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Machine learning insights into predicting
biogas separation in metal-organic
frameworks
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Breakthroughs in efficient use of biogas fuel depend on successful separation of carbon dioxide/
methane streams and identification of appropriate separationmaterials. In this work,machine learning
models are trained to predict biogas separation properties of metal-organic frameworks (MOFs).
Training data are obtained using grand canonical Monte Carlo simulations of experimental MOFs
which have been carefully curated to ensure data quality and structural viability. The models show
excellent performance in predicting gas uptake and classifying MOFs according to the trade-off
between gas uptake and selectivity, with R2 values consistently above 0.9 for the validation set. We
make prospective predictions on an independent external set of hypothetical MOFs, and examine
these predictions in comparison to the results of grand canonical Monte Carlo calculations. The best-
performing trained models correctly filter out over 90% of low-performing unseen MOFs, illustrating
their applicability to other MOF datasets.

Effective purification of the biogas stream obtained from decomposition of
agricultural and industrial waste remains a challenging but promising goal
towards a renewable source of biomethane fuel1 and a more sustainable
alternative to fossil fuels2. Biogas is composed predominantly of a CH4/CO2

mixture which must be separated, along with trace contaminants, to obtain
biomethane of increased purity for use in internal combustion engines2.
Multiple established approaches2–4 are routinely used for upgrading the
calorific content of biogas by removal of CO2, although these technologies
can be costly and energy intensive. Among them, adsorptive5 and
membrane2 separations by porous materials remain attractive options,
subject to improvement in yield, efficiency, and sustainability2–4. Optimal
porous materials provide a clear route towards improved performance;
however, such a material must be selective of CO2 over CH4 while also
exhibiting CO2 uptake sufficiently high for practical use. Many gas
separations are characterised by a trade-off between selectivity anduptake6,7,
rendering search for high-performing materials challenging. Meanwhile,
certain separation processes present further complexity. For example,
membrane separations additionally rely on effective diffusivity2.

Among prominent candidate materials for gas separation are porous
metal-organic frameworks (MOFs)8–11. High surface area complexes of
metal-containing nodes and organic linkers, MOFs have shown excellent
performance for a range of chemical processes12–16 including several gas
separations15. Structural variety of MOFs occupies a vast and diverse

chemical space of reported synthesised MOFs17 and many more proposed
hypothetical structures18,19, making prediction and tuning of all relevant
separation properties inaccessible to experiment. High-throughput use of
computational force-field methods provides reasonable uptake and selec-
tivity predictions and fundamental insight into structure-property rela-
tionships. Screenings of thousands of MOFs for separation of gas mixtures
are readily available in the literature20,21, including a recent search of nearly
7000 MOFs for biogas upgrading properties with a focus on membrane
separation22.

Computational MOFs screenings may be radically changed by devel-
opment of machine learning (ML) models suitable for predicting gas
sorption properties using only features that are cheap to calculate. This can
expand the size of databases that can be screened and further reduce
computational cost. Similar application of ML has become prominent in
every field of materials and chemistry research, with recent advances in the
prediction of material properties23, solubility24, protein structure25, and
reaction pathway26. ML is increasingly being applied to investigate and
optimiseMOFs forCO2 adsorption

27,28 and gas separation29–37, including for
CO2/CH4 separation

38–40. There are several recent reviews of this growing
area41.

Some studies have considered the relative performance of differentML
methods reporting higher predictive accuracy for non-linear over linear
methods30.When it comes to feature selection, structural descriptors, which
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canbe readily and cheaply calculated, are favoured, as in theCO2/CH4 study
of ref. 38 Linear regression models developed by ref. 32 to predict CH4

uptake and working capacity appear to perform well using only three fea-
tures, all of them structural. However, features which capture chemical
information such as Henry constants42, binding energy or the Voronoi
energy introduced by ref. 29 can improve the quality of ML models.

Previous ML studies of MOFs tend to be trained on large databases
composed primarily of hypothetical MOFs without significant curation30,38.
While this is a useful way to employ large amounts of data, it risks using
unviable MOF structures which display issues relating to structural deter-
mination procedures43,44 or, in the case of hypothetical MOFs,
synthesisability45. The importance of data curation is becoming increasingly
recognised in thematerial and chemical domains, with studies showing that
well-curated datasets give more accurate and insightful models46–49. In this
light, curation procedures are gaining traction within high-throughput
MOF workflows43,44,50–52. Understanding of the capabilities of ML models
trained using experimentalMOF structures curated for viability is therefore
essential.

In this work, we develop aMLmodel to predict performance ofMOFs
for biogas upgrading using a well-curated and high quality dataset. One
should not underestimate the importance of care in preparation of the
dataset. A small number of carefully selected features cover key structural
and chemical information. We focus on established (rather than newly
invented) descriptors that can provide chemical insight, even if they are, in
some cases, relatively expensive to compute.The resultantmodels are highly
accurate and subsequent analysis of the models provides insight into the
features of high-performing MOFs for biogas separation.

Results
Preparation of a high-quality dataset
A high-quality dataset is an essential prerequisite for ML-assisted high-
throughput screening.Here,we use an experimentalMOF subsetwhichwas
obtained from the Cambridge Structural Database (CSD)53 as part of a
previous high-throughput search for MOFs with biogas upgrading prop-
erties by Glover and Besley22 in which the dataset was algorithmically
stripped of solvents and filtered according to geometric criteria. Visualisa-
tion of the initial dataset comprising 6768 strippedMOF structures revealed
significant issues necessitating further curation (see SupplementaryNote 1).
Limitations of datasets which may negatively affect high-throughput and
machine learning MOF studies are gaining attention. These include per-
sistence of unfeasible structures43,44 as well as persistence of duplicate
structures which may affect diversity and lead to data leakage in machine
learning54,55. Curation procedures improve the quality ofMOFdatasets, and
are beginning to be applied in contemporary studies43,44,50–52.

A strict curation workflow, as detailed in the Methods Section 4.1 and
shown in Fig. S1 of SupplementaryNote 1, was applied to remove unfeasible
structures as well as duplicates of the same structure, after which only 1910
MOFs remained in the dataset. The distribution of metal centres present in
this dataset is illustrated in Fig. S2 of Supplementary Note 1. The most
abundant metal in the dataset is Zn, followed by Cu and Co. The large
number of removed MOF structures highlights the critical prevalence of
unfeasible structures in MOF databases, which should not be ignored.
During the curation stage, overlapping and missing atoms were encoun-
tered in nearly 10% of MOFs structures, and the proportion of unrealistic
structures increased dramatically when the oxidation state of metal centres
was considered (at this stage, more than half of the remaining structures
were flagged for removal). The CSD MOF dataset is well-known and
commonly utilised, and it is far from the only database which suffers from
the issues encountered.

For the remaining MOFs, Grand Canonical Monte Carlo (GCMC)
simulations were used to calculate key metrics of biogas separation per-
formance under working conditions of 10 bar pressure and 298 K tem-
perature. Details of the GCMC setup are given in the Methods Section 4.2;
the accuracy and reliability of the setup has been validated previously56 by
comparing its performance for CH4 and CO2 uptake in theMFM family of

copper paddlewheel-based MOFs with existing experimental data57. Gas
uptake simulations were separately performed to obtain the loading values
for both single component (SC) gases and a binary mixture (BM) of 50/50
CO2/CH4 gas. Selectivity, S, ofCO2overCH4was calculated from the binary
mixture CO2 and CH4 uptake values, namely, from the loading of CO2 and
the loading ofCH4whenaMOFsystemwas simulated in equilibriumwith a
50/50 binary mixture of CO2 and CH4 gases (see Methods section 4.2).
Simulation conditions were selected for relevance to the separation within
the landscape of industrial conditions which vary depending on specifics of
process and materials and can be optimised for a given setup. In particular,
the common pressure swing adsorption (PSA) technique tends to require
adsorption at high pressures at or above 10 bar58,59 and desorption at
pressures of 1 bar or below38,58,60. Temperature swing adsorption (TSA) can
be carried out at ambient pressures61 with adsorption temperatures between
273 K and room temperature and desorption temperatures elevated by a
margin on the order of 100 K62. Membrane separation, meanwhile, uses
pressures of a few bar with no demand for elevated temperature2. With
regard to the selected gas composition, biogas feedstocks vary, with CH4

composing 50−65% and CO2 composing 35-50% of a mixture (and trace
gases also present)2,22,63. The 50/50 mixture was selected as an example of a
realistic biogas composition comparable to previous work22.

The ranges of the uptakemetrics in the curateddataset are illustrated in
Fig. 1c, d, g, hwhich show that single componentCH4uptake reaches nearly
12mol kg−1 (Fig. 1g) whilst single component uptake of CO2 is notably
higher, approaching25mol kg−1 (Fig. 1h). Binarymixture uptake (Fig. 1c, d)
is lower, particularly for theweaker adsorbentCH4, althoughbinarymixture
CO2 loading above 17mol kg−1 is observed, which compares well to pre-
viously reported values64.

The range of values which selectivity takes in the curated dataset may
be seen in Fig. 1b, f, inwhich a binarymixtureCO2 loading is plotted against
CO2 selectivity. Very high values of selectivity above 10

4 are observedwithin
the curated dataset, although high selectivity can be a consequence of very
low CH4 loading in MOFs whose CO2 loading is not usefully high. Indeed,
Fig. 1b, f illustrate the existence of a trade-off relationship between uptake
and selectivity. None of the MOFs which display exceptionally high selec-
tivity also have very high loading. An idealMOFwould possess both, and be
found in the upper right portion of the plots. Instead, there is a significant
population of MOFs in the lower left, branching into the lower right (high
loading) and upper left (high selectivity). High uptake and selectivity of the
dominant gas are both of importance to gas separations; it is desirable to
identify structures displaying both. In the relative absence of MOFs which
unite both metrics, it is instructive to identify those presenting a useful
compromise between the two, as quantified here by ametric known as trade
off between selectivity and uptake, TSNCO2=CH4

6,7 (seeMethods Section 4.2),
which is herein referred to as TSN. The range of values which TSN takes
within the curated dataset is illustrated in Fig. 1i.

Table 1 gives the names of the six MOFs whose calculated TSN is
greater than 22mol kg−1, along with values of TSN, selectivity and binary
mixture CO2 loading, and ranks of these values within the dataset. It also
includes the pore limiting diameter (PLD) and void fraction (VF) of each
structure in order to illustrate relationships between structure and uptake
properties, as well as the topology of each structure. Structural values were
taken from the data of ref. 22 and topology was determined using the
CrystalNets.jl65 web application (https://progs.coudert.name/topology)
with the SingleNodes clustering option. To further facilitate detailed
structural examination, visualisations of each of the sixMOFs are presented
in Fig. 2. The six highest-TSNMOFs all rank highly for selectivity, andmost
also rankhighly for binarymixtureCO2uptake. Interestingly,manyof them
possess common structural features. The metal centres of the four MOFs
with highest TSNareZn.Meanwhile, the sql square lattice topology features
significantly and several of the six presented MOFs possess approximately
square channels. The structures of the fiveMOFs with highest TSN are two
dimensional (2D) except for theMOFwith reference codeUQUVOSwhich
has a three dimensional (3D) structure made up of connected 2D sheets.
Further, the six MOFs have small pore limiting diameter, including two
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among the four highest-TSN MOFs with PLD very close to 3.80Å, the
kinetic diameter ofmethane and the smallest PLDallowed in the dataset. VF
values range from 0.5 to 0.7.

The abundance of Zn centres among the six top-performing MOFs is
likely to be at least in part due to the high abundance of Zn-MOFs in the
dataset as a whole, in which Zn is the most commonly occurring metal (see
Fig. S2). Among 1910 curated MOFs, 542 possess a Zn centre, which
amounts to 28%of the dataset.While a significant amount, this is lower than
the prevalence of Zn among the top 6 MOFs (67%). It is useful to make
similar comparisons to the base dataset for the other structural observations
made, to indicate the extent towhich they are simply a result of trends in the
base data, and to what extent they are specific to the high performers. In
terms of dimensionality, 597 of the 1910MOFs in the base dataset (31%) are
2D, compared to five of the six top performers (83%). For PLD, two of the
top performing MOFs have PLD under 3.82Å, while only 13 of the 1910

MOFs (<1%) have PLD under the same threshold (when rounded).
Meanwhile, all of the top performers have PLD under 4.84Å, compared to
914 (48%) of the curated dataset. For VF, 1230 of the 1910 curated MOFs
(64%) fall within the 0.5−0.7 range covered by the top MOFs.

We note that it is possible that some of the identified top MOFs may
display flexibility in response to guest adsorption or other external stimuli.
There are several modes of flexibility available to MOFs, including the
subnetworkdisplacementmodewhich applies specifically to 2D layered and
3D interpenetrated structures and involves relocation of separate networks
(e.g., layers of 2D MOFs) in relation to each other66. While this and other
kinds of flexibility can often be useful features of MOF when they are
observed, the rigid approximation does not account for them.

The results of the high-throughput GCMC calculations22 have been
able to identify potentially promising structures for biogas upgrading and
provide guidance on structural features which may promote strong biogas

Fig. 1 | Structural features ofMOFs used in theMLmodel and the range of values
for uptake metrics, selectivity and TSN used in the curated data set. a An illus-
tration of structural features; blue circles show pore limiting diameter (PLD) and
largest cavity diameter (LCD), which describe pore size; green dashed lines show
accessible area (ASA) as measured using the centre of a probe (1.86Å radius), and
green solid lines enclose internal volume as measured using a point probe, which is

often expressed as a void fraction. Red dashed lines indicate non-accessible area.
Plots of binary mixture CO2 loading against CO2 selectivity, with a (b) linear and (f)
logarithmic scale; (c−e) and (g−i) ranges of the six prediction targets studied in this
work. Units for loading and TSN aremol kg−1; Selectivity is unitless. For the trade off
between selectivity and uptake metric, TSN, the indicated cutoff of 5 mol kg−1 was
used to classify low and high TSN MOFs.
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upgradingproperties.However, acquisitionof these results on a large scale is
ultimately limited by the computational cost of GCMC calculations. This
warrants the development of ML methods able to obtain equivalent infor-
mation on a shorter timescale. If successful, ML models may allow pre-
selection of the most promising MOFs for a targeted property, bypassing
largenumbers ofGCMCsimulations and focusingmore costly effortswhere
they are most relevant. Moreover, while structural guidance was provided
from the GCMC results by examination of individual MOFs, ML methods
may extend this guidance to a larger scale, providing quantitative infor-
mation about how the structure of a MOF may affect its performance.
Development of ML models for prediction of biogas upgrading perfor-
mance is addressed in subsequent sections.

Target and descriptor selection
ML methods were developed to make predictions regarding target values
relevant to biogas upgrading using only cheaply calculated descriptors of
MOF structures and using the GCMC dataset as training data. The target
values to be predicted were introduced in the previous section: single
component andbinarymixture uptakes ofCO2 andCH4,which relate to the
affinity of aMOF for each gas, including in the presence of its competitor in
the mixture, as well as TSN, which describes the trade-off between uptake
and selectivity and is particularly relevant for gas separations. Further details
on selection of target values can be found in SupplementaryNote 2; Table S1
presents an analysis of the minimum, maximum, mean, and median of the
target values, and Figs. S3 and S4 show the distribution of the target values.
Initial analysis of the data revealed that the distribution of TSN was highly
skewed and likely to present problems when training ML methods.
Therefore, log10(TSN) was additionally used to reduce the skew and
improve the distribution of the data.

Descriptors used as features for aMLmodel must be cheaply obtained
and relevant to the target being predicted. As a starting point for this work,
descriptors were taken from the dataset of Glover and Besley22 previously
used in the early stages of a screening for biogas upgrading with a focus on
membrane separation.The21descriptors include amixtureof energetic and
structural information which has been shown to be desirable for models of
this kind29,42. Features selected from this set are listed in Table 2 along with
the method and software used to calculate them (see other details in
Table S6), and the full set of 21 features is similarly described in Table S2 of
Supplementary Note 3. Through an analysis of the descriptor values (See
Figs. S5–S10 of SupplementaryNote 3) it was noted that the distributions of
many descriptors were skewed. Hence, to allow the model to discriminate
betweendifferent descriptor values, a log10 scalewas applied topore limiting
diameter (PLD), largest cavity diameter (LCD), pore volume (PV) and some
chemical descriptors at infinite dilution, namely, Henry constant (K0),
diffusion coefficient (DC

0 ), and permeability (P0). For any pair of correlated

descriptors (Fig. 3a, also Table S5 and Fig. S15), only one was retained. This
led to the removal of K0 descriptors in favour of heat of adsorption, Qst

0 , and
the removal of pore volume andGSA surface area in favour of void fraction
(VF). Analysis and distribution of the log10 scaled descriptors can be found
in Table S4 and Figs. S11−S14 of Section 3.2 in Supplementary Note 3. Full
correlation analysis is presented in Section 3.3 of Supplementary Note 3
(Figs. S16−S21).

In summary, only a small number of relevant descriptors, given in
Table 2, was selected to allow the ML model to be transparent and easily
interpreted24,67, and we used our understanding of gas selectivity and uptake
to remove the less appropriate descriptors. Diffusion coefficients of gases
andpermeability at infinitedilutionwere removedas thesedescriptors relate
specifically tomembrane separations.The valuesused as targets in this study
are thermodynamic properties, which, although relevant to several indus-
trial applications, do not alone describe industrialworkflows likemembrane
separation. Furthermore, the diffusion coefficients and permeability
descriptors are obtained using molecular dynamics simulations and come
with an additional computational cost (and, hence, reduced training effi-
ciency) as compared to the other descriptors.

Random forest results
The complete ML protocol used in this study can be found in Fig. S22 of
Supplementary Note 4. Plots of predictions using eachMLmethod for each
target canbe seen inFigs. S23−S25.The correspondingplots of error against
target range can be seen in Figs. S26−S28. Machine learning results using
random forest are shown in Fig. 3 using 10-fold cross validation. Additional
models were built usingMultiple Linear Regression (MLR), Support Vector
Machine (SVM), and k-Nearest Neighbours (kNN); results using these
methods can be found in Supplementary Note 5. For the six regression
targets, RF and SVM gave comparable results, outperforming MLR. RF
models gave mean absolute error in the range of 0.097 to 1.224, and in all
cases smaller than the standard deviation of the target values, showing the
utility of the models. The best models were built for single component and
binarymixtureCO2 loading andRF (Fig. 3e, f)withR

2 > 0.9. Thepredictions
forTSN (Fig. 3b, c) are very skewed, giving largeunderpredictions for higher
TSN MOFs.

Thus, we see that the regression models are able to predict uptakes
more efficiently thanTSN (or indirectly selectivity),which is itself ultimately
based on uptake values. This likely relates to the fact that for the training set,
TSN data are skewed to low values, and also to propagation of errors.
Specifically, the equation for calculating selectivity (Eq (1) of the Methods
section) involves division by the quantity of adsorbed CH4 in a binary
mixture simulation. Calculated CH4 loading values are generally small, and
prediction errors, which may be small when predicting only CH4 loading,
are amplified, lowering performance of the model. Meanwhile, a small
number ofCH4 loading values are particularly small, resulting in a select few
unusually high selectivity and TSN values and the observed low-TSN skew
in the training data. In order to resolve this, additional classificationmodels
were built for TSNwith the aim of identifying high and low TSNMOFs, an
important task inMOFs screening.ThebenchmarkTSNvalue of 5mol kg−1

was selected to differentiate betweenhigh and lowTSNMOFs.The selection
of the benchmark value is discussed in Section S2.1 of Supplemen-
tary Note 2.

The classificationmodels for TSN gave excellent results for kNN, SVM
and RF, with RF giving the best accuracy of 0.881 and area under the
receiver-operator curve (AUC) of 0.957 (Fig. 3l, o; also see
Figs. S29 and S30). The few misclassifications for RF were localised around
the interface betweenhigh TSN and lowTSN, as shown in Fig. 3nwhere the
class prediction is presented against the actual TSN.Almost all the incorrect
classifications are within ± 2mol kg−1 TSN of the interface. The probability
of assigning to each class was examined against the real class (Fig. 3k). It was
observed that the more confident the model, the more likely the the correct
class had been predicted, with very few cases of high confidence resulting in
an incorrect prediction. The completeMLprotocol used in this study can be
found in Fig. S22 of Supplementary Note 4, and the full metrics for

Table 1 | Details of the seven MOFs for which TSN is greater
than 22mol kg−1 according to the GCMC calculations:
refcodes, TSN values, GCMC selectivity values and rank
within thedataset, GCMCbinarymixtureCO2 loadingand rank
within the dataset, pore limiting diameter (PLD), void fraction
(VF) and topology65

MOF
Refcode

TSN
/mol kg−1

S (rank) BM CO2

Loading
/mol kg−1 (rank)

PLD
/Å

VF Topology

DEPJIR02 32.86 695.89 (15) 11.56 (80) 3.81 0.66 sql

QUDJEF 30.67 61.50 (90) 17.15 (1) 4.27 0.70 sqla

UQUVOS 29.19 1765.15 (6) 8.99 (335) 4.42 0.57 hcb

AQOWIN 23.89 244.94 (30) 10.00 (191) 3.80 0.62 sql

SIKYIV 23.55 52.86 (103) 13.67 (27) 4.30 0.69 sql

YOCSEQ 22.36 6633 (4) 5.85 (940) 4.83 0.50 fsc
aQUDJEF was assigned a 2-fold catenated sql topology.
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regression and classification models can be seen in Table S7 of Supple-
mentary Note 5.

Discussion
Interpretability of machine learning predictions
To interpret the RF models, the average descriptor importance was calcu-
lated from the models (Fig. 3j, m). For the regressionmodels, density of the
MOF was important for predicting single component and binary mixture
CH4 loading,whilst volume fraction available for gasuptake in theMOFwas
the key descriptor for single component and binary mixture CO2 loading,
and heat of adsorption of water in MOF at infinite dilution, Qst

0 (H2O), for
TSN. The strong influence of volume fraction on single component CO2

loading was examined by plotting void fraction against single component
CO2 loading (Fig. 3g), indicating that single component CO2 loading
increases with void fraction up to a certain point, but for the fewMOFswith
very high void fraction, single component CO2 loading begins to decrease
again. Although the correlation between this descriptor and the target is
strong, the model that contains 9 descriptors (Fig. 3f) gives more accurate
predictions than using VF alone.

We find that for the most important features, particularly for the
TSN targets, a mixture of structural and energetic descriptors is required,
supporting evidence from previous studies29,42. For the gas uptake targets
specifically, structural features dominate whilst energetic features con-
tribute relatively little to the machine learning models. Among the
structural features, void fraction stands out particularly as having very
high importance for CO2 loading and strong contribution to a number of
the other models, most prominently to the TSN classification model and
the TSN regression models (CO2 loading contributes directly to TSN).
The dependence of CO2 loading on void fraction indicates that under the
10 bar conditions studied, available pore space is relevant to how readily
new gas molecules may enter the MOF as unfavourable arrangements of
guest molecules are necessitated. Indeed, some of the smaller-VF MOFs
may have already reached saturation by this point, meaning that only
structures with sufficient VF are able to continue to adsorb. Meanwhile,
Fig. 3g indicates that at the highest void fraction values in the dataset,
adsorption is reduced compared to at the most favourable void fractions.

Here, interactions with pore walls are decreased and adsorption is
reduced.

It is interesting that the energetic feature displaying the most overall
importance for predicting the target values is heat of adsorption ofwater,Qst

(H2O), which provides a description of the hydrophilicity and polarity of a
MOF structure. Such a description accounts for the selectivity contribution
to TSN, with highly polar MOFs likely to unite affinity for CO2 with lack of
affinity for CH4. For both the RF regression and the classification models,
Qst (H2O) provides a more important description of TSN than the heat of
adsorption of either of the two individual gases for both the regression and
the classification models.

The models were further analysed by examining the best- and worst-
predicted MOFs for structural similarities. This was to determine the types
ofMOFs forwhich themodels provided excellent andpoor predictions. The
analysis for the regressionmodelwith the best overall performance, random
forest single component CO2 loading, and the TSN random forest classi-
ficationmodel can be found in SupplementaryNotes 5 and 6 (see analysis of
the outliers in Tables S10 and S11). For the CO2 regression model, the
majority of the largest errors correspond to an overprediction of the loading
inMOFs displaying very high void fraction. Meanwhile, the majority of the
best-predicted structures possess narrow pores, with smaller pore limiting
diameter than the poorly predictedMOFs. For the classificationmodel, void
fraction also seems to display a relationship with prediction quality, with
particularly well-predictedMOFs having void fraction falling largely within
defined ranges, and low-performingMOFswhichwere incorrectly classified
as high-performing displaying larger void fraction values. Pore limiting
diameter varies among both correctly classified and incorrectly classified
MOFs, but higher maximum pore limiting diameter is seen for the poorly
classified MOFs than for the well-classified structures.

In the context of a MOF screening, it is instructive to ascertain the
performance of a model for the MOFs displaying the best performance. In
this case, therefore, the six MOFs identified as most promising for biogas
upgrading by GCMC and identified in Fig. 2 are considered. Since these
MOFswere identified based onTSN, the results of theRFTSNclassification
model were checked. It was confirmed that the TSN classification model
correctly classified all six identified top-performers, all with high-

Fig. 2 | Visualisations of the structures of the six
MOFs forwhichTSNat 10 bar is greater than 22 as
predicted by GCMC simulations, visualised along
two different axes. a DEPJIR02, metal is Zn (b)
QUDJEF, metal is Zn (c) UQUVOS, metal is Zn (d)
AQOWIN, metal is Zn (e) SIKYV, metal is Eu (f)
YOCSEQ, metal is Cd.
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performing probability above 0.9 with the exception of YOCSEQ (prob-
ability=0.63), suggesting that the model is successful in correctly classifying
the very high-performing MOFs most desired in a screening.

External test data
The best-predicted regression target, single component CO2 loading, and
the TSN classification model were retrained using the full training set and
their performancewas tested on a dataset of unseenMOFs originating from
an external source. To generate this dataset, 1000 structures were selected at
random from theNorthwesternhypothetical database18 and subjected to the
same curation procedure applied to the training data, including the appli-
cation of geometrical and charge criteria used by ref. 22 and with the
addition of a check for similarity to the training set to avoid data leakage54,55.
NoMOFswere found to be identical to training set structures. The curation
left a total of 330 structures in the external test dataset. The distribution of
metals present in theseMOFs is shown in Fig. S2 SupplementaryNote 1; the
dataset is heavily dominated by Zn and Cu MOFs. The nine selected
descriptors were calculated for each MOF as described in the Methods
section to allow predictions to be made using the ML models. Relevant
targets were also calculated using GCMC as described in the Methods
section for comparison to predictions. The unseen test set descriptors and
targets were analysed by the same statistics as the training set, as shown in
Table S8. The ranges distributions of the descriptors and targets are shown
in Figs. S33−S37. The correlation of the unseen test set descriptors can be
found in Fig. S38. The full metrics for test set predictions are shown in
Table S9.

The results are shown in Fig. 4 for RF. The mean absolute error for
regression models was lower for RF (2.275) than SVM or MLR, and much
lower than the standard deviation of the external test data (3.796). This
model had a modest R2 of 0.332. However, an examination of Fig. 4a, b
shows that themodestR2 is due to underprediction ofmid and high loading
MOFs. Interestingly, the correlation between single component CO2 load-
ing and void fraction is different to the training set (Fig. 3g) and, due to the
predictions’ strong dependenceon void fraction, the predictions are affected
accordingly. For the TSN classification models, accuracy (0.712) and area
under the curve (0.850) was found with RF, with comparable results for RF
and kNN. The recall for HIGH MOFs was much lower than the cross
validation results, partially due to the low number of HIGH MOFs in the
external test set. Themodelwas particularly good at identifyingLOWMOFs
(Fig. 4d, e). However, several MOFs with very high TSN were predicted
LOW. The model was good at assigning the correct label when the prob-
ability was < 0.2 or > 0.8 and less so at intermediate values. To further assess
the importance of each descriptor in themodel, random forestmodels were
rebuilt for the regression targets with 10-fold cross validation leaving out
each descriptor in turn (see Section 5.4 of Supplementary Note 5).
Figs. S31 and S32 show the mean metric and the standard deviation error

across the 10 folds. Models were also trained with the full training dataset
and tested on the unseen test set. The full prediction and error plots can be
seen in Figs. S39−S44. The classification models were retrained using the
full training set and tested on the unseen test set. The analysis for the cross
validation was repeated and can be seen in Figs. S45 and S46.

The underprediction of the performance of HIGH MOFs displaying
high void fraction illustrated in Fig. 4a, b for the external test set appears to
be a more extreme case of similar underprediction observed for high-void
fraction MOFs in the training and validation sets. Comparison of Fig. 4a
alongside Fig. 3g reveals that for both the validation set and the test set there
is a peak in single component CO2 loading at a void fraction of around 0.8,
and that the test set contains proportionally many more points above this
peak than the validation set does. This offers an explanation for the dif-
ference between the model performance for the training set and for the
external test set: the test set containsmoreMOFswith particularly high void
fractions leading to comparatively low loading.With fewer of these kinds of
MOFs seen in training, model predictions are poorer. The feature space
covered by the external test set, which is composed of hypotheticalMOFs, is
not the same as the feature space themodels were trained on. In addition to
providing valuable information about the performance of the trained
models, this highlights an interestingpoint about themerits of detailedstudy
of the similarities between commonly used hypothetical and real sets of
MOFs. The benefits of hypothetical MOF databases are defined by the fact
that they contain MOFs which have not been produced experimentally, so
some level of dissimilarity between the two is advantageous. However, a
database which significantly departs from structures similar to those known
tobe experimentally synthesisable risks containing sets of coordinateswhich
arenotuseful topursue. It is vital to understand the strengths and limitations
of hypothetical MOF databases. This was partially addressed in work by
ref. 68 comparing the feature space covered by MOF databases. The work
identified differences between hyopthetical and real datasets and a lack of
diversity in hypothetical MOFs (including, as seen in this work, a limited
number of metal centres present in hypothetical MOFs), with resulting
implications on screening conclusions. Consistent scrutiny of hypothetical
MOF databases is needed as they continue to be widely utilised in material
design and selection.

To identify the MOFs likely to be best performing according to the
predictions of the random forestMLmodel, the sixMOFs from the external
test set classified as high TSN with the highest probability are detailed in
Table 3 and visualised in Fig. 5. Table 3 also includes relevant geometrical
features PLD and VF, and includes topology65 determined as described in
section 2.1, as well as degree of interpenetration, also determined using
CrystalNets.jl65. Interpenetration is widely observed among the identified
promising hMOFs. Similarly, the six MOFs predicted by the random forest
regression model to display the highest single component CO2 loading are
detailed in Table S12 and visualised in Fig. S47 of Supplementary Note 7. In

Table 2 | The 9 descriptors used to train the ML model in this work, selected from among the 21 descriptors of Glover and
Besley22

Descriptor Description Method Software

PLD/Å Diameter of the largest sphere that can percolate through the MOF Voronoi network Zeo++69

LCD/Å Diameter of the largest sphere that fits inside the MOF Voronoi network Zeo++69

Density/g cm−3 Mass of MOF per unit volume Zeo++69

VSA/m2 cm−3 Surface area accessible to the centre of a probe (r = 1.86 Å) per unit volume Voronoi network MC sampling Zeo++69

VF Fraction of the volume not occupied by MOF atoms (calculated with point probe) Voronoi network MC sampling Zeo++69

Qst
0 (CH4)/kJ mol − 1 Heat of adsorption of CH4 in the MOF at infinite dilution Force fields GCMC RASPA72

Qst
0 (CO2)/kJ mol − 1 Heat of adsorption of CO2 in the MOF at infinite dilution Force fields GCMC RASPA72

Qst
0 (H2S)/kJ mol − 1 Heat of adsorption of H2S in the MOF at infinite dilution Force fields GCMC RASPA72

Qst
0 (H2O)/kJ mol − 1 Heat of adsorption of H2O in the MOF at infinite dilution Force fields GCMC RASPA72

Where relevant: MC = Monte Carlo, GCMC = grand canonical Monte Carlo, MD = molecular dynamics, r = probe radius.
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Fig. 3 | Descriptor selection and random forest results using 10-fold cross vali-
dation and nine final descriptors. (a) Correlation heat map for descriptors pro-
posed in ref. 22 (numbered as in Table S3) (b, d−f) and (h, i) Regression target
predictions (c) Error of TSN predictions compared to TSN range (g) Relationship
between VF, which was identified as the most important descriptor in this model,
and SC CO2 Loading. (j) Relative importance of each descriptor for each regression

target. (k) Frequency of HIGH TSN prediction probability compared to the real
class. (l)TSN classification model receiver operating characteristic curve. (m)
Relative importance of each descriptor for TSN classification. (n) Frequency of
HIGH and LOW predictions compared to TSN range. o Metrics for TSN classifi-
cation model. Throughout, the standard deviation across 10 folds is shown in par-
entheses as a measure of model variability.
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general, the predictions are fairly successful, with the predicted top TSN
MOFs displaying high GCMC TSN, clearly above the threshold of
5mol kg−1 and the predicted top loading MOFs displaying predicted
loading close to their GCMC values. Several of the top MOFs for both
properties display structural similarities: all top-TSNMOFs and most top-
SC CO2 loading MOFs possess interpenetrated frameworks based on the
pcu (primitive cubic) lattice. Higher degrees of interpenetration are
observed for the top-TSN MOFs than for the top-uptake MOFs. For the
uptakemodel, the topMOFs have void fraction very close to the value of 0.8
which corresponds to the loading peak previously mentioned. All 6 of the
MOFs predicted to display the highest single-component CO2 loading have
VFbetween0.79 and0.87, in commonwith86 (26%)of the 330MOFs in the

external test set. Meanwhile, 5 of these 6 (83%) have VF between 0.79 and
0.82, in commonwith47 (14%)of the 330 external test set structures. For the
TSNmodel, the topMOFs generally possess VF lower than 0.8. This is true
of all six predicted top-TSNMOFs, in common with 242 of the 330-strong
test set (73%). Five of the six top predictions have VF lower than 0.72, in
common with 145 (44%) of the 330 test MOFs. A range of values for pore
limiting diameter is observed, in line with the lower feature importance of
this metric, although top MOFs for loading generally have higher pore
limiting diameter than top MOFs for TSN. The six top-SC-CO2 loading
MOFs have PLD ranging from 6.69Å to 11.5Å, a range covered by 109
(33%) of the full curated test set, while the six top-TSN MOFs have PLD
ranging from 4.40Å to 6.69Å, a range covered by 154 (47%) of the full
curated test set. None of the top predicted MOFs are two dimensional; the
external dataset of hypothetical MOFs contained only 3D structures. All of
the top six TSN MOFs and the majority of the top six MOFs for single
component CO2 loading (4 of the 6, 67%) possess Zn centres. This is in line
with similar observations seen in the training and validation set, but must
largely be attributed to the significant dominance of Zn centres in the test set
(247 of 330, or 75%, see Figure S2 of Supplementary Note 1).

Methods
Dataset curation and cleaning
The curation workflow used to refine the dataset to contain only physically
viable MOFs is outlined below. Further details are given in Supplementary
Note 1. Structures containing no metal, no carbon or only one or two
elements were first identified and removed from the initial dataset taken
from ref. 22 of 6768 MOFs, leaving a total of 6663 structures. To combat
overlapping atoms, any structures with any atom-atom distances less than
0.5Å were next removed, leaving 6,638 structures in the dataset. Any D
atomspresent inany crystallographic informationfileswere replacedwithH

Fig. 4 | External test set results using random
forest retrained on the full training set and 9 final
descriptors. (a) Relationship between VF and SC
CO2 Loading (b) Predictions for SCCO2 Loading (c)
Receiver-operator characteristic curve for TSN
classification. (d) Frequency of HIGH and LOW
predictions compared to TSN range. (e) TSN clas-
sification metrics. (f) Frequency of HIGH TSN
prediction probability compared to the real class.

Table 3 | Details of the six MOFs predicted to display high TSN
with the highest probability among the external test set
according to the RF classification model: the identifier,
probability, calculated (GCMC) TSN, pore limiting dia-
meter (PLD), void fraction (VF), topology, and degree of
interpenetration (DI)

Numerical High TSN GCMC TSN PLD VF Topology DI
Identifier probability /mol kg−1 /Å

13060 1.00 11.0 4.71 0.62 pcu 4

5030899 0.994 9.60 5.11 0.67 pcu 4

5022978 0.966 6.33 5.26 0.71 pcu 3

3886 0.956 12.2 6.69 0.79 pcu 2

5030750 0.938 10.9 4.40 0.65 pcu 4

5032593 0.930 7.04 6.42 0.71 pcu 3
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and then all files with no H were removed, leaving 6359 structures. Issues
dealt with up to this stage would be clear from visualisation.

Oxidation state counting was then used to remove structures with
unviable oxidation states using a published MOF Oxidation State And
Electron Count (MOSAEC) code44. The MOSAEC code was applied to all
6359 remaining structures and any that were flagged with any features
indicating problematic oxidation states were removed. A total of
3553 structures were flagged as problematic, leaving only 3086MOFs in the
dataset. A filter for dimensionality was then applied: the dimensionality of
each of the 3086 structures was determined algorithmically using the Zeo+
+ software package69. Of these, 1715 3D structures, 686 2D structures, 611
1Dstructures and740Dstructureswere identified.All 1Dand0Dstructures
were removed from the database, leaving a total of 2401 MOFs. Of these
2401MOFs, charge equilibration calculations necessary for the simulations
were unable to complete for 20 structures, leaving a total of 2381.

Afinal stepwas removal of duplicate structures54,55.Weisfeiler-Lehman
structure hashes for undecorated (agnostic to atom type) structural graphs
of each MOF were obtained using the Pymatgen materials analysis python
library70 and the NetworkX package71. For any groups of structures with
identical hashes, only one MOF was retained. Additionally, groups of
structureswhoseCSDrefcode is basedon the same six-letter string are based
on the sameMOF, possiblywith changes to the synthesis procedure, and are
therefore expected to byhighly similar.Only oneMOFwas retained for each
six-letter string. Following deduplication, and therefore following the full
curation procedure, 1910 MOFs remained in the CSD dataset. An equiva-
lent curation procedure was applied to the external test set, yielding 330
curated structures.

Calculation of descriptors and labels
Computational details of the Monte Carlo setup used within the RASPA
software package72 to determine absolute gas uptake are outlined below.
Interactions between components of the system were modelled using
Lennard-Jones potentials, considering host-guest and guest-guest interac-
tions, but nohost-host interactions. The guestmoleculesCO2 andCH4were

modelled using the TraPPE formalism, in which CO2 is treatedwith a 3-site
model with each site possessing a partial charge and Lennard-Jones para-
meters, and CH4 is treated using a single site model with no charge but with
Lennard-Jones parameters. Lennard-Jones parameters for the framework
were taken from the Universal Force Field (UFF)73. Framework partial
charges necessary tomodel interactions of framework atomswithCO2were
determined prior to the uptake simulations using the extended charge
equilibration (eQeq) method available within the RASPA software package
(version 2.0.35)72.

During GCMC simulations, van der Waals interactions were calcu-
lated with a cutoff of 12.8Å, above which the potential was shifted to zero
without tail corrections.Often, tail corrections can be a convenient choice to
make the adsorption results less sensitive to the details of the truncation50.
Unlike atoms were treated using Lorentz-Berthelot mixing rules. Sufficient
replicas of the unit cell of each MOF were used so that all perpendicular
distances were at least 25.6Å (two times the cutoff). Electrostatic interac-
tionswhere requiredwere calculatedusing theEwaldmethodwith precision
of 10−6. TheMOF systemwas in equilibriumwith an imaginary reservoir of
gas molecules, either pure CO2, pure CH4 or a CO2/CH4mixture with each
gas present with a mole fraction of 0.5. Gas phase fugacities of the com-
ponents were calculated using the Peng-Robinson equation of state. The
temperature usedwas 298 K and the external pressuremodelledwas 10 bar.
Monte Carlo moves available to the system were translation of a guest,
rotation of a guest, insertion or deletion of a guest (grouped together by the
software under amove called swap) and in the binarymixture case changing
a guest’s identity from CO2 to CH4 or the reverse. Simulations were run for
10,000 equilibration cycles followed by 10,000 production cycles, where the
number of steps in a cycle is equal to the number ofmolecules in the system,
or to 20 if there are fewer than 20 molecules in the system. The computa-
tional cost of these GCMC calculations of gas adsorption under relevant
conditions varies depending on the MOF considered. The time for an
uptake calculation to complete for a single MOF ranges from several hours
to multiple days when running on a high-performance compute cluster
possessing an Intel Xeon Gold 6138 20C 2.0 GHz CPU.

Fig. 5 | Visualisations of the structures of the six
MOFs predicted to have highTSNwith the highest
probability among the external test set by the
random forest classification model. The MOFs are
(a) hMOF-13060, metal is Zn (b) hMOF-5030899,
metal is Zn (c) hMOF-5022978, metal is Zn (d)
hMOF-3886, metal is Zn (e) hMOF-5030750, metal
is Zn (f) hMOF-5032593, metal is Zn.
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Further separation metrics are determined from binary mixture CO2

andCH4 loading. Selectivity, S, quantifies the preferential adsorption ofCO2

over CH4 and is given by Eq. (1), where qi is the quantity of gas i in the
adsorbed phase, and yi is the mole fraction of gas i in the gas phase.

SCO2=CH4
¼

qCO2
yCH4

qCH4
yCO2

ð1Þ

TSNCO2=CH4
quantifies the trade-off between SCO2=CH4

and binary mixture
CO2uptake. It is given in equation (2), and is referred to in thiswork asTSN.

TSNCO2=CH4
¼ NCO2

log ðSCO2=CH4
Þ ð2Þ

Descriptors for the training data used in this study were taken from a
previous high-throughput screening of the training MOFs for membrane
separation of biogas mixtures22. Equivalent descriptors were calculated for
the external test set as follows, mirroring the setup used in the previous
screening for consistency.

Structural descriptors, PLD, LCD, density, VSA, GSA, VF and PV,
were calculated using the Zeo++ software package using high accuracy
settings in all cases69. Surface area was calculated with a probe radius of
1.86Å andwith 5000MonteCarlo cycles.This is the sizeof a spherical probe
conventionally used to represent the N2molecule, which is commonly used
for experimental surface area measurements74. It is also consistent with the
methods used by Glover and Besley to generate other data used in this
work22. Volume was calculated with a point probe and 50,000Monte Carlo
cycles. Structural features for a singleMOFcanbe calculatedwithin seconds.
The energetic features, infinite dilution heats of adsorption, were calculated
using the Widom insertion method with 100,000 Monte Carlo cycles at
298 K. Moves available for selection were translation, rotation and rein-
sertion. A heat of adsorption value can be obtained in under half an hour.

Machine learning
Machine learning was implemented with Python/Scikit-learn75. Separate
models were built for the six regression targets and one classification target
using Support Vector Machine and Random Forest. Additionally, for
regression Multiple Linear Regression was used and for classification
k-NearestNeighbourswere alsobuilt. Thenumber of trees used forRandom
Forestmodels was 500, with the default values used for all other parameters.
Hyperparameters for the Support Vector Machine models were optimised
using the training set and a 5-fold cross validation grid searchwithin the 10-
fold cross validationprotocol (nested cross validation) to avoid data leakage.
Fromawide rangeof values, theoptimal values forγ andCwere found for all
models, in addition to the optimal ϵ value for regression models. C is the
regularisation parameter and specifies the penalty for an incorrect predic-
tion. γ is the kernel coefficient, a term in the kernel which transforms the
data in the algorithm. ϵ is a term in the regressionmodel which specifies the
allowed error between the data and function forwhichno penalty is applied.
The kernel was set to the radial basis function (rbf) and the default values
were used for all otherhyperparameters. Theoptimal numberof neighbours
for k-Nearest Neighbours was optimised between 1-99. Models were initi-
ally tested using 10-fold cross validation using the full dataset. By analysing
the predictions for each fold, average metrics were calculated with the error
as the standard deviation of the metrics across the 10 folds. For regression
models, Mean Absolute Error (MAE) and R2 score (coefficient of deter-
mination) were used as metrics. For the TSN classification model, both the
predicted class and probability of that classwere obtained, whereHIGHwas
assigned the positive label, i.e., a probability of 0.9 denoted 90% confidence
the instance belonged to the HIGH class and 10% confidence the instance
belonged to the LOW class. Models were assessed with the precision, recall,
F1 score of the classes and theoverall accuracyof themodels. In addition, the
Brier score, the receiver operating characteristic (ROC), and the resultant
areaunder the curve (AUC)were calculated from the class probabilities. For
full explanation ofmetrics used in thiswork, see SupplementaryNote 4. The
average importance of each descriptor was assessed using the standard

protocol employed in the feature_importances_ attribute of each RFmodel
in the 10-fold cross validation. Again the errorwas the standard deviation of
the importance across the 10 folds. The optimal hyperparamters were
recalculated using 5-fold cross validation for the full dataset. These para-
meterswere used to trainmodels using the full dataset. The resultantmodels
were used to predict targets for the external test data. These predictionswere
analysed using the same methods mentioned above.

Conclusions
In this work, GCMC simulations have been used to obtain computational
measures of biogas separationmetrics in a range of curatedMOF structures
with a view to identify MOFs promising for biogas upgrading. Highly
accurate machine learning models have been trained to make predictions
regarding thesemetrics efficiently andwith a lower computational cost than
GCMC. Regression models were trained to predict CO2 and CH4 loading,
and classificationmodels were trained to classifyMOFs as high-performing
or low-performing. Models were trained on a carefully curated set of real
structures, ensuring the data was high quality. An advantage of machine
learning is that after the model has been trained and the descriptors have
been calculated, predictions are almost instantaneous. The descriptors used
canbe computationally obtained several timesmore cheaply than the biogas
upgrading metrics predicted. The machine learning protocol therefore
represents a clear cost reduction for high-throughput screening compared
to a conventional GCMC-only approach.

The models were extensively tested both on validation data and on an
external test set of hypothetical MOFs. Models displayed strong perfor-
mance, especially for CO2 and CH4 loading regression models and TSN
classification models, with random forest models showing the best overall
performance. Predicting an external test set of hypothetical MOFs was
challenging. This can be rationalised by the distribution of the training and
test sets, which do not cover precisely the same areas of target and feature
space. There is therefore scope for future improvement of supplementing
the training data to increase the coverage of the models. The difference
between the performance of the models on data from different sources also
highlights the diversity of data between different kinds of MOF databases,
and the differences between hypothetical and real MOF datasets.

The results of both the GCMC simulations and the machine learning
models were used to identify selected MOFs which may be promising for
biogas upgrading, and also to identify structural featureswhich are common
to high-TSN MOFs. It was seen that 2D MOFs with narrow separation
between sheets, as well as interpenetrated frameworks based on square or
cubic topology, are among those whichmay be useful for the application. It
was also seen that void fractions around 0.8 facilitate optimum uptake of
CO2 while slightly lower void fractions around 0.7 facilitate an optimum
trade-off between uptake and selectivity.

Model availability
In order to use themodel, first descriptors should be calculated by following
the steps described in Section 4.2. All the data and code required to run the
models presented in this work is available onGitHub at https://github.com/
samuel-boobier/ML-MOFs. In addition, simple instructions of how to
reproduce the models or make predictions for your own test sets are given.
Finally, sample RASPA input files and curation procedures are provided.

Data availability
All correspondence and material requests should be made to Professor
Elena Besley, School of Chemistry, University of Nottingham, University
Park, Nottingham, NG7 2RD, United Kingdom. Email: Elena.Besley@-
nottingham.ac.uk. Full details of the code and datasets used in this work can
be accessed at https://github.com/samuel-boobier/ML-MOFs. Further
analysis of the data and models presented in this work are provided as
Supporting Information.
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