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Viscous flow of interacting electrons in two dimensional materials features a bunch of exotic effects. A
model resembling the Navier-Stokes equation for classical fluids accounts for them in the so called
hydrodynamic regime. We perform a detailed analysis of the physical conditions to achieve electron
hydrodynamic transport and find alternative routes: the application of a magnetic field or a high-
frequency electric field in the absence of very frequent inelastic collisions. As a major conclusion, we
show that the conventional requirement of frequent electron-electron collisions is too restrictive and,
as a consequence, materials and phenomena to be described using hydrodynamics are widened. In
view of our results, we discuss recent experimental evidence on viscous flow and point out alternative
avenues to reduce electric dissipation in optimized devices.

Viscous electron flow in two-dimensional (2D) materials is a collective
motion of conduction electrons1–4 that results in exotic phenomena such as
curved current profiles5, the superballistic effect6 and electron whirlpools7–9.
Both the recent realization of these counterintuitive effects and the potential
applications10,11 in 2D devices have attracted the attention towards this field.
The collective motion of electrons is fully characterized by macroscopic
variables12, by using continuummodels1,2,7,13,14 similar to the Navier–Stokes
equation (NSE) for ordinary fluids, hence the name of electron hydro-
dynamics. The conventional route towards viscous electron flow is
favouring electron-electron collisions, also known as elastic scattering
events since they conserve the total momentum of the system. The
requirement reads as lee <W

3,5 or, more strictly with the condition lee < le
too1,2,7, whereW is the size of the device, lee is the mean free path for elastic
scattering and le for inelastic scattering. The latter loses momentum after
collisions with impurities and the vibrating atomic lattice. These traditional
requirements restrict thematerials, temperatures and systemswhere viscous
electron flow can be reached2. Hence, less restrictive routes3 towards viscous
flow, such as the recently discovered para-hydrodynamics9,15, are desirable
since they would facilitate the development of new applications such as less
energy-demanding devices.

The aim of this work is to rigorously explore the requirements for
collective behavior of the electrons. By solving the Boltzmann transport
equation (BTE),which is assumed tobe exact as described in Supplementary
Note 1, the electron distribution is obtained. Transport may be collective or
not, dependingon the particularmagnitude of the length scalesW, le, lee, and
eventually, the cyclotron radius lB due to a magnetic field and a length scale
lω associated to an ac driving, as well as on the edge scattering properties.

When the electronic behavior is collective12,16,17, the NSE gives correct
predictions for macroscopic variables such as the drift velocity. It is worth

mentioning that although the formal derivation of the NSE in conventional
fluids is based on the conservation of the number of particles, the
momentum and the energy of the fluid, in solid-state systems, the una-
voidable electron interactionwith phonons anddefects implies that the total
momentum is not conserved. The latter is usually considered by including a
dissipative term in a modified condensed-matter NSE1,2,7,13. As a con-
sequence such term extends the validity of thismodifiedNSE to account for
the diffusive regime of transport, that cannot be considered as hydro-
dynamics. In this regime the considered NSE and the well-known Drude
model (DRE) give rise to the same results. In our work we propose the
accuracy of the NSE and the DRE, which are assessed by comparison with
the BTE results, as a fundamental and quantitative criterion for viscous
electron flow. Collective behavior is associated with accurate NSE predic-
tions but unaccurate DRE predictions, as otherwise it would be diffusive.
Moreover, it is robust regardless of choosing the total current, the velocity or
the Hall profile as the observable of interest. In this paper, we study the
requirements for viscous electronflow in terms of the characteristic physical
length scales and we discuss how the alternative routes affect the most
remarkable hydrodynamic signatures above mentioned.

Results
Boltzmann transport equation
Consider a 2D system where electrons behave as semiclassical particles18,19,
with a well-defined position vector r = (x, y) and wave vector k = (kx, ky),
and let f̂ ðr; k; tÞ be their distribution function that obeys the BTE19–22

∂t f̂ þ v �∇r f̂ �
e
_

�∇V̂ þ v ×B
� � � ∇k f̂ ¼ Γ f̂

h i
; ð1Þ
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wherev = ℏk/m and− e are the electron’s velocity and charge, respectively,ℏ
the reduced Plank constant andm the effectivemass. Electrons experience a
Lorentz force due to a time-harmonic electric potential V̂ðr; tÞ ¼ VðrÞeiωt ,
either set at the contacts or with an electromagnetic wave of frequency ω,
and a perpendicular magnetic field B ¼ Bẑ. Γ½f̂ � is the collision operator,
including all sources of electron scattering. Under Callaway’s ansatz23–25, the
collision term splits as Γ½f̂ � ¼ �ðf̂ � f̂

eÞ=τe � ðf̂ � f̂
eeÞ=τee, where τe is the

relaxation time for inelastic collisions with impurities and phonons towards
the equilibrium distribution f̂

e
, and τee accounts for elastic collisions with

other electrons towards the local distribution f̂
ee
shifted by the electron drift

velocity. The lattermay also describe the effect of thepara-hydrodynamics15.
The intermediate tomographic regime26,27 does not obey Callaway’s ansatz,
but itmay described assuming two different values for the relaxation rate τee
(see Supplementary Note 2).

We assume the electron density n to be constant and set by a gate

potential, so that f̂
e
does not depend on r or t. Let kF be the Fermi wave-

number and vF = ℏkF/m the Fermi velocity in an isotropic band structure.

We rewrite k ¼ kûk , with ûk � cos θ; sin θð Þ, and define ĝðr; θ; tÞ �
ð4π2_=mÞ R1

0 ðf̂ � f̂
eÞ dk and ĝeeðr; θ; tÞ � ð4π2_=mÞ R1

0 ðf̂ ee � f̂
eÞdk.

Moreover
R 2π
0 ĝðr; θ; tÞdθ ¼ 0 and we assume jĝj≪vF , namely, phenom-

enahappennear theFermi surface.We integrateEq. (1) over k and look for a
solution ĝðr; θ; tÞ ¼ <½gðr; θÞeiωt �, where ℜ stands for the real part. The
following equation holds for the length scales defined in Table 1

i
g
lω
þ ûk �∇r g � eV

mvF

� �
þ ∂θg

lB
þ g

le
þ g � gee

lee
¼ 0; ð2Þ

where gee ’ ux cos θ þ uy sin θ and the components of the drift velocity are
uxðrÞ ¼ ð1=πÞ R 2π

0 gðr; θÞ cos θ dθ and uyðrÞ ¼ ð1=πÞ R 2π
0 gðr; θÞ sin θ dθ.

Previous works have proposed a formalism based on non-local con-
ductivity tensors to solve the BTE and particularly to analyze the hydro-
dynamic regime15,28.However, although formally suchapproachcanbeused
in arbitrary geometries, its practical application has been reduced so far to
limited edges conditions. In this regard, our current proposal overpasses this
limitation.

The Navier–Stokes equation
Let us ignore higher modes of g(θ) to find a model equation based on
macroscopic variables, this is, the drift velocity (ux, uy) and (wx,wy) which is
related to the stress tensor in classical hydrodynamics. We write g as a
distribution depending on these variables20

g ¼ ux cos θ þ uy sin θ þ wx cos 2θ þ wy sin 2θ: ð3Þ

By considering this level of approximationand following theprocedure
detailed in Supplementary Note 3, Eq. (2) can be recast as

∇ � u ¼ 0; ð4aÞ

�ν∇2uþ ωB þ νH∇
2

� �
u× ẑ þ vF

le
þ iω

� �
u ¼ e

m
∇V; ð4bÞ

that resemble the continuity equation and the NSE for classical fluids1,2,7,13.
We define the cyclotron frequency ωB≡ eB/m, the viscosity ν and Hall
viscosity νH as follows29,30

ν � vF l�1
e þ l�1

ee þ il�1
ω

� �
4 l�1

e þ l�1
ee þ il�1

ω

� �2 þ 16l�2
B

; νH � vF l
�1
B

2 l�1
e þ l�1

ee þ il�1
ω

� �2 þ 8l�2
B

: ð5Þ

We notice that these definitions take into account the contribution of
all considered effects, such as those derived from inelastic collisions.
Including le in this expression is not new25 and it is similar to the effects
considered by the ballistic correction proposed in previous works6,13,22.
However in the current proposal it is not a phenomenological correctionbut

remarkably it arises naturally from our model. Notice that Eq. (4b) has a
dissipative term in u arising from non-conserving-momentum collisions
(le <∞), and this is why it contains the Drude equation (DRE) as a parti-
cular case.

Sample boundaries
Boundary conditions that account for edge scattering are crucial to properly
describe viscous electron flow within any model31. It is generally admitted
that a direct comparisonbetween theNSEand theBTEapproaches is clearly
not trivial. The main difficulty is how to deal with boundary conditions in
such away that bothmethods could treat the same transport regimes. In the
present work, one of the most relevant and innovative achievements is the
development of a well-defined formalism to deal with the same edge scat-
tering properties within both models, see Supplementary Note 4. Since the
particular boundarydetails stronglydependon the experimental conditions,
we shall study the most currently accepted types of boundary conditions
derived from microscopical considerations. First, we consider a fully dif-
fusive (DF) edge where incident electrons are scattered in all directions
regardless of their angle of incidence5. Second, we analyze a partially spec-
ular (PS) edge where scattering is due to the irregularities of the boundary.
Notice that this scenario is affected by the boundary roughness defined by
way of its dispersion coefficient d � ffiffiffi

π
p

h2h0k3F ≲ 1, where h is the edge’s
bumpsmeanheight andh0 is its correlation length.The exact expressions for
the BTE and the derivation of the NSE conditions in terms of the so-called
slip length ξ31 are reported in Supplementary Note 4 and result in the
following definitions

ξ ¼
3π
4

ν
vF
; DF edge ;

8 1
d � 2

3π

� �
ν
vF
; PS edge :

(
ð6Þ

Notice that the validity condition d≲ 1 prevents the occurrence of
negative values of the slip length. These results are compatible with previous
studies where the effect of inelastic collisions, magnetic and ac electric fields
were neglected31. Here, a flat PS edge (d = 0) leads to the perfect slip
boundary condition ξ→∞, while the no-slip condition ξ = 0 remains
beyond the microscopic approach.

Flow in a channel
Figure 1 shows the distribution g(θ) given by the BTE for three different
positions inside a very long channel under a constant potential gradient∂yV.
Let us start discussing the role of the boundary conditions in an intermediate
regime transport such that le = lee =W, lB and lω→∞. Figure 1a shows the
distributions for a DF edge [see Supplementary Eq. (S.6) in the SI] where
electrons are uniformly scattered in all directions, while Fig. 1b corresponds
to a PS edge [see Supplementary Eq. (S.12) in the SI]. The angular dis-
tribution at the edge is less sharp when there is some specularity. Hence,
regarding the truncated harmonic expansion (3), we expect the NSE to be
more accurate for PS edges than for DF edges. Concerning the ballistic
regime (le = lee = 10W), Fig. 1c anddpresent g(θ) in absence (lB→∞) and in
the presence of a commensurable magnetic field (lB =W), respectively.
Although some electrons collide against the walls in the first case, others
travel almost parallel to the channel without collisions and continuously
increase their momentum. Such an accumulation of electrons traveling

Table 1 | Length scales in the BTE (2)

Length scales

Length Expression Name

le vFτe Inelastic mean free path

lee vFτee Elastic mean free path

lB mvF/eB = vF/ωB Cyclotron radius

lω vF/ω ac length
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parallel to the channel, depicted in Fig. 1f, accounts for the sharp peak
that appears in the pseudo-Fermi distribution in Fig. 1c. The NSE level of
approximation based on the consideration of the first two angular har-
monics Eq. (3) is clearly not compatible with such g(θ). Conversely,
elastic and inelastic collisions keep these electrons from gaining
momentum, as depicted in Fig. 1e. Moreover, they relax the angular
distribution to smoother functions, as presented in Fig. 1a and b, and
make the NSE accurate when le <W or lee <W. Interestingly, this is not
the case in the so-called tomographic regime26,27, as shown in Supple-
mentary Note 2. This regime, which is often considered between the
ballistic and hydrodynamic regimes26,27, is not fully hydrodynamic
according to this criterion.

Inelastic and elastic collisions
As shown in previous works5,20, the curvature of the current density profile
in a uniform channel might not be a good indicator for hydrodynamic
behavior. However, our approach can be tested in such a physical scenario,
as well as in other non-uniform geometries, to evaluate the deviation
between the results from the NSE and the BTE instead. Figure 2 shows the
velocity profiles for different values of the length scales of the system. Fig-
ure 2a accounts for a uniform channel and Fig. 2b for a crenellated one. The
main conclusion of Fig. 2 is that the NSE and the BTE predictions are
completely different in the ballistic regime, but they almost overlap in the
Poiseuille, diffusive, magnetic and ac field panels.

Additionally our results allow us to also understand how all the con-
sidered effects result in curved profiles. A Poiseuille profile, which is almost
parabolic, emergeswhen lee≪W≪ le, as depicted in Fig. 2c. Nevertheless, a
nonzero curvature of the velocity profile is not unique to this regime. Even in
the diffusive regime le≪W shown in Fig. 2d, and in the absence of elastic
collisions lee≫W, the profile is not flat. Figure 2e shows the ballistic regime
for comparison.

Figure 2f and g proves the hydrodynamic behavior and curvature in
presenceof amagneticfield andanacfield respectively.Althoughpreviously
suggested32, we prove that the former is a stronger hydrodynamic finger-
print by a direct comparison between the BTE and the NSE. Most
remarkably, the hydrodynamic features can also be induced by the appli-
cation of an ac field. For completeness, Supplementary Note 6 shows the
prediction of the velocity profile in an extended set of transport regimes,
where in addition the DRE solution is shown as a wrong approximation to

the problem. A detailed derivation of the DRE is presented in Supple-
mentary Note 7.

Magnetic and AC fields
Let us now focus on the deviations of the NSE predictions from the BTE
results. To this end, we calculate the electric current INSE and IBTE from the
velocityprofile obtained after solving theNSEand theBTE, respectively, and
define the relative error as ϵ = 2∣INSE− IBTE∣/∣INSE+ IBTE∣, as explained in
Methods. The electric current is proportional to the area under each velocity
profile, and it is a relevant quantity in most experiments5,33,34. The accuracy
of the DRE has been accounted accordingly in Supplementary Note 8 to
monitor the parameters that lead to identical results of the BTE, NSE and
DRE, namely, the diffusive regime of transport.

Figure 3a shows the NSE error when compared to the BTE in the
presence of amagnetic field and considering different boundary conditions.
Notice that the gray patterned area corresponds to the conventional
requirements for hydrodynamic onset. The red contour line limits the
regionwhere theNSE error is larger than 20%, defined as the ballistic regime
of transport. Similarly the blue contour line surrounds the diffusive regime
(blue area) such as theDRE error is smaller than 20%.We remark that these
results would be similar if we choose a threshold within 10% and 30% to
define the different transport regimes. Thus, white regions account for
reliable sets of parameters supporting hydrodynamic transport. In all con-
sidered cases, our results demonstrate the validity of the NSE beyond the
usually accepted conditions (see white areas). Indeed, the increase of the
magnetic field also benefits the hydrodynamic regime as demonstrated in
Fig. 3a. Still, the region of validity slightly shrinks for the particular case
lB≃W. The latter occurs due to the already known commensurability effect
of resistance35, that some works referred to as a phase transition32. In this
particular situation, cyclotron orbits prevent electrons coming from a par-
ticular edge to reach the opposite one with all angles, as shown in Fig. 3c.
Furthermore, Fig. 1d proves that this effect depletes entire regions of the
pseudo-Fermi distribution, and Supplementary Eq. (S.7) for the incident
distribution at the wall fails. Therefore, as a general trend, increasing the
magnetic field while keeping lB≁W makes the NSE valid, as shown in
Fig. 3a. Still there is a field threshold above which the system will eventually
enter the diffusive regime of transport. Indeed, a Lorentz force, not balanced
by a Hall field, prevents electrons from following straight trajectories, as
illustrated in Fig. 3d.

Fig. 1 | Sketch of a long graphene ribbon and
electron flow distributions. Electrons flow under
the effect of a potential gradient∇V and a magnetic
field B ¼ Bẑ. Panels a–d show polar plots of the
distribution g(θ) derived from the Boltzmann
transport equation (BTE) for three different posi-
tions x = 0,−W/4 and −W/2, whereW is the width
of the channel. Deviations between g(θ) and the
equilibrium distribution (gray circle) has been
enlarged for clarity. a Intermediate regime where
le = lee =W, lB, lω→∞ and a DF edge. b Same
parameters as in panel a but for a PS edge with
d = 0.5. c Ballistic regime where le = lee = 10W and
lB, lω→∞. d Commensurability effect where
le = lee = 10W, lB =W, lω→∞ and a DF edge. Notice
the lack of incident electrons at the edge in some
directions in comparison with the dashed line.
Panels e and f show a schematic representation of
the electron velocity for the situations considered in
panels a, b and c respectively. Electron scattering in
e makes the NSE works properly. Ballistic electrons
move parallel to the channel with increasing
momentum, as depicted in panel f. Supplementary
Note 5 presents polar plots of the distribution g(θ)
for an enlarged set of parameters.
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We also study the effects of an ac electric field polarized along the
channel when a magnetic field is also applied. Then there is an overall
decrease in the NSE’s error when le≫W and lee≫W, shown in Fig. 3b. If
we consider electrons traveling parallel to the channel, while they are
increasing momentum the ac field swaps its direction leading to slow them
down, as shown in Fig. 3e. Thus, inertia avoids the formation of peaks such
as those highlighted in Fig. 1c andmakes the NSE valid under an ac field, as
also demonstrated in Fig. 3b. However, we find an increase in the error due
to the cyclotron resonance condition lB≃ lω (ωB≃ω), so that both effects
couple and mutually hinder, as depicted in Fig. 3f. Figure 3 also sheds light
on the transition from the diffusive to the ballistic regimewhen changing the
various length scales involved in charge transport. It is apparent from Fig. 3
that, in almost all cases studied, the transition is not abrupt but an inter-
mediate transport regime is reached, where the NSE describes accurately
non-equilibrium collective electron dynamics (see white areas).

It is worth noticing that some authors suggest the Hall field instead of
the current density profile to assess the hydrodynamic regime5,20. However,
from this perspective, the consideration of the current profiles, the Hall
voltage, the total current or the total Hall voltage yields the same conclu-
sions, as proven in Supplementary Note 10.

In summary, according to the analysis of the transverse velocity profiles
(see Fig. 2) and the evaluated error of the NSE in comparison with the BTE
(see Fig. 3), we demonstrate that the traditional requirement for hydro-
dynamic transport in solid-state systems, lee <W, can be overcome by the
the alternative routes whose general trends are summarized in Fig. 3: i) keep
the inelastic scattering length within the order of the device size, le ~W, ii)
include a magnetic field such that a lB is the same order of magnitude asW
but different from the commensurability condition and iii) the application
of an ac field such that a lω ~W.

Error maps shown in Fig. 3a also include typical physical conditions
considered in some experiments for comparison6,13,36. Supplementary
Note 9 reports on the detailed description of the considered sets of para-
meters. Notice that although some materials, such as low quality graphene
GSiO2

, never enter the conventionally accepted region, GSiO2
narrow chan-

nels may enter the hydrodynamic regime by way of the alternative routes.
Our analysis changes the widely accepted paradigm and proves that more
materials andmore temperatures canbe studiedusinghydrodynamics tools.
This also establishes that the ratio lee/le is not so crucial concerning the
validity of the NSE. As a reference, let us remark that for a graphene ribbon
of widthW = 500 nm at n = 1012 electrons/cm2, lB = 500 nm (B≃ 250mT),
while lω = 500 nm (ω/2π≃ 0.3 THz), so both lB ~W and lω ~W, are plau-
sible requirements.

Discussion
The hydrodynamic routes proposed in this work shed light on some of
generally admitted signatures of viscous electron flow. Let us focus first on
non-local experiments based on uniform Hall bars in the so-called proxi-
mity geometry6–8. The existence of a transition from ballistic to hydro-
dynamic transport regimes has been demonstrated based on the occurrence
of a sharpmaximum in the negative resistance8. Notice that this effect is also
related to the existence of unexpected backflowor even smallwhirlpools due
to the viscous nature of the electron flow. The conventional hydrodynamic
description, which requests the condition lee <W, agrees with their mea-
surements at intermediate temperatures. However, the fact that the
hydrodynamic onset survives at very low temperatures when lee→∞, is
incompatible with lee <W. Remarkably, the latter is indeed compatible with
our results, since we have demonstrated that the condition le ~W is already
sufficient for the hydrodynamic transport to occur (Supplementary

Fig. 2 | Electron flow simulations in a very long
uniform channel and a crenellated one with dif-
fusive (DF) boundaries. Panels a and b show the
Boltzmann transport equation (BTE) potentials and
electron streamlines in the Poiseuille regime.
c Profiles of the drift velocity along the channel with
frequent elastic collisions (lee = 0.25W) is the usual
route to viscous electron flow and result in a Poi-
seuille flow. d Profiles with frequent inelastic colli-
sions (le = 0.25W). e Ballistic regime where the
Navier–Stokes equation (NSE) results in wrong
predictions. Here le = lee = 10W for the uniform
channel and le = lee = 2W for the crenellated one. In
the latter the uneven walls have an stronger effect on
the electron flow and thus it presents ballistic
behavior even for slightly shorter le and lee. f Profiles
in the presence of a magnetic field (lB = 0.25W).
g Profiles in the presence of an ac field (lω = 0.25W).
This figure shows the accuracy of the NSE to
reproduce the curved velocity profile.
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Note 12). The fact that the hydrodynamic regime only exists at low carrier
density is consistent with le decreasing near the neutrality point

7.
The alternative route le ~W is also supported by thedirect visualization

of the Poiseuilleflowof an electronfluid5.Here, theHallfield profile across a
high-mobility graphene channel is usedas the key for distinguishingballistic
fromhydrodynamicflow.A curved profile is not unique to the conventional
situation lee <W, as it also arises when le ~W, in agreement with Fig. 2c.
Within the same experimental setup, another alternative route with the
magnetic field ismade clear. Indeed, the authors find a sharp increase in the
profile curvature when increasing the magnetic field, showing that our
proposed condition to tune lB triggers the hydrodynamic onset of the NSE.

Last let us comment on the experimental hydrodynamic evidence
known as superballistic conduction. This regime of collective transport
refers to devices with a resistance under its ballistic limit6,13,22. We notice the
superballistic regime cannot be exclusively related to the case of frequent
elastic collisions, since it can also be reached with the proposed alternative
routes as shown in Supplementary Fig. 8. Particularly under the condition
lB≪W, such phenomenon is known as negative magnetoresistance13,29.
Other experiments35 show how, after the resistance peak due to the com-
mensurability effect (lB =W), a further increase of themagneticfield lB≪W
results in a resistance under the ballistic limit.

Conclusion
To conclude, in this work we develop a framework to approximate the
general BTE to the simplified NSE and to define where electron transport is
hydrodynamic. We believe that our approach has several advantages,
mainly because it is rigorously based on the requirements for collective
behavior as a fundamental premise. This allows us to perform our analysis
with no need of initial assumptions for the viscosity, so that its dependence
on all length scales (le, lee, lB, lω,W) arises naturally. In addition, our
approach is not directly related to geometrical constraints so it can be

applied in many other physical scenarios. We conclude that the widely
admitted requirements for viscous electron flow are too restrictive and limit
hydrodynamic transport to very particular experimental conditions,
regarding temperature range or materials quality. Remarkably, the alter-
native routes actually lead to the most noteworthy hydrodynamic sig-
natures. Our proposal to search for hydrodynamic signatures for ac electric
fields11,21 is still an open question in experiments. Although the generally
admitted route lee <W, combined with lee < le, is the easiest situation where
hydrodynamic flow can be decoupled from other effects, finding materials
with high le/lee ratios is a major issue1,2,37. Thus, the relevance of the alter-
native routes, compatible with viscous flow, greatly expands the possible
scenarios where traditional hydrodynamic features may occur or even
unexpected phenomena may arise.

Methods
The BTE is solved using a finite element method38. Unlike the nonlocal
conductivity formalism15,28, it can be implemented for arbitrary boundary
conditions. In a very long channel, the electric potential splits as
V(x, y) =VH(x)+ y∂yV, where VH(x) is the Hall potential and ∂yV is a
constant potential gradient. Therefore, g = g(x, θ) does not depend on y and
the BTE (2) reduces to

i
g
lω
þ cos θ ∂x g � eV

mvF

� �
þ sin θ ∂yV

þ ∂θg
lB

þ g
le
þ g � gee

lee
¼ 0:

ð7Þ

We approximate the potentialVH by its expansion in a truncated basis
fϕnðxÞgNn¼1 of tent functions defined on [−W/2,W/2] as VHðxÞ ¼

Fig. 3 | Error of the total current obtainedwith theNavier–Stokes equation (NSE)
in comparison with the Boltzmann transport equation (BTE) results.White
regions remark the hydrodynamic regime where only NSE results are correct and
blue regions are those where both the NSE and the Drude equation (DRE) account
for the diffusive regime of transport. Red (blue) contour lines limit the region where
the NSE (DRE) error is 20%. aNSE error versus le and leemean free paths, in absence
of an ac field. Each plot accounts for a DF or PS (d = 0.5) edge, and for a different
cyclotron radius. Gray patterned areas, defined by the conditions lee <W/3 and
lee < le/3, indicate the conventional requirements (lee≪W and lee≪ le) to achieve the
hydrodynamic regime. For comparison, overprinted lines show typical physical
conditions considered in some experiments in high quality graphene (GhBN) in a
W = 500 nm-wide channel6,36, graphene on a SiO2 substrate (GSiO2

)42 and GaAs
(GaAs)13 in aW = 200 nm-wide channel (see Supplementary Note 9). b NSE error

versus the cyclotron radius lB and the ac length lω for le = lee = 10W and a DF edge.
Commensurability resistance happens when lB≃W and cyclotron resonance when
lB≃ lω. Panels c–f represent electrons as semiclassical particles moving under a
potential gradient∇ V and a perpendicular magnetic field B, for some relevant
positions labeled in panel b. cCommensurability effect arises when electrons cannot
reach the boundaries in all directions. d Electrons do not follow straight trajectories
under amagneticfield. eAn electronmoving parallel to the channel and subject to an
ac electric field will alternately accelerate and decelerate due to the field swiping
direction. f The magnetic field and the ac electric field mutually hinder when lω = lB,
namely the resonant condition ω = ωB is met. Supplementary Note 8 shows error
maps evaluated by means of the total electric current for an enlarged set of
parameters.
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PN
n¼1VnϕnðxÞ and write the solution as

gðx; θÞ ¼
XN
n¼1

XM
m¼1

gnmϕnðxÞφmðθÞ; ð8Þ

where fφmðθÞgNm¼1 is a periodic basis of tent functions defined on 0; 2π½ Þ.
We achieved convergence forN≳ 40 andM≳ 32.We found theweak form
of Eq. (2) and used a conforming Galerkin method to write the N ×M
system of linear equations. The resulting system is sparse in the spatial part
and includes the boundary conditions for the scattered electrons. No-
trespassing condition (ux = 0) is enforced, unless within a magnetic field,
where the solution was later corrected to ensure no-trespassing condition.
For 2Darbitrary geometries, the sameprocedure is applied toEq. (2).We set
the g(θ) distribution at the contacts, far away from the studied region, using
as an input the result for simulations in uniform channels. We rewrite the
equations at all other edges for the corresponding boundary conditions.We
use N ~ 104 spatial elements for arbitrary geometries, with a triangle size
≤0.2W and an adaptive method with a thinner meshing near the corners,
and a smallerM ~ 16 to reduce computational cost.

The NSE was solved analytically in a very long channel (see Supple-
mentary Section 11 of the SI) and numerically in other geometries using the
finite element method39, with triangular40 Taylor-Hood elements41. We
imposed mixed boundary conditions31, used the analytical solution in a
channel to set the velocities at the contacts and imposed a constant potential
and zero current flow at the metallic contacts. The fourth-order Runge-
Kutta method was used to compute the streamlines. The NSE and DRE
errors are defined comparing to the BTE results as ε≡ 2∣INSE− IBTE∣/
∣INSE+ IBTE∣ and εDR � 2jIDRE � IBTEj=jIDRE þ IBTEj where I ¼
�en

RW=2
�W=2 uy dx is the total current, proportional to the area under the

velocity profile. In order to identify the diffusive regions, the quantity
1− εDR indicates where the DRE equation is correct.

Data availability
The data supporting the findings of this study are available from the cor-
responding author upon request.

Code availability
The computer code supporting the findings of this study is available from
the corresponding author upon request.
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