complex drug molecules38–40. Moreover, GNNs have
recently found application in LSF to predict reaction yield, binary
reaction outcome, and regioselectivity for borylation reactions41.
A similar methodology has been introduced for predicting late-
stage alkylation, with a primary emphasis on Baran-type diver-
sinate chemistry that employs alkyl sodium sulfinate salts42.
Additionally, a recent investigation has demonstrated that hybrid
machine learning models, enriched with quantum chemical
details about transition states, can achieve accurate predictions of
regioselectivity for iridium-catalyzed borylation reactions, even
when operating with limited data43.

In this study, we showcase the application of GNNs trained on
a limited set of reaction data for machine-learning-based virtual
reaction screening. When combined with laboratory automation,
this approach has facilitated the discovery of 276 promising
alkylation possibilities with high precision (Fig. 1). This effort has
resulted in the synthesis of a diverse range of novel compounds
characterized by an enhanced sp3 fraction.

Results
HTE reaction screening. The Minisci-type reactions described by
Sutherland et al.16 were effectively downscaled from a micro-
molar (150 μmol) to a nanomolar (500 nmol) level in a parallel
configuration using a 24-well plate, achieving a reduction factor
of 300 (Fig. 2A, B). Throughout the optimization process, it
became evident that the reaction yields substantially improved
when performed inside a glovebox. Conducting the reaction with
23 distinct carboxylic acids labeled as a-w (Fig. 2C) at various
temperatures revealed that the highest conversions were achieved
at 40 °C. Elevating the temperature beyond this point primarily
resulted in the formation of di-alkylation products. To attain
increased conversions, we doubled the amounts of alkyl car-
boxylic acids (20 equivalents instead of 10) and oxidants (6
equivalents instead of 3). This adjustment led to higher conver-
sions, with an average improvement factor of 1.2–1.5. We
included a reference reaction involving Quinoline 1 and car-
boxylic acid e in position B4 (Fig. 2C) to monitor potential
performance variations and to ensure the reproducibility of the
screening results. Since this reaction is anticipated to consistently
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yield the desired outcome under the specified conditions, any
unexpected outcome in this well would serve as a warning sign,
indicating the potential influence of external factors or mis-
handling of the plates. Such deviations would prompt concerns
regarding data reliability. Therefore, in the final configuration, we
assessed the integration of 23 diverse alkyl groups, with a primary
emphasis on compact sp3 ring systems, into electron-deficient
heterocycles.

Binary reaction outcomes were labeled as “successful” when the
chosen substrate, under the specified reaction conditions,
produced a mono- or di-alkylation product that could be
confirmed by liquid chromatography-mass spectrometry (LCMS)
with a threshold of 5%. Conversely, outcomes were classified as
“unsuccessful” when the intended transformation could not be
detected through LCMS. In cases of di-alkylation, we consistently
observed three distinct products: mono-alkylation on the two
distinct carbons and di-alkylation on both. To facilitate the
training of machine learning models, the yields of all three
reaction products were combined together. Four fragments (1–4,
Supplementary Note 5, Fig. S2) and five drug molecules (5–9,
Supplementary Note 5, Fig. S2) from a chemically diverse LSF
informer library41, and 18 fragments (26–43) from the Roche
compound library were screened under these reaction conditions.
The collected data resulted in a balanced experimental data set
comprising 691 reactions, with 379 classified as successful and
312 as unsuccessful.

Machine learning-based in silico reaction screening. GNN
models (Fig. 3A) were trained using an initial dataset of 621

Minisci reactions, comprising 368 generated as decoys, 45 from
the literature, and 207 from the LSF informer library. These
models enabled in silico reaction screening of a Roche in-house
library of 3180 advanced heterocyclic building blocks. Each
substrate was assigned an ensemble score, which was determined
by aggregating the predictions from six independent models.
Specifically, this ensemble score incorporated inputs from three
models for binary reaction outcome prediction and three models
for reaction yield prediction (“Graph neural network archi-
tecture”). Subsequently, the molecules were grouped into eight
clusters using agglomerative compound clustering (Supplemen-
tary Note 2). Two compound clusters were excluded from con-
sideration due to the prevalence of unsuitable structures, namely
heterocycles lacking free C-H bonds, for the studied reaction.
From the six remaining clusters, three molecules were chosen
from each, based on their computed reactivity score, resulting in a
total of 18 N-heteroarenes.

The selected 18 N-hetero arenes were subjected to automated
HTE screening, generating an experimental data set of 414
reaction points. For each of the selected substrates, Minisci-type
alkylation products could be identified, resulting in a total of 276
successful reactions (Fig. 3C). Among the screened N-hetero-
arenes, 10 of them facilitated between 17 and 23 successful
transformations across the chosen carboxylic acids. (Fig. 3D). 7
N-hetero arenes allowed 10-17 successful transformations. For
one substrate, specifically the meta-substituted pyridine 42
(Fig. 4), fewer than ten successful reactions were observed
(Fig. 3D). Hence, for 17 out of the 18 chosen N-heteroarenes, a
wide variety of successful Minisci-type alkylation products were
identified, resulting in a 94% success rate for substrate selection.

Fig. 1 Overview of the research study. Screening plate design: Minisci literature data containing metal-free reactions were extracted and analyzed to
determine suitable reaction conditions. For parallel reaction screening, 23 sp3-rich carboxylic acids with relevance for drug discovery were included.
Reaction data generation: Using the reaction plate design, physical experiments in high-throughput experimentation (HTE) fashion were conducted with
marketed drugs and fragments from an informer library (184 reactions41) covering relevant chemical space. In addition, 16 distinctly non-reactive
substrates were screened for in silico decoy data generation (368 reactions). Geometric deep learning: The obtained reaction data (SURF, Simple User-
friendly Reaction Format)41 were subjected to geometric deep learning, incorporating 3D structural information of the chemicals. The trained model was
applied to 3000 building blocks from the Roche library, with a particular focus on electron-deficient heterocycles. This in silico screening predicted the
reactivity of the compounds for substrate ranking and clustering. Validation and application: The prediction models were experimentally validated for a
diverse set of 18 building blocks. Selected scale-up reactions led to fully characterized compounds.
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However, it is worth noting that there were three five-membered
N-heterocyclic ring systems (2, 4, 9) in the LSF informer library,
for which very low reaction yields (≤4%, averaged over 23
carboxylic acids) were observed.

To evaluate the overall performance of the GNN models that
were trained on the complete experimental data set comprising
691 Minisci reactions obtained via high-throughput experimen-
tation (207 from the LSF informer library and 414 from the
virtual reaction screening), these models underwent validation
for predicting reaction yield and binary reaction outcomes. This
validation was conducted using a random data set split. The
reaction yields were predicted with a mean absolute error (MAE)
of 18.7 (±0.2)% and a Pearson correlation coefficient (r) of 0.687
(±0.006) (Fig. 3E). Reaction yields were categorized into four
ranges: no reaction (<1% yield), poor (>1–11%), medium
(>11–35%), and high reaction yield (>35–100%). The model
predicted the correct category in 55.7 (±0.7)% of the cases.
Binary reaction outcomes were predicted with an absolute
accuracy of 81 (±1), and an F-score of 82.7 (±0.6)% (Fig. 3F). The
failed machine learning predictions with an MAE ≥ 70% (i.e.,
outliers) are illustrated and discussed in Supplementary Note 11
and Table S3.

Scale-up. Selected screening conditions were used for upscaling to
the milligram range. LSF alkylation was carried out for the drug
molecules Loratadine (7) and Nevirapine (8), and structurally
complex molecular fragments. In total, 30 novel molecules were
synthesized, isolated, and characterized by nuclear magnetic
resonance (NMR) spectroscopy and high-resolution mass spec-
trometry (HRMS) (Fig. 5).

For Loratadine (7), a molecule from the LSF informer library,
several analogs with different cyclic (7b1, 7b2, 7b3, 7j1, 7j2, 7e1,
7e2) and heterocyclic (7s, 7q1, 7q2) substituents were generated.
Structurally complex scaffolds with high relevance for medicinal
chemistry projects, which could serve as starting points for the
development of SAR studies, also provided a variety of
compelling alkylation products. Different alkyl groups, covering
alkyl chains (e.g., 40h, 33h, 28h), cyclic alkyls (e.g., 26e, 41e, 38e)
and cyclic ethers (e.g., 39u, 35m) could be introduced. In general,
the observed regiochemistry was consistent with Minisci guide-
lines, with the alkyl groups being introduced in either the ortho-
or para-position on the pyridine core23. For molecule 38,
different reactivity was observed with the cyclohexyl radical
reacting exclusively with the thiocarbonyl functionality affording
thioether 38e. No reaction at the pyridine core was observed.

Reactivity trends. Examination of the produced data unveiled a
diverse range of observed reaction yields for both the carboxylic
acids and the N-heteroarenes. Cyclic ethers (e.g., u, s, a) and
alkanes (e.g., b, e, g) were reliably converted to the desired
alkylation product, whereas cyclic boc-protected amines (e.g., o,
p, q, r) and amides (d) resulted in low yields of the respective
desired reaction products (Fig. 3B). Similarly, substituted pyr-
idines (e.g., 30, 31, 36, 39; see Fig. 4) had lower yields compared
to compounds lacking a meta-substituent (e.g., 26, 32, 38, 41; see
Fig. 4). Electron-rich meta-substituted pyridines, such as 3 and
27, had a comparably low average reaction yield compared to
their less electron-rich analogs. Overall, compared to their six-
membered N-hetero analogs, five-membered N-heterocyclic ring
systems (e.g., 2, 4, 9; see Supplementary Note 5, Fig. S2) did not
show meaningful conversion to the desired alkylation product.

Fig. 2 Overview of Minisci-type reactions and screening plate. A General reaction scheme of a Minisci-type alkylation reaction. An alkyl substituent
obtained from a radical generator, e.g., through decarboxylation of the carboxylic acid, is introduced to an electron-deficient heterocycle, often a pyridine.
Depending on the development scope and applied technology, a variety of oxidants, catalysts, additives and solvents are used. B Schematic overview of the
Minisci-type reaction reported by Sutherland et al.16, including the equivalents of the components. C Reaction screening plate used in this study. This setup
allows to assess the coupling performance of a molecule of interest with 23 different alkyl carboxylic acids (a–w) that are relevant to medicinal chemistry
applications. This configuration enables the evaluation of how well a molecule of interest couples with 23 distinct alkyl carboxylic acids (labeled as a–w),
which are pertinent to medicinal chemistry applications. Condition B4 served as a reference reaction, ensuring consistent performance under the applied
conditions. On all screening plates, B4 comprised starting material 1 and carboxylic acid e, providing a quality control mechanism for the generated data. If
B4 had not yielded the expected outcome, the entire plate would have been reprocessed. The reaction conditions were adjusted to allow miniaturized
parallel reaction screening on a nanomolar scale (0.5 μmol). Boc tert-Butyloxycarbonyl, DMSO dimethylsulfoxide.
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Discussion
The Minisci reaction conditions, utilizing ammonium persulfate
((NH4)2S2O8) as the oxidizing agent and dimethyl sulfoxide
(DMSO) as the solvent at a temperature of 40 °C, were effectively
downsized and adapted into a parallel screening format. This
format allowed for the efficient and resourceful execution of the
reaction with a diverse range of alkyl carboxylic acids. The refined
reaction protocol facilitates rapid, metal-free, and resource-
efficient assessment of reaction conditions in an HTE-
compatible format, aiding in informed choices for subsequent
synthesis steps. Importantly, it eliminates the need for time-
consuming individual reactions conducted on a milligram scale.
Nonetheless, this setup has inherent limitations that merit
attention in future research:

(i) The current plate design focuses on a single set of reaction
conditions for the sake of simplicity. However, examining
additional oxidants or solvents, along with adjusting the
equivalents of reaction components, holds the potential to
deliver further enhancements in reaction yields. Moreover,

Minisci-type reactions typically involve metal catalysis, such
as with silver or iron10. A systematic HTE exploration of
various metal salts could lead to the discovery of even more
optimized conditions.

(ii) Instead of relying exclusively on carboxylic acids as the
source of alkyl radicals, alternative radical precursors like
boronic acids or sulfinates could be investigated13. This
exploration might broaden the range of alkyl groups
accessible for medicinal chemistry.

(iii) Several photochemical Minisci-type transformations have
been reported13. These reactions offer alternative mechan-
isms for radical generation that could further expand the
possibilities for late-stage functionalization (LSF).

Addressing these points in future research could enhance the
utility and scope of the Minisci reaction protocol.

The adoption of the user-friendly reaction data format
(SURF41), facilitated the collection of reaction data from literature
sources and enabled standardized reporting of results from HTE
and virtual reaction screening. Sharing reaction data in a

Fig. 3 Machine learning and in silico reaction screening results. A Schematic of the graph neural networks (GNNs) implemented within the geometric
deep learning platform. Multi-layer Perceptron (MLP) modules are highlighted in gray, and the variable modules (2D/3D convolution), pooling, and outputs
are highlighted in green. B Box plot illustrating trends observed for N-hereto arene (left) and carboxylic acids (right). N-hetero arenes: Meta-unsubstituted
pyridines are observed with a reaction yield of 44 ± 15%, meta-substituted pyridines with 20 ± 6% (including 27 as an outlier observed at 6%), and five-
membered N-heterocyclic ring systems with 2 ± 1%. Carboxylic acids: Cyclic ethers are observed with a reaction yield of 40 ± 12%, (including c as an outlier
observed at 16%), cyclic alkanes with 42 ± 6%, and Boc-protected amines with 8 ± 6%. The error bars on both box plots represent 95% confidence
intervals, the bottom and top of the box are the 25th and 75th percentiles, the line inside the box is the 50th percentile (median), and any outliers are
shown as open circles. C Bar plot illustrating the number of successful and failed reactions from HTE. The substrates selected by the model resulted in 276
successful reaction outcomes. D Bar plot illustrating the number of unique alkylation opportunities identified per substrate. The majority of N-hetero arenes
(10/17) allowed for successful transformation with 17–23 carboxylic acids. E Confusion matrix for reaction yield prediction. Reaction yields are divided into
four bins, namely, no reaction (≤1%), poor (>1–11%), medium (>11–35%), and high reaction yield (>35%). The model accurately predicts 54.6 (±0.9)% of
the reactions into the accurate bin, achieves a mean absolute error (MAE) of 18.7 (±0.2)% and a Pearson correlation coefficient (r) of 0.687 (±0.006).
F Confusion matrix for binary reaction outcome prediction achieving an absolute accuracy of 80.8 (±1.2) and an F-score of 82.7 (±0.6)%.
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standardized format plays a pivotal role in the effective utilization
of machine learning models for predicting chemical
reactivity44,45. By using SURF, the initial reaction data from three
distinct sources (45 from literature, 207 from experiments, and
368 decoy reactions) became readily available for machine
learning, obviating the need for manual data curation. Since both
the experimental and, particularly, the literature data are pre-
dominantly comprised of positive results, incorporating decoy
data from unsuccessful transformations played a crucial role in
constructing a dependable prediction model.

A detailed look at the experimental data revealed that cyclic
Boc-protected amines (o, p, q, r, v), as well as amides (e.g., d)
mainly afforded low yields (5–20%) of the desired reaction pro-
ducts (Supplementary Note 10, Fig. S10). This observation reflects
the half-lives of the generated radical intermediates46, e.g., with
tertiary carbon radicals (e.g., h) having higher stability than

primary carbon radicals (e.g., k) and the latter thus resulting in
lower product yields. Another experimental trend relates to the
substitution pattern of N-heteroarenes. Meta-unsubstituted pyr-
idines (e.g., 26, 32, 41) consistently provided higher yields than
substituted analogs, (e.g., 35, 36, 37) as residues on the meta-
position sterically hinder the reaction in ortho- and para-
positions to the pyridine (Supplementary Note 10, Fig. S11).
Finally, electron-rich meta-substituted pyridines, such as 3 and
27, had a very low (5–10%) average reaction yield on the
screening plate when compared to their less electron-rich analogs
(Supplementary Note 10, Fig. S10). This low reactivity is owed to
the electron-rich amine- and methoxy-substituents,
respectively23.

In contrast to a prior study41 where GNNs processed a single
graph input, the GNN model outlined in this research accom-
modates two distinct molecular inputs, corresponding to the two

Fig. 4 Overview of selected substrates suggested by the in silico prediction model. Structures of the 18 selected substrates 36–53 that were suggested
by the graph neural networks as suitable for Minisci-type alkylation and underwent subsequent screening to identify novel starting points. Potential, not
confirmed, carbon reaction centers are marked with a blue dot.
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reactants (N-heteroarenes and carboxylic acids). The network
architecture was tailored to the Minisci-type alkylation transfor-
mation in such a way that trained GNNs can be applied to novel
N-hetero arenes as well as carboxylic acids. Therefore, the model
can be used for in silico molecular library screening for both types
of reaction inputs. It could be shown that in silico reaction
screening using GNN models trained on a comparably small
preliminary data set consisting of 576 Minisci reactions (i.e., 368
from decoy generation, 45 from literature, and 207 LSF from an
informer library) led to the identification of 17 substrates (i.e.,
94% of the 18 selected molecules). All newly identified substrates
were successfully alkylated with a broad range of at least 10 dif-
ferent carboxylic acids. Furthermore, in total 276 successful
reactions (i.e., producing alkylation products with a median yield
of 26%) were identified. The low reaction yields observed for
three five-membered N-heterocyclic ring systems (2, 4, 9) indi-
cate that the GNN models learned to de-prioritize five-membered
N-hetero arenes during in silico reaction screening. It was shown
how a clustering approach can be combined with in silico reac-
tion screening to assess structural diversity as well as reactivity.
As previously reported41, the inclusion of partial charges did not
yield improved model performance (Supplementary Note 3). This
observation, in particular, led to the decision to prospectively
apply GTNN models that are trained on 3D molecular graphs
without electronic features. Further investigations involving more
specific electronic features, such as transition state energies, could
offer deeper insights into the relevance of quantum chemical
attributes in machine learning for reaction prediction, as
demonstrated in a recent study43. Moreover, the introduced
GNNs could be further advanced to facilitate regioselectivity

prediction or the prediction of multiple output properties. For
instance, this could encompass predicting the proportions of
mono- and di-alkylation.

With the overall goal of synthesizing novel scaffolds that are
relevant to medicinal chemistry, the visualized screening data
served to identify appropriate reaction conditions for upscaling to
the milligram scale. Again, the SURF data format was instru-
mental for the laboratory chemist to set up experiments efficiently
by providing the CAS number, SMILES string, equivalents, and
overall reaction conditions in a comprehensive and easily acces-
sible format. The reaction conditions were reproducible at a
higher scale, underscoring the applicability of this approach to
drug discovery. With the exception of compound 38e, all reac-
tions yielded C-C coupling products. In general, the observed
regioselectivity was in agreement with the expected reaction
products according to the rules reported in the literature23.

However, when moving to more densely functionalized pyr-
idines, these reported literature guidelines do not appear to apply.
While the reaction of 34b and 37b primarily generated the
expected ortho-substituted reaction products 34b1 and 37b1, also
meta-substituted reaction products 34b2 and 37b2 were obtained,
albeit in lower amounts (Fig. 5). In the literature, amides are
described as ortho-para directing groups due to their electron-
withdrawing effect, and aryl ethers as ortho-activating moieties
due to their electron-donating nature23. The formation of
regioisomer 34b2 might have been sterically hindered by the
amidyl side chain, favouring the meta- over the para position. For
37b2, an explanation of the formation could lie in the several
different functional groups that are attached to the pyridine ring,
which only leave the meta position available for substitution,

Fig. 5 Selected examples of characterized Minisci reaction products. The left panel shows examples from the LSF drug informer library and the right
panel from the fragment screening. The added alkyl groups are highlighted in blue. Late-stage drug alkylation examples include derivates of the drugs
Loratadine (7s, 7b1, 7b2, 7b3, 7q1, 7q2, 7j1, 7j2, 7t1, 7t2, 7e1, 7e2) and Nevirapine (8s). Fragment screening highlights the diverse range of introduced
substituents, covering cyclohexanes (26e, 41e, 38e), cyclobutanes in different positions (29b, 34b1, 34b2, 37b1, 37b2), heterocyclic alkanes (39u, 35m)
and tert-butyl (40h, 33h, 28h). Boc tert-Butyloxycarbony, Ph Phenyl.
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despite this position being sterically hindered by the proximity of
the aryl sulfide and the CF3 group. Lastly, 38e showed different
reactivity despite bearing a pyridine moiety. This observed reac-
tion product can be rationalized by the greater reactivity of the
lone pairs of the sulfur as compared to the C-H bonds of the
pyridine side-chain. These results of the scale-up reactions
underscore the importance of generating high-quality, single-
batch LSF reaction data.

For the continued development of this method further
exploration of Minisci-type reaction conditions is warranted,
including the variation of oxidation reagents, solvents, and the
incorporation of techniques like photoredox catalysis and
electrochemistry47. Also, the source of the alkyl radical precursor
could be diversified, leading to an expansion of the scope for alkyl
groups. Additionally, the substrate scope could be expanded to
include other electron-deficient heterocyclic systems, particularly
five-membered heterocycles, as they are commonly found motifs
in drug-like molecules. With these possibilities in mind, the
results of this study emphasize the feasibility and benefits of
combining laboratory automation, parallel miniaturized screen-
ing, and machine learning to enhance the efficiency and cost-
effectiveness of synthesis in drug discovery. This integrated
approach is currently being effectively employed at Roche. The
predictive capabilities of the computational model will be con-
tinuously enhanced by supplying the algorithm with a growing
data set of newly generated LSF reaction data points that
encompass the pertinent medicinal chemistry landscape.

Methods
Literature analysis. A systematic analysis of chemical transfor-
mations was carried out to determine the most feasible conditions
for reaction miniaturization and parallel screening. Initially, 45
publications covering different Minisci-type alkylation reactions
were selected. Most of those methods rely on photo- or electro-
chemistry. Although it has been demonstrated that these
approaches are amenable to HTE48,49, carrying out these reaction
processes requires specialized equipment that is not readily
available in every laboratory. Therefore, with the goal of enabling
widespread use in medicinal chemistry, publications were scru-
tinized for a rapid, resilient, and easily customizable procedure.
Sutherland et al.16 reported a Minisci methodology that fulfilled
those criteria. This transformation can be executed without the
necessity for additional metals and catalysts, and it can accom-
modate a variety of alkyl carboxylic acids that do not demand
pre-functionalization. This adaptability allows for the creation of
customized templates tailored to specific project requirements.
Consequently, the reaction data were manually curated and
standardized in a simple user-friendly reaction format (SURF, for
details, refer to Supplementary Note 9). These SURF data were
used as literature data set herein. All details of the literature
analysis (Supplementary Note 4) and the resulting data set in
SURF are available as supplementary information (Supplemen-
tary Note 4).

Screening plate design and testing. The screening plate was
designed around the literature data obtained from Sutherland
et al.16, which showed good yields on average (60%) for a variety
of carboxylic acid coupling partners. Aiming at assessing the
reactivity of a substrate with a variety of different alkyl groups
(rings and chains), a screening plate with 23 different alkyl car-
boxylic acids was assembled. The carboxylic acids scope from the
original publication16 covering n-alkyl (e.g., h, k, depicted in
Fig. 2), cyclic alkanes (e.g., e, g) and O-heterocyclic fragments
(e.g., m, u) was complemented by sp3-rich N-heterocyclic car-
boxylic acids with relevance to drug discovery projects (o, p, q, r).

The reactions were miniaturized to 0.5 μmol scale, downsizing by
a factor of 300 compared to the literature procedure16. To achieve
this small reaction scale, stock solutions of all components in the
reaction solvent (DMSO) were produced. Consequently, the
designed screening plate only requires 4.2 mg of starting material
(molar mass: 350 Da) to assess 23 different transformations. In
comparison, single reactions in reference16 were carried out with
52.5 mg of starting material. Using a substrate from reference16

(Molecule 1, structure depicted in Fig. S2 in Supplementary
Note 5), different oxidant to carboxylic acid ratios (3:10, 6:10,
3:20, 6:20) were tested to identify the more favorable screening
condition (higher conversion). Further, the impact of other
parameters, such as the atmosphere (under air, under nitrogen in
a glovebox), and the reaction concentration (2, 16 mmol/L) was
investigated. Upon determining the highest-yielding reaction
parameters, the best-performing condition on the plate (B4, 1
with e, under nitrogen, 16 mmol/L) was used as the reference
reaction to monitor reproducibility across different plates.
Incorporating the control experiment in position B4, which
consistently remained unchanged, served the purpose of swiftly
detecting potential handling errors with the plate and confirming
the reliability of the generated data. The plate layout including all
reaction parameters is shown in Fig. 2. Additional information on
the plate testing is provided as supporting information (Supple-
mentary Note 6, Figs. S7–S9).

LSF informer library. For the generation of the experimental
reaction dataset, the previously published informer library was
used as a starting point (see ref. 41 for details). From this col-
lection, three fragments (2–4, Fig. S2 in Supplementary Note 5 for
structures) and five drug molecules (5-9, Figure S2 in Supple-
mentary Note 5) were screened. The drug molecule library in
ref. 41 was assembled based on clustering of 1174 approved small
molecule drugs into eight structurally diverse subsets. As three
clusters did not contain any reactive functional groups required
for Minisci-type reactions (e.g., electron-deficient heterocycle),
only five drug molecules (5–9) were subjected to HTE alkylation
screening (see “HTE alkylation screening” for details). The
screening of the drugs was extended by three fragments (2-4)
from ref. 41. Furthermore, a decoy data set containing 368
unsuccessful reaction examples was generated. The chemical
structures of the eight N-hetero-arene substrates (2-9, Fig. S2) as
well as the 16 decoy substrates (10-25, Fig. S3) used to train the
machine learning are provided as supporting information (Sup-
plementary Note 5).

To assess the performance, i.e., the prediction accuracy, of the
developed machine learning model on relevant fragments for
applications in medicinal chemistry, a substructure search for
heteroaromatic ring systems containing at least one nitrogen
atom was carried out in the Roche corporate compound
collection. The resulting compounds were retained if (i) there
was at least 1 g of powder stock available, and (ii) the structures
were not used in any internal project or subject to legal
restrictions. This pool of candidates was then clustered using
sphere exclusion clustering50 on ECFP4 fingerprints51 with a
Tanimoto cutoff 52 of 0.6. Based on the clustering results, we
manually selected 18 structurally diverse fragments (26-43, Fig. 4,
Supplementary Note 2, Fig. S1).

HTE alkylation screening. Using the 24-well plate design (Fig. 2,
Supplementary Note 6), selected drug molecules and fragments
from the LSF informer library (2-9, Supplementary Note 5,
Fig. S2), a set of relevant building blocks (26-43, Fig. 4, for
detailed information: Supplementary Note 5, Figs. S4, S5) and
substrates from Sutherland et al.16 (44-48, Supplementary Note 5,
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Fig. S6) were screened. The reaction setup (stock solution, liquid
handling) and execution (heating, stirring) in glass vials on a
parallel screening plate were conducted in a glovebox under
nitrogen. Upon completion of the reactions, the residues were
diluted in MeCN/H2O to a defined concentration suitable for
LCMS analysis, using a liquid handler. The resulting mixtures
were analyzed by LCMS, and the results were subjected to
automated reaction data analysis (Supplementary Note 8) for the
determination of the molecular components. Standardized data
output (Supplementary Note 9) allowed for direct visualization of
the information in TIBCO Spotfire (Somerville, USA). The gen-
eral screening procedure, including detailed information on the
hardware and software utilized, is provided as Supporting
Information (Supplementary Note 7).

Scale up reactions. Analysis of the screening results revealed that
the drugs Loratadine (7), Nevirapine (8), and 11 fragments (26,
28, 29, 33-35, 37-41) were alkylated with different types of alkyl
fragments. From this subset, conditions showing reasonable
conversion (>40%, based on UV trace) were subjected to
upscaling. Reactions were conducted under nitrogen in a glove-
box, in glass reaction vessels with pressure release caps and
standard stirring bars. Purification was performed by flash
chromatography or reversed-phase high-pressure liquid chro-
matography (RP-HPLC). Structural elucidation was performed
with NMR spectroscopy and HRMS. All comprehensive experi-
mental details for the scale-up processes, including analytical
outcomes and spectra of the purified and fully characterized
compounds, can be found in the Supporting Information (Sup-
plementary Note 12 and Supplementary Data 1, Figs. S12–S29).

Graph neural network architecture. A graph transformer neural
network (GTNN) architecture was employed based on the E(3)
equivariant graph neural network architecture53, which has seen
use in several related applications54,55. The GTNN was designed
using the same training procedure as in reference41 and a slightly
adapted architecture that allows for two distinct and variable
molecular graphs in its input, i.e., N-hetero arenes and carboxylic
acids (Supplementary Note 1). Furthermore, the initial machine
learning framework was extended to allow for prospective
screening of individual substrates, carboxylic acids or single
reactions. For both molecular graphs, their 3D conformers were
calculated using the universal force field method56, and the graph
was constructed using nodes represented by atoms and edges
defined by all neighboring atoms within a radius of 4 Å of
each atom.

Atoms were featured using embeddings of four atom-level
features:

● 12 atom types (H, C, N, O, F, P, S, Cl, Br, I, Si, Se);
● 2 ring types (True, False);
● 2 aromaticity types (True, False);
● 4 hybridization types (sp3, sp2, sp, s).

First, the individual atomic embedding was concatenated and
transformed into an initial atomic representation h0i via a multi-
layer perceptron (MLP). Atomic representations h0i were subse-
quently transformed via three message-passing layers. In each
message-passing layer, the atomic representations were trans-
formed via Eq. (1)

hlþ1
i ¼ ϕ hli; ∑

j2N ðiÞ
ψðhli; hlj; ri;j; Þ

 !
; ð1Þ

where hli is the atomic representation of the i-th atom at the l-th
layer; j 2 N ðiÞ is the set of neighboring nodes connected via

edges; ri,j the inter-atomic distance represented in terms of
Fourier features, using a sine- and cosine-based encoding; ψ is an
MLP transforming node features into message features mij: mij ¼
ψðhli; hlj; ri;jÞ for 3D graphs, and mij ¼ ψðhli; hljÞ for 2D graphs; ∑
denotes the permutation-invariant pooling Operator (i.e., sum)
transforming mij into mi: mi ¼ ∑j2N ðiÞmij; and ϕ is an MLP

transforming hli and mi into hlþ1
i . The resulting atomic features

from all layers ½hl¼1
i ; hl¼2

i ; hl¼3
i � were concatenated and trans-

formed via an MLP, resulting in final atomic features. Atomic
features were then pooled via a graph multiset transformer
(GMT)57 with four attention heads yielding an overall molecular
feature vector.

This procedure was conducted for both input molecular
graphs, where no weights were shared between the two GNN
modules except for the initial embedding layers of atom-level
representations. The pooled molecular representations were then
concatenated to a learned representation of the reaction
conditions (Fig. 3B). This subsequent reaction representation
was further transformed via a final MLP converting the latent
space to the desired reaction output. Both of the examined
problems, namely, reaction yield prediction and binary reaction
outcome prediction, were addressed as regression tasks. The
output for reaction yield was defined within the range of floating
values from 0 to 1, whereas for binary reaction outcomes, it was
defined as either 0 or 1.

Consistent with the results outlined in ref. 41, the performance
of the models was validated for GNNs trained on molecular
graphs that included atomic partial charges58–60. This evaluation
revealed that there was no substantial improvement or decline in
model performance. Consequently, for all the applications
described, 3D graphs without electronic features were employed
(Supplementary Note 3, Tables S1, S2).

Reaction condition representation. Reaction conditions were
represented by one-hot-encoding for molecular entities, i.e.,
reagents, solvents, catalysts, additives and atmosphere, and by real
numbers for scalars, i.e., equivalents for starting materials,
reagents, carboxylic acids, catalysts, and additives, fractions for
the solvents, temperature (°C), reaction time (h), and scale
(mmol/L). The individual conditions were concatenated with
each other and transformed via an MLP. This reaction condition
representation was then concatenated to the learned representa-
tions of the two substrates, i.e., N-hereto arene and
carboxylic acid.

Number of hyperparameters. The feature dimension for the
internal representation of GTNN was established at 128, with the
exception of the embedding dimension for the reaction and
atomic properties, which was set to 64. Additionally, the first
MLP layer following the graph multiset transformer-based
pooling was configured to have 256 dimensions. The graph
multiset transformer employed two attention heads for pooling.
These parameter settings translated into neural network sizes
with ~2.0 million trainable parameters for GTNN.

Metric for model validation. For model validation and optimi-
zation, mean absolute error was used for reaction yield prediction.
For predicting binary reaction outcomes the models were vali-
dated using absolute accuracy and the F-score metric. The F-score
(F1) is used as a measure for unbalanced data sets and is calcu-
lated by the mean of precision and recall (Eq. (2)):

F1 ¼
2tp

ð2tpþ fpþ fnÞ ð2Þ
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where tp represents true positives, fp false positives, and fn false
negatives.

Decoy data set. The decoy data set comprised 308 instances of
unsuccessful reactions, derived from 16 substrates that lack
reactivity under Minisci-type conditions due to the absence of an
aromatic or heteroaromatic component in their starting materials.
These selected molecules underwent thorough scrutiny by experts
and were subsequently incorporated into the data set as instances
of negative or unsuccessful reaction outcomes. This inclusion
serves to furnish the model with knowledge about molecules that
do not exhibit reactivity when subjected to Minisci conditions
(Supplementary Note 5, Fig. S3).

Substrate selection. The selection of a diverse and reactive set of
N-hetero arenes was based on a Roche-internal library of 3180
advanced heterocyclic building blocks with a molecular weight
between 200 and 1000 g/mol. Aiming to check these compounds
for potential reactivity in the alkylation reaction, this library was
virtually screened with preliminarily trained GNN models. Each
of the N= 3180 molecules was assigned with an average score
value calculated with six independent GNNs (“Machine learning-
based in silico reaction screening” for details). Subsequently,
agglomerative compound clustering was performed61. The
molecules were encoded as an N ×N similarity matrix containing
pairwise Jaccard similarity values based on ECFP4 molecular
fingerprint descriptors51. Clustering resulted in eight clusters of
which six were used for substrate selection. Three top-scoring
compounds were selected for HTE reaction screening for each of
the six clusters. This clustering approach was chosen to allow for
the selection of chemically diverse reactive substrates.

In silico reaction screening. For model application, a total of six
GNNs were trained. Three models were trained for predicting
reaction yield, and three models were trained for binary reaction
outcome prediction. These models were then utilized to predict
the reaction outcomes and reaction yields for each combination
of the 3180 advanced heterocyclic building blocks and the 23
carboxylic acids. The predictions yielded values for both binary
reaction outcomes and reaction yields, each ranging from 0 to 1.
Given that three models were employed for each of the two
prediction values, mean and standard deviations were computed
to provide an understanding of the model’s uncertainty. The final
score was then determined as the mean of the two predictions.
Subsequently, each of the six molecule clusters was ranked based
on the calculated score, and molecules from the upper echelons of
the list were chosen for further consideration or selection.

Data availability
The SURF-formatted literature, experimental and decoy data sets containing 45, 691 and
368 reactions, respectively, are enclosed as TSV files as Supplementary Data 2–8.
Description of Supplementary Data: Supplementary Data 1: PDF file containing NMR
spectra. Supplementary Data 2: TSV file containing all reactions (i.e., literature, decoy
and experimental data). Supplementary Data 3: TSV file containing reactions from
literature. Supplementary Data 4: TSV file containing experimental reaction data.
Supplementary Data 5: TSV file containing reactions conducted to validate the literature
data. These reactions were excluded in machine learning model training. Supplementary
Data 6: TSV file containing decoy reactions. Supplementary Data 7: TSV file containing
all investigated carboxylic acids. Supplementary Data 8: TSV file containing all
investigated N-hetero arenes.

Code availability
A reference implementation of the geometric machine learning platform based on
PyTorch62 and PyTorch Geometric63 is available at https://github.com/ETHmodlab/
minisci (rep. DOI: 10.5281/zenodo.8344587, https://zenodo.org/record/8344587).
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