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Static vector solitons in a topological
mechanical lattice
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Topological solitons, renowned for their stability and particle-like collision behaviors, have sparked
interest in developing macroscopic-scale information processing devices. However, the exploration
of interactions between multiple topological solitons in mechanical systems remains elusive. In this
study, we construct a topological mechanical lattice supporting static vector solitons that represent
quantized degrees of freedom and can freely propagate across the system. Drawing inspiration from
coupled double atomic chains with sublattice symmetry breaking, we design a mechanical analogue
featuring topologically protected boundary modes and induce independent modes to finite motions
along branched motion pathways. Through a continuum theory, we describe the evolution of
boundary modes with vector solitons composed of superposed kink solutions, identifying them as
minimum energy pathways on the rugged effective potential surface with multiple degenerate ground
states. Our results reveal the connection between transformable topological lattices and multistable
systems, providing insight into nonlinear topological mechanics.

Topological solitons, such as kinks, vortices, and skyrmions, have been
extensively investigated to unveil underlying mechanisms in various sys-
tems, including conducting polymers1, dislocation slipping2, magnetic
domain walls3, DNA mobility4, and light modulation in liquid crystals5,
amongothers6. Thesenontrivial excitationsnotonlymaintain stable profiles
due to their non-perturbative topological robustness7,8 but also exhibit
particle-like collision behaviors9. Interactions involving multiple solitons
have garnered increasing attention, revealing anomalous properties such as
annihilation10,11, and chiral switching12. These robust information carriers
hold promise for topologically protected information processing and have
the potential for applications in designing memory and logic devices13,14.

In recent years, there has been a surge of interest in the exploration of
kinks, topological solitons involved with a scalar field6, within macroscopic
mechanical metamaterials15. Researchers are actively employing engineered
structural motifs to elucidate fundamental nonlinear phenomena and
advance functional applications16. Typical examples include programmable
localized deformations17–20, robust transition fronts in elastic
metamaterials21,22, and topological mechanical lattices23–25. These transition
fronts serve as mechanical signals and can be harnessed to design
mechanical logic26,27 and actuate soft robots28. However, most mechanical
systems only support a single soliton, and the observation of interactions
between multiple solitons has remained elusive29,30.

Investigations into topological Maxwell lattices provide an avenue to
nontrivial excitations31–33. Topological lattices are a special class of frames on

the verge of instability characterized by a balanced number of degrees of
freedom (DoFs) and constraints34. In one-dimensional topological lattices
analogous to the Su-Schrieffer-Heeger (SSH) model for polyacetylene, a
Peierls distorted chainwith two ground-state configurations connected by a
unique kink1,35, both boundary mode and conductive soliton have been
revealed36,37. Recent studies on atomic chains have introduced coupled
double chains of indium atomic wires with sublattice symmetry breaking
and chiral solitons, which are protected by a nontrivial configuration space
with multiple ground states7,38. However, the long-range interactions of
atomic chains hinder the manifestation of intriguing soliton behaviors in
topological mechanical lattices.

In this paper, we report static vector solitons in a topological
mechanical lattice, illustrating the interaction of dual DoFs. Specifically, we
design a topological mechanical lattice with four-fold degenerate ground
states and identify independent boundary modes. These modes are finitely
deformable and can propagate through the bulk in terms of different kinds
of solitons. In contrast to traditional solitons describedbyϕ4 or sine-Gordon
equations6,39, the vector solitons here arise from coupled field equations40

and feature components admitting the sum or difference of two kinks, as
shown in Fig. 1. This intriguing characteristic is relatively rare inmechanical
systems and has primarily been demonstrated in the context of ferroelectric
phase transitions, nonlinear optics, and multispecies condensates41–43.
A deeper understanding obtained through an effective potential energy
density reveals the criterion for the existence of four degenerate ground
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states in distorted lattices, and the vector soliton solutions act as minimum
energy pathways that interpolate ground states.Our results shed light on the
study of multiple solitons on a macroscopic scale.

Results and discussion
Topological mechanical lattice characterization
Drawing inspiration from the coupled double Peierls-dimerized atomic
chain7,12,38, celebrated for its sublattice symmetry breaking and chiral edge
states, our system is comprised of interconnected bonds (red) and hinged
rhombic linkages (gray) pivoted to the laboratory frame (Fig. 2a). The
mechanical lattice has fixed rhombic side length r, vertical height 2h, and
lattice spacinga, showcasing glide-reflection symmetry. Eachdistortedhinged
rhombic linkage has twonetDoFs thatwe characterizewith the coordinates of
the common node (blue), un; vn

� �
, where n is the index of the unit cell. The

interconnected bonds provide two length constraints between neighboring
unit cells, i.e., lb;n un�1; vn�1; un; vn

� �
and lt;n un; vn; unþ1; vnþ1

� �
. The

detailed geometric relations between the bond lengths and nodal coordinates
are explained in Supplementary Note 1. The equilibrium position of nodes is
denoted as �u;�vð Þ, and the interconnected bonds have initial lengths of either�lb
or �lt . Due to the balanced numbers of length constraints and DoFs under
periodic boundary conditions, themechanical lattice is aMaxwell lattice35,44,45.
The topological property of a periodic Maxwell lattice’s phonon spectrum
reflects the distribution of zero modes within a finite lattice, stemming from
the release of DoFs at the lattice boundaries by cutting bonds29 (see Supple-
mentary Note 2).

To characterize the topological property of the Maxwell lattice, we
consider its response to perturbations and determine the compatibility
matrix. Assuming the common nodes possess lumped mass featuring the
coordinateddeformationof the rigid hinged rhombic linkages,we onlyneed
to consider the elastic deformation of interconnected bonds. The compat-
ibilitymatrix, denoted asC, establishes amapping between the infinitesimal
displacements of nodes δu ¼ δu1; δv1; δu2; δv2; :::

� �
and the elongations

of bonds δl ¼ ðδlt;1; δlb;1; δlt;2; δlb;2; :::Þ by employing the Taylor expan-
sion of the bond lengths, δl ¼ Cδu. To determine the distribution of
eigenmodes, we consider the periodically tessellated unit cells along the
horizontal axis and perform a Fourier transformation on the displacements.
This results in the Fourier-transformed compatibility matrix C kð Þ as a
function of wave number k, which is a square matrix due to the balanced
number of nodes and bonds in a unit cell. The phonon spectrum can be
calculated from the dynamic matrix D kð Þ ¼ m�1Cy kð ÞkeC kð Þ, where m
and ke are diagonal matrix of masses and spring constants. In Supple-
mentary Fig. 2, we show that highly symmetric unit cell �u;�vð Þ ¼ 0; 0ð Þ has
bulk zeromodes at k ¼ 0, anddistortedmechanical lattices exhibit a gapped
spectrum. For a Maxwell lattice, this band gap converts bulk zero modes to
modes of non-zero frequency and localizes the required zeromodes at open
boundaries46. Furthermore, the localization of boundary modes at specific
ends can be characterized by the winding number of the phase of detC kð Þ,
which separates topologically distinct bulk phases. Here, we adopt standard
unit cell (see Supplementary Fig. 3) and the winding number is

w ¼ 1
2πi

Z π

�π

d
dk

ln detC kð Þdk: ð1Þ

The phase diagram of the lattices, depicted in Fig. 2b, reveals three
distinct phases, each distinguished by their respective winding numbers.
The admissible region for shaping linkages is constrained to
u2 þ �v ± hð Þ2 ≤ 4r2, as rhombic linkages cannot be connectedoutside of this
region. Exploring the internal boundaries of the phase diagram, we deter-
mine the critical configurations through numerical calculations. These
configurations do not appear to be associated with any obvious symmetry
breaking, indicating a topological transition. The topological invariants can
beused to define the topological polarizationRT ¼ �wa, which transfer the
DoFs along the polarization direction35.

To illustrate the topological boundary modes, we considermechanical
lattices with open boundary conditions. In a finite lattice, there are two
additionalDoFs due to cutting interconnected bonds at the free boundaries.
According to theMaxwell-Calladine index theorem29,47, there exist two zero
modes in the absence of states of self-stress. An example is showcased in
Fig. 2c, d, where the equilibrium position of nodes is �u;�vð Þ ¼ us; 0

� �
, and

the topological polarization is RT ¼ �a. Two orthogonal zero modes,
calculated from the null space of the finite lattice’s compatibility matrix,
localize at the left end, denoted by blue arrows. The horizontal and vertical
zero modes decay exponentially into the bulk, characterized by inverse
penetration depths ‘�1

1 ¼ κ1 and ‘�1
2 ¼ κ2 (Fig. 2e), where iκ1 and iκ2

constitute the complex wave numbers of the Fourier-transformed com-
patibility matrix, satisfying detC k ¼ iκð Þ ¼ 0.

Fig. 1 | Vector solitons with superimposed components. Classic topological soli-
tons (kinks A and B) are described by hyperbolic solutions, while vector solitons
ðU ;VÞ derived from special coupled equations have components consisting of the
sum and the difference of two sub-solitons.

Fig. 2 | Topological mechanical lattices with polarized boundary states. a The
mechanical lattice comprises gray hinged rhombic linkages, characterized by blue
common nodes with translational degrees of freedom, interconnected by red bonds.
The lattice’s equilibrium configuration has nodal positions �u;�vð Þ and initial bond
lengths�lb or�lt . b The phase diagram of the lattice geometries �u;�vð Þ is divided into
three topologically distinct phases based on the winding numbers defined in Eq. (1).
c, d The equilibrium configuration �u;�vð Þ ¼ us; 0

� �
with free boundaries has two

independent zero modes localized at the left end, denoted by blue arrows. The
calculated topological polarization for the lattice is RT ¼ �a. e The polarized
boundary modes decay exponentially into the bulk, characterized by two distinct
penetration depths.
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Multiple degenerate ground states
One-dimensional isostatic lattices are known to facilitate the propagation of
conductive solitons through the systemwhenpolarizedboundarymodesare
integrated to finite deformations23–25,31–33. In contrast, the topological
mechanical lattice possesses independent horizontal and vertical boundary
modes, alongwithbranchedmotion pathways in its initial configuration. By
exploring its nonlinear excitations corresponding to different zero modes,
we expect tounveil exotic featuresbeyond the realmof classic single solitons.
In order to induce these intriguing nonlinear excitations, we conform the
lattice along the two orthogonal modes, respectively. Specifically, we
numerically calculate the evolution of the lattice from its initial state by
gradually applying perturbations to the node situated at the polarized
boundary (see Supplementary Note 3). The zero-energy constraint equa-
tions have the following forms, i.e.,

l2t un; vn; unþ1; vnþ1

� � ¼ �l
2
t ; ð2Þ

l2b un; vn; unþ1; vnþ1

� � ¼ �l
2
b: ð3Þ

When the first node position is given, the constraints act as a map iteration
to obtain the position of next node in the series, leading to a cascade of
transformations.

First, the transformed configuration along the horizontal direction is
presented inFig. 3a. Fromthe left end to thebulkuntil the right end (Fig. 3b),
the nodes gradually translate from us; 0

� �
to ð�us; 0Þ. According to the

phase diagram, the transformed region possesses a reversed winding
number, corresponding to a flipped topological polarization. The domain
wall that interpolates between the nontrival topological phases, displaying a
classic kink profile for the horizontal component un, while the vertical
component vn remains zero (markers in Fig. 3c). The updated horizontal
zero mode is depicted on the transformed configuration and it is always
localized at the center of the domain wall. Nonetheless, the system with
multiple topological phases can exhibit more intriguing behavior when a

perturbation of vertical zero mode is applied to the homogeneous
configuration.

The transformed configuration, illustrated along with the vertical
pathway in Fig. 3d, demonstrates the simultaneous coexistence of both
trivial and nontrivial topological phases. The domain wall connecting these
phases freely propagates through the bulk, until all common nodes display
alternating vertical offsets (Fig. 3e). In contrast to SSH chains with a single
order parameter, the nodes approach 0; vs

� �
from us; 0

� �
, and the two

components demonstrate kink and antikink co-propagating across the
lattice (Fig. 3f). As a consequence of the nonlinear deformations, the
topological mechanical lattice shows four homogeneous configurations
calculated from Eqs. (2) and (3), denoted as ± us; 0

� �
and 0; ± vs

� �
(blue

and orange dots in Fig. 3g). These four homogeneous configurations have
different topological indexes and are located in classified region in the phase
diagram (see Supplementary Fig. 4). The domain wall initiating from one
state to another corresponds to different pathways among them. To cus-
tomize the transition pathways and illustrate the domainwalls, we construct
a physical prototype and experimentally validate the transformation from
0;�vs
� �

to us; 0
� �

to �us; 0
� �

as shown in Fig. 3h. We progressively
applied displacements to the end node of the lattice, observing the resulting
deformed microstructures. Moreover, applying loads to different edges
reveals significant differences in edge stiffness, a characteristic commonly
associated with polarized lattices48,49 (see Supplementary Note 4).

Superposed sub-solitons
To uncover the underlying physics of the nonlinear response, we derive a
continuummodel and seek analytical soliton solutions. The lattice spacing a
is assumed to be much smaller than the varying components un and vn,
allowing us to define the field variables u xð Þ and v xð Þ at the long wave limit,
where x ¼ nþ 1=2.With this approximation, the node coordinates can be
represented as the field variables and their derivatives. Consequently, Eqs.
(2) and (3) become ordinary differential equations, which are elaborated in
Supplementary Note 5A. By employing Taylor series expansions up to the
second order for the field variables and first order for the derivatives,
respectively, the zero-energy constraint equations are further simplified as

Fig. 3 | Nonlinear deformations and vector soliton excitations. aThe transformed
configuration exhibits a domain wall, interpolating two opposite topological states
under an applied perturbation of horizontal zero mode. The center of the domain
wall is denoted by a vertical dash line. b The lattice is transformed to �us; 0

� �
.

c Iteratively generated coordinates of common nodes for the finite lattice (markers)
align closely with the corresponding analytical prediction (lines). The horizontal
components show a profile of kink, while the vertical components remain zero. The
arrow indicates the domain wall propagation direction. d The transformed config-
uration exhibits a domain wall interpolating trivial and nontrivial topological states

under an applied perturbation of vertical zero mode. e The lattice is transformed to
0; vs
� �

. f The horizontal and vertical components exhibit a profile of kink and
antikink co-propagating across the lattice. g The four homogeneous configurations,
sharing the same bond length, are derived from the zero-energy constraint equa-
tions. Domain walls connecting these configurations are represented by the gray
dashed lines. h Experimental results of the prototype’s evolution along the custo-
mized transition pathways (marked by the solid orange line with arrows) reveal
multiple homogeneous configurations.
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follows

α U þ Vð Þ2 � �U þ �V
� �2h i

þ U 0 þ V 0 ¼ 0; ð4Þ

α U � Vð Þ2 � �U � �V
� �2h i

þ U 0 � V 0 ¼ 0: ð5Þ

with the normalized coordinates

U ¼ a�um
r2 u; V ¼ hða�umÞ

umr2
v;

�U ¼ a�um
r2 �u; �V ¼ hða�umÞ

umr2
�v;

ð6Þ

where α ¼ r2 4ar2 � umh
2� �
= umh

2 a� um
� �2h i

is the normalized coeffi-

cient and um ¼ 4r2 � h2
� �1=2

is the upper bound of the horizontal
component.

These coupled equations commonly arise in the fields of multiferroic
phase transitions, nonlinear optics and multispecies condensates40–43, sup-
porting vector soliton solutions. We solve the equations using variables
U þ V andU � V , leading to nontrivial solutions in addition to the trivial
ones, U ;Vð Þ ¼ ± �U; �V

� �
and U ;Vð Þ ¼ ± �V ; �U

� �
. The system allows for

superposed kink solutions

UðxÞ ¼
�U þ �V
2

tanh½αð�U þ �VÞðx � xlÞ�

þ
�U � �V
2

tanh½αð�U � �VÞðx � xrÞ�
ð7Þ

VðxÞ ¼
�U þ �V
2

tanh½αð�U þ �VÞðx � xlÞ�

�
�U � �V
2

tanh½αð�U � �VÞðx � xrÞ�
ð8Þ

where xl and xr are integration constants representing the centers of sub-
solitons. The vector soliton shows superposed hyperbolic solutions, a

unique phenomenon in soliton physics, and can be used to account for
soliton collisions40. Note that the constants in the equations determine the
number of independent DoFs in the finite lattice and govern the position
and profile of the superposed solutions. For the initial configuration
�u;�vð Þ ¼ us; 0

� �
, when xl ¼ xr; it indicates that the positions of the two sub-

solitons coincide, resulting in the superposed solution reducing to the
solution with a single nontrivial component U xð Þ ¼
�Us tanh α�Us x � xl

� �� �
and V xð Þ ¼ 0, which resembles the kink in SSH

chains. As shown in Fig. 3c, the obtained kink solution agrees well with the
numerical results. The insightful solutionwith co-propagatingdomainwalls
in Fig. 3f indicates that xl ! �1 and xr represents the center of the kink
and antikink. These results reveal the capability of the topological
mechanical lattice to support static vector solitons with components. The
term ’vector solitons’ has been previously used in the context of
Korteweg–de Vries(KdV)-like solitons of monostable elastic metamaterials
with coupled translational-rotational components50–52, arising from a subtle
balance between nonlinear and dispersion effects. However, the vector
solitons presented in topological mechanical lattices stem from multiple
degenerate ground states, exhibiting substantial differences from the elastic
pulse39. These vector solitons feature the microstructural evolution of zero-
energy configurations and can be triggered with minimal energy input,
unlike elastic pulses with amplitude gaps. Polarized zeromodes and solitons
in topological lattices can even be actuated in an active bath with thermal
fluctuations53. Furthermore, the system allows for the superposition of sub-
solitons, which is rare in mechanical systems.

To gain deeper insight into the configuration space, we derive an
effective potential energy density Pðu; vÞ for the lattice (see Supplementary
Note 5B)

P ¼ ker
4

8�lt
2 α

2 ðU þ VÞ2 � ð�U þ �VÞ2
h i2

þ ker
4

8�lb
2 α

2 ðU � VÞ2 � ð�U � �VÞ2
h i2

:

ð9Þ

The nonlinear deformations in our system carry clear physical sig-
nificance. The trivial solutions correspond to the four distinct ground states,
while the soliton solutions represent the transition states on the effective
energy surface. This behavior is an analog to the double Perierls chain
model, where the dimerization displacements of each chain lead to sym-
metry breaking of the total energy surface, and chiral solitons are excited at
domainboundaries betweenground states7,12. In our case, the vector solitons
switch distinct topological phases and transfer zero modes from the
boundary into the bulk. The sub-solitons represent quantized DoFs, dis-
playing particle-like collision behaviors during their propagation. The total
energy is maintained at zero due to a balance between the energy barrier
arising from the effective potential and the contributions from other gra-
dient and integrable terms. These remarkable properties further highlight
the topologically transformable nature of our system.

The independent integration constants xl and xr in Eqs. (7) and (8)
enable the sub-solitons to either approach or depart from each other. This
feature demonstrates that the topological mechanical lattice can be used to
generate multiple topological phases. A schematic of the transformed
configuration ð0; vsÞ is presented in Fig. 4a, representing a topologically
trivial state with boundary modes on each open edge. The evolution of the
domain structure along linearly superposed modes is illustrated in Fig. 4b,
where the trivial phase is separated by opposite topological polarized phases.
We demonstrate the domainwall profiles by numerical iterations of (2) and
(3) and analytical solutions of (7) and (8). Both results show three phases
separated by two domain walls (Fig. 4c), which further reflects the linear
combinations of two kink solutions. The coexistence of three phases
resembles the stationary domain wall in rotating-squares structure with
embedded magnets, which demonstrates a tristable energy landscape54.
Further analysis highlights a general view, i.e., different phases can be
interpolated by the minimum energy pathway in multistable systems.

Fig. 4 | Multiple degenerate ground states and domain structure. a The trivial
configuration with zero mode denoted by blue arrows. b The domain structure
separates the trivial regions and different polarized phases, denoted as polarization
vectors RT . c The distributions of horizontal and vertical nodal positions, calculated
from themap iteration (u and v, markers). The vector soliton solutions (lines) within
the domain structure exhibit linear combinations of two kink solutions. d The tra-
jectory of the vector soliton is shown in the projection of the effective potential
energy density, smoothly interpolating the three ground states. The color bar
represents the value of effective potential energy density.
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Figure 4d shows the trajectory of the vector soliton on the surface of effective
potential energy density, projecting the minimum energy pathway on the
rugged energy surface. This trajectory highlights how the vector soliton
smoothly interpolates these phases.

General lattices
By virtue of the continuum model, we can extend the concept of multiple
degenerate configurations and vector soliton solutions to any state. The
critical states at topological transition in the phase diagram can be deter-
mined when the four degenerate ground states degrade into double ground
states: �U

�� �� ¼ �V
�� ��. According to the Eq. (6), we derive the boundary lines

�v ¼ ± �uum=h as blue dashed lines shown in Fig. 5a, which slightly deviate
for large �uj j; �vj jð Þ due to the second-order approximation in the theoretical
model (Eqs. (4) and (5)). The analytical predictions offer a convenient
method for identifying polarization changes based on geometric para-
meters, without the need to calculate phonon bands. Furthermore, we
investigate the criterion for the existence of multiple ground states (see
Supplementary Note 5C). For any given lattice within the predicted
admissible region, there will always be four homogeneous configurations
with the same bond length, each located in distinct regions of the phase
diagram representing different topological phases.

As an example, we demonstrate a distorted lattice �u;�vð Þ ¼
1:23us; 0:25vs
� �

and calculate the homogeneous configurations using the

cross-points of Eqs. (2) and (3) as shown in Fig. 5b. It exhibits a topological
polarization ofRT ¼ �a, with two boundarymodes localized at the left end
(Fig. 5c). The corresponding domain structure with multiple topological
phases is illustrated in Fig. 5d, where the trivial phase is separated by
opposite topological polarized phases. Evolution of the lattice along its
conformational motions leads to the formation of sub-solitons with dif-
ferent amplitudes and their linear combinations remain effective (Fig. 5e).
Despite the effective potential energy density for lattices us; 0

� �
or 0; vs
� �

mentionedabove exhibits high symmetries, the surface for the general lattice
retains inversion symmetry P u; vð Þ ¼ P �u;�vð Þ. Hence, the distorted
lattice can also support domain structures withmultiple topological phases.
The trajectory for the hybrid structure, projected onto the energy surface, is
shown in Fig. 5f. The vector soliton (line) quantitatively captures the
numerical results (markers), interpolating between multiple ground states.
These general cases demonstrate the vector solitons exist widely in the class
of topological mechanical lattices. Moreover, although our emphasis is on
the static character of vector solitons, dynamic responses also showcase the
superposition of sub-solitonswhen subjected to a boost (see Supplementary
Note 5D).

Conclusions
We have demonstrated a class of vector solitons within transformable
topological mechanical lattices, inspired by the coupled double atomic
chains. The introduced DoFs in the finite isostatic lattice manifest as
independent boundary modes and propagating sub-solitons capable of
switching initial configurations. The vector solitons, composed of super-
posed hyperbolic solutions, demonstrate reversible microstructure evolu-
tion and the capability to reverse topological polarizations. Our work
inspires the development of additional models for macroscopic lattices that
are analogous to crystal structures, involving fixed boundaries and con-
nected rotating blocks. This conceptual framework has potential applica-
tions in exploring other topological properties experimentally55–57.
Additionally, our study reveals the connection between topological lattices
andmultistable systems, presenting challenges for describing transformable
topological systems through geometric insights33,58. Finally, the observed
multiple soliton interactions indicate thepossibilityof developing functional
devices, such as soliton-based logic gates59, diodes60, and algebraic opera-
tions in mechanical computing systems.

Methods
Compatibility matrix and phonon spectrum
Using the geometric relationships of connecting bonds between neighbor-
ing unit cells, i.e., lb;n un�1; vn�1; un; vn

� �
and lt;n un; vn; unþ1; vnþ1

� �
, we

can compute the compatibility matrix by expanding the bond lengths
through Taylor series

δlb;n
δlt;n

 !
¼ c00 d00

0 0

c01 d01
c10 d10

0 0

c11 d11

� �
δun�1

δvn�1

δun
δvn
δunþ1

δvnþ1

0BBBBBBBB@

1CCCCCCCCA
; ð10Þ

where cij are the linearized coefficients.
In periodic lattices, the nodal displacements corresponding to a pho-

non mode exhibit a Bloch form, given as δun; δvn
� � ¼ δeu; δevð Þeikne�iωt ,

where δeu and δev denote infinitesimal displacements within a reference unit
cell.When we substitute the Bloch solution into the compatibility equation,
we derive a transformed compatibility matrix. This matrix is square due to
the same number of nodes and bonds in a unit cell.

C kð Þ ¼ c00e
�ik þ c01 d00e

�ik þ d01
c10 þ c11e

ik d10 þ d11e
ik

 !
ð11Þ

Fig. 5 | Vector solitons in general lattices. a The boundary lines of critical con-
figurations at the topological transitions in the phase diagram. b Four homogeneous
configurations (dots) with the same bond length are determined from the zero-
energy constraint equations of lattice �u;�vð Þ ¼ 1:23us; 0:25vs

� �
, and the domain

walls (lines) connect different phases. c Schematic of the polarized lattice, with
polarization vectorRT oriented towards left free boundary. dThe distorted region in
the domain structure features the trivial phase separated by opposite topological
phases. e The distributions of nodal positions (u and v, markers) and vector solitons
(lines) within the domain structure exhibit linear combinations of two kinks with
different amplitudes. f The effective potential energy density exhibits four degen-
erate ground states. The vector soliton corresponds to theminimum energy pathway
on the rugged energy surface. The color bar denotes the value of effective potential
energy density.
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According to the equation ofmotion, the eigenfrequencies of the lattice
are determined by m�1CTkeC�ω2I

�� �� ¼ 0, where I is the identity matrix.
Thephononspectrum, as a functionofwavenumbersk, canbederived from
thedynamicmatrixD kð Þ ¼ m�1Cy kð ÞkeC kð Þ. It’s common to set the spring
constants andmasses to unity for simplicity. A gapped spectrum implies the
absence of bulk zero modes but the presence of boundary modes, and the
phonon band can be featured by the winding number Eq. (1).

Map iteration and numerical simulation
To quantitatively characterize the nonlinear deformations in the isostatic
lattice, we use the zero-energy constraints defined by constant bond lengths
Eqs. (2) and (3). These constraints form a map iteration denoted by
unþ1; vnþ1

� � ¼ f un; vn
� �

, where, the shape of the initial unit is given, the
coordinates of neighboring sites are determined and serve as inputs for the
subsequent sites31. The nodal displacement of the initial unit is given based
on their boundary modes, and these coupled equations are solved using
Newton’s method. By repeatedly applying the map iteration
unþ1; vnþ1

� � ¼ f n u1; v1
� �

, we identify the fixed points of this iterative
process, denoted as u�; v�ð Þ ¼ f u�; v�ð Þ. The fixed points correspond to
homogeneous configurations and the mechanical lattice in Fig. 3 has four
fixed points ± us; 0

� �
and 0; ± vs

� �
, reflecting multiple ground states. As

the initial unit evolves along the horizontal or vertical zero mode, the units
are successively transformed towards the right boundary, leading to distinct
homogeneous configurations in the system as shown in Fig. 3a, d. At each
step of the transformation, the zero modes are directly calculated from the
compatibility matrix using the nodal positions of current configuration.

Physical prototype and polarized boundary stiffness
Todemonstrate the transformation process, a physical prototypewithfixed
geometric parameters r; h; að Þ ¼ 20mm; 31:8mm; 40mmð Þ has been cre-
atedutilizingprinted linkages (photosensitive resinDSMIMAGE8000) and
metal screws, as depicted in Fig. 3h. The hard components and isostaticity
within the bulk ensure that by controlling the nodal position at the lattice
boundary, the configuration remains well-determined. The lattice �u;�vð Þ ¼
us; 0
� �

exhibits four homogeneous configurations, which are located in the
classified regions in the phase diagram and can be transformed among each
other. In Fig. 3g, we customize the transition pathway as indicated by the
curvedarrow.Startingfromtheinitialstate 0;�vs

� �
,weapplydisplacements

on the right boundary, directed outward as the yellow arrow shown in the
Fig.3h.This introducesadomainwallfromtherighttothe leftend, leadingto
the transformationof the lattice to us; 0

� �
. Subsequently,a similarprocedure

is duplicated except the displacements are applied from the left end. The
lattice is finally transformed to configuration �us; 0

� �
. Considering the

inherent limitations related toassemblyprecisionandcomponent friction, it
is found that applying horizontal displacements is more effective in
deforming the lattice, although these pathways are reversible.

To demonstrate the dramatic differences in edge stiffness, measured as
the ratio of force to displacement, in the lattice us; 0

� �
, we maintain the

laboratory framefixed to the ground and apply 2mmdisplacements at both
edges. The results demonstrate a drag force of 0.05N at the soft edge and
8.80 Nat hard edge, as shown inFig. S4c, d, revealing a significant two-order
magnitude difference in stiffness contrast due to the topological
polarization.

Criterion for the existence of vector soliton
To identify the admission region with multiple ground states, we examine
the transformed states as predicted by the theoretical model. Our analytical
vector soliton solutions do not impose additional geometric requirements.
For a general lattice with extreme distortion, the transformed states can be
expressed as �u0 ¼ �vh=um or �v0 ¼ �uum=h according to Eq. (6). The trans-
formation introduces an extra constraint described by the inequality

�vh
um

� �2

þ �uum
h

± h

� �2

≤ 4r2: ð12Þ

The area of overlap between this transformed region and the initial
admissible region defines the region where vector solitons can exist, as
illustrated in Supplementary Fig. S6b. An extreme case is presented in
Supplementary Fig. S6c, and larger geometric parameters raise concerns
about connectivity in these lattices.

Data availability
The data that support the findings of this study can be provided from the
corresponding author upon reasonable request.

Code availability
The code used for the analysis is available from the authors upon reasonable
request.
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