Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Topological quantum materials for energy conversion and storage

Abstract

Topological quantum materials (TQMs) have symmetry-protected band structures with useful electronic properties that have applications in information, sensing, energy and other technologies. In the past 10 years, applications of TQMs in the fields of energy conversion and storage, including water splitting, ethanol electro-oxidation, batteries, supercapacitors and relative energy-efficient devices, have attracted increasing attention. The quantum states in TQMs provide a stable electron bath with high electronic conductivity and carrier mobility, long lifetime and readily determined spin states, making TQMs an ideal platform for understanding surface reactions and looking for highly efficient materials for energy conversion and storage. In this Perspective, we present an overview of recent progress in topological quantum catalysis. We describe the open problems and the potential applications of TQMs in water splitting, batteries, supercapacitors and other prospects in energy conversion and storage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Topological quantum materials for hydrogen evolution reaction.
Fig. 2: Topological materials for OER.
Fig. 3: Topological materials for battery and supercapacitors.
Fig. 4: Topological materials for other applications.

Similar content being viewed by others

References

  1. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  Google Scholar 

  2. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Article  ADS  Google Scholar 

  3. Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    Article  ADS  Google Scholar 

  4. Zhang, T. et al. Catalogue of topological electronic materials. Nature 566, 475–479 (2019).

    Article  ADS  Google Scholar 

  5. Liang, T. et al. Anomalous Nernst effect in the Dirac semimetal Cd3As2. Phys. Rev. Lett. 118, 136601 (2017).

    Article  ADS  Google Scholar 

  6. Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019). Together with Zhang et al. (2019) and Li X. et al. (2019), this work reveals that a large number of materials are characterized by topological electronic structures, including state-of-the-art noble metal catalysts.

    Article  ADS  Google Scholar 

  7. Fu, C., Sun, Y. & Felser, C. Topological thermoelectrics. APL Mater. 8, 040913 (2020).

    Article  ADS  Google Scholar 

  8. Rajamathi, C. R. et al. Photochemical water splitting by bismuth chalcogenide topological insulators. ChemPhysChem 18, 2322–2327 (2017).

    Article  Google Scholar 

  9. He, Y. et al. Topological metal and noncentrosymmetric superconductor α-BiPd as an efficient candidate for the hydrogen evolution reaction. Mater. Chem. Front. 3, 2184–2189 (2019).

    Article  Google Scholar 

  10. He, Y. et al. Topological type-II Dirac semimetal and superconductor PdTe2 for ethanol electrooxidation. Energy Technol. 7, 1900663 (2019).

    Article  Google Scholar 

  11. He, Y. et al. Discovery and facile synthesis of a new silicon based family as efficient hydrogen evolution reaction catalysts: a computational and experimental investigation of metal monosilicides. Small 17, 2006153 (2021).

    Article  Google Scholar 

  12. Li, G. et al. Surface states in bulk single crystal of topological semimetal Co3Sn2S2 toward water oxidation. Sci. Adv. 5, eaaw9867 (2019). This work proposed the use of bulk single crystals to detect the influence of TSSs on catalysis reactions.

    Article  ADS  Google Scholar 

  13. Li, G. et al. Dirac nodal arc semimetal PtSn4: an ideal platform for understanding surface properties and catalysis for hydrogen evolution. Angew. Chem. Int. Ed. 58, 13107–13112 (2019).

    Article  Google Scholar 

  14. Li, G. et al. In situ modification of a delafossite-type PdCoO2 bulk single crystal for reversible hydrogen sorption and fast hydrogen evolution. ACS Energy Lett. 4, 2185–2191 (2019).

    Article  Google Scholar 

  15. Li, G. & Felser, C. Heterogeneous catalysis at the surface of topological materials. Appl. Phys. Lett. 116, 070501 (2020).

    Article  ADS  Google Scholar 

  16. Yang, Q. et al. Topological engineering of Pt-group-metal-based chiral crystals toward high-efficiency hydrogen evolution catalysts. Adv. Mater. 32, 1908518 (2020).

    Article  Google Scholar 

  17. Tian, J., Hong, S., Miotkowski, I., Datta, S. & Chen, Y. P. Observation of current-induced, long-lived persistent spin polarization in a topological insulator: a rechargeable spin battery. Sci. Adv. 3, e1602531 (2017).

    Article  ADS  Google Scholar 

  18. Baldomir, D. & Faílde, D. On behind the physics of the thermoelectricity of topological insulators. Sci. Rep. 9, 6324 (2019).

    Article  ADS  Google Scholar 

  19. Singh, S., Kaur, K. & Kumar, R. Quest of thermoelectricity in topological insulators: a density functional theory study. Appl. Surf. Sci. 418, 232–237 (2017).

    Article  ADS  Google Scholar 

  20. Singh, S., Wu, Q., Yue, C., Romero, A. H. & Soluyanov, A. A. Topological phonons and thermoelectricity in triple-point metals. Phys. Rev. Mater. 2, 114204 (2018).

    Article  Google Scholar 

  21. Fu, C. et al. Large Nernst power factor over a broad temperature range in polycrystalline Weyl semimetal NbP. Energy Environ. Sci. 11, 2813–2820 (2018).

    Article  Google Scholar 

  22. Xu, Y. Thermoelectric effects and topological insulators. Chin. Phys. B 25, 117309 (2016).

    Article  ADS  Google Scholar 

  23. Heremans, J. P., Cava, R. J. & Samarth, N. Tetradymites as thermoelectrics and topological insulators. Nat. Rev. Mater. 2, 17049 (2017). This review gives a comprehensive overview of the application of 3D strong topological insulators for energy conversion.

    Article  ADS  Google Scholar 

  24. Turner, J. A. Sustainable hydrogen production. Science 305, 972–974 (2004).

    Article  ADS  Google Scholar 

  25. Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009).

    Article  ADS  Google Scholar 

  26. Mahmood, J. et al. Encapsulating iridium nanoparticles inside a 3D cage like organic network as an efficient and durable catalyst for the hydrogen evolution reaction. Adv. Mater. 30, 1805606 (2018).

    Article  Google Scholar 

  27. Wang, F. et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2, 100180 (2021).

    Google Scholar 

  28. Liu, W. et al. Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angew. Chem. Int. Ed. 56, 9312–9317 (2017).

    Article  Google Scholar 

  29. Zhang, M., Guan, J., Tu, Y., Wang, S. & Deng, D. Highly efficient conversion of surplus electricity to hydrogen energy via polysulfides redox. Innovation 2, 100144 (2021).

    Google Scholar 

  30. Bai, S., Jiang, J., Zhang, Q. & Xiong, Y. Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 44, 2893–2939 (2015).

    Article  Google Scholar 

  31. Dong, Y. et al. Enhanced catalytic performance of Pt by coupling with carbon defects. Innovation 2, 100161 (2021).

    Google Scholar 

  32. Luo, Y., Zhang, Z., Chhowalla, M. & Liu, B. Recent advances in design of electrocatalysts for high-current-density water splitting. Adv. Mater. 34, 2108133 (2022).

    Article  Google Scholar 

  33. Mistry, H., Varela, A. S., Kühl, S., Strasser, P. & Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 1, 16009 (2016).

    Article  ADS  Google Scholar 

  34. Zhou, S. et al. Low-dimensional non-metal catalysts: principles for regulating p-orbital-dominated reactivity. npj Comput. Mater. 7, 186 (2021).

    Article  ADS  Google Scholar 

  35. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    Article  ADS  Google Scholar 

  36. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010). This study summarizes the development of topological insulators and elucidates the origin of TSSs and associated physical properties.

    Article  ADS  Google Scholar 

  37. Xiao, J., Kou, L., Yam, C.-Y., Frauenheim, T. & Yan, B. Toward rational design of catalysts supported on a topological insulator substrate. ACS Catal. 5, 7063–7067 (2015).

    Article  Google Scholar 

  38. Qu, Q. et al. Expediting hydrogen evolution through topological surface states on Bi2Te3. ACS Catal. 10, 2656–2666 (2020).

    Article  Google Scholar 

  39. Qu, Q. et al. Role of topological surface states and mirror symmetry in topological crystalline insulator SnTe as an efficient electrocatalyst. Nanoscale 13, 18160–18172 (2021).

    Article  Google Scholar 

  40. Li, L., Zeng, J., Qin, W., Cui, P. & Zhang, Z. Tuning the hydrogen activation reactivity on topological insulator heterostructures. Nano Energy 58, 40–46 (2019).

    Article  Google Scholar 

  41. Qu, Q., Liu, B., Sum Lau, W., Pan, D. & Keong Sou, I. Highly active hydrogen evolution facilitated by topological surface states on a Pd/SnTe metal/topological crystalline insulator heterostructure. Preprint at arXiv https://arxiv.org/abs/2112.04753 (2021).

  42. Edmonds, M. T. et al. Stability and surface reconstruction of topological insulator Bi2Se3 on exposure to atmosphere. J. Phys. Chem. C. 118, 20413–20419 (2014).

    Article  Google Scholar 

  43. Kong, D. et al. Rapid surface oxidation as a source of surface degradation factor for Bi2Se3. ACS Nano 5, 4698–4703 (2011).

    Article  Google Scholar 

  44. Izadi, S. et al. Interface-dominated topological transport in nanograined bulk Bi2Te3. Small 17, 2103281 (2021).

    Article  Google Scholar 

  45. Burkov, A. A. Topological semimetals. Nat. Mater. 15, 1145–1148 (2016).

    Article  ADS  Google Scholar 

  46. Yan, B. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).

    Article  ADS  Google Scholar 

  47. Sarkar, S., Yang, J., Tan, L. Z., Rappe, A. M. & Kronik, L. Molecule-adsorbed topological insulator and metal surfaces: a comparative first-principles study. Chem. Mater. 30, 1849–1855 (2018).

    Article  Google Scholar 

  48. Politano, A. et al. Tailoring the surface chemical reactivity of transition-metal dichalcogenide PtTe2 crystals. Adv. Funct. Mater. 28, 1706504 (2018).

    Article  Google Scholar 

  49. Rajamathi, C. R. et al. Weyl semimetals as hydrogen evolution catalysts. Adv. Mater. 33, 2103730 (2021).

    Article  Google Scholar 

  50. Shekhar, C. et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nat. Phys. 11, 645–649 (2015).

    Article  Google Scholar 

  51. Hu, Huang, H., Zhou, S. & Duan, W. Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides. Phys. Rev. B 94, 121117 (2016).

    Article  ADS  Google Scholar 

  52. Li, Y. et al. Topological origin of the type-II Dirac fermions in PtSe2. Phys. Rev. Mater. 1, 074202 (2017).

    Article  Google Scholar 

  53. Zhang, K. et al. Experimental evidence for type-II Dirac semimetal in PtSe2. Phys. Rev. B 96, 125102 (2017).

    Article  ADS  Google Scholar 

  54. Yan, M. et al. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2. Nat. Commun. 8, 257 (2017).

    Article  ADS  Google Scholar 

  55. Huang, H., Fan, X., Singh, D. J. & Zheng, W. Modulation of hydrogen evolution catalytic activity of basal plane in monolayer platinum and palladium dichalcogenides. ACS Omega 3, 10058–10065 (2018).

    Article  Google Scholar 

  56. Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

    Article  ADS  Google Scholar 

  57. Chen, C. et al. Robustness of topological order and formation of quantum well states in topological insulators exposed to ambient environment. Proc. Natl Acad. Sci. USA 109, 3694–3698 (2012). This work tracks the evolution of TSSs under surface reconstruction and adsorption and reveals the robustness of the TSSs.

    Article  ADS  Google Scholar 

  58. Hu, C., Zhang, L. & Gong, J. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 12, 2620–2645 (2019).

    Article  Google Scholar 

  59. Jiang, W.-J., Tang, T., Zhang, Y. & Hu, J.-S. Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting. Acc. Chem. Res. 53, 1111–1123 (2020).

    Article  Google Scholar 

  60. Joshi, B., Thamizhavel, A. & Ramakrishnan, S. Superconductivity in noncentrosymmetric BiPd. Phys. Rev. B 84, 064518 (2011).

    Article  ADS  Google Scholar 

  61. Xu, R., Groot, R. A. D. & Lugt, W. V. D. The electrical resistivities of liquid Pd–Bi alloys and the band structure of crystalline β-PdBi2 and PdBi. J. Phys. Condens. Matter 4, 2389–2395 (1992).

    Article  ADS  Google Scholar 

  62. Kong, X.-P. et al. Development of a Ni-doped VAl3 topological semimetal with a significantly enhanced her catalytic performance. J. Phys. Chem. Lett. 12, 3740–3748 (2021).

    Article  Google Scholar 

  63. He, Y. et al. Topologically nontrivial 1T′-MoTe2 as highly efficient hydrogen evolution electrocatalyst. J. Phys. Mater. 4, 014001 (2020).

    Article  Google Scholar 

  64. Sun, Y., Wu, S.-C., Ali, M. N., Felser, C. & Yan, B. Prediction of Weyl semimetal in orthorhombic MoTe2. Phys. Rev. B 92, 161107 (2015).

    Article  ADS  Google Scholar 

  65. Xu, Y., Zhang, F. & Zhang, C. Structured Weyl points in spin-orbit coupled fermionic superfluids. Phys. Rev. Lett. 115, 265304 (2015).

    Article  ADS  Google Scholar 

  66. Huang, L. et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nat. Mater. 15, 1155–1160 (2016).

    Article  ADS  Google Scholar 

  67. Deng, K. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 12, 1105–1110 (2016).

    Article  Google Scholar 

  68. Jiang, J. et al. Signature of type-II Weyl semimetal phase in MoTe2. Nat. Commun. 8, 13973 (2017).

    Article  ADS  Google Scholar 

  69. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    Article  ADS  Google Scholar 

  70. Song, P. et al. Few-layer 1T′ MoTe2 as gapless semimetal with thickness dependent carrier transport. 2D Mater. 5, 031010 (2018).

    Article  ADS  Google Scholar 

  71. Hammer, B. & Norskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995). This work lays the foundation for the theory of heterogeneous catalysis and highlights the importance of metal d orbital electronic structures.

    Article  ADS  Google Scholar 

  72. Ritz, R. et al. Formation of a topological non-Fermi liquid in MnSi. Nature 497, 231–234 (2013).

    Article  ADS  Google Scholar 

  73. Tang, P., Zhou, Q. & Zhang, S.-C. Multiple types of topological fermions in transition metal silicides. Phys. Rev. Lett. 119, 206402 (2017).

    Article  ADS  Google Scholar 

  74. Yuan, Q.-Q. et al. Quasiparticle interference evidence of the topological Fermi arc states in chiral fermionic semimetal CoSi. Sci. Adv. 5, eaaw9485 (2019).

    Article  ADS  Google Scholar 

  75. Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum states. Nature 567, 500–505 (2019).

    Article  ADS  Google Scholar 

  76. Li, J. et al. Topological quantum catalyst: Dirac nodal line states and a potential electrocatalyst of hydrogen evolution in the TiSi family. Sci. China Mater. 61, 23–29 (2018). This study proposes the use of TSMs with d-orbital-derived TSSs for catalysis reactions.

    Article  Google Scholar 

  77. Changdar, S. et al. Electronic structure studies of FeSi: a chiral topological system. Phys. Rev. B 101, 235105 (2020).

    Article  ADS  Google Scholar 

  78. Schröter, N. B. M. et al. Observation and control of maximal Chern numbers in a chiral topological semimetal. Science 369, 179–183 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Narang, P., Garcia, C. A. C. & Felser, C. The topology of electronic band structures. Nat. Mater. 20, 293–300 (2021).

    Article  ADS  Google Scholar 

  80. Liu, W. et al. Theoretical realization of hybrid Weyl state and associated high catalytic performance for hydrogen evolution in NiSi. iScience 25, 103543 (2022).

    Article  ADS  Google Scholar 

  81. Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3, 546–550 (2011).

    Article  Google Scholar 

  82. Yu, M. et al. Tunable eg orbital occupancy in Heusler compounds for oxygen evolution reaction. Angew. Chem. Int. Ed. 60, 5800–5805 (2021).

    Article  Google Scholar 

  83. Sun, J. et al. Carbon nanorings and their enhanced lithium storage properties. Adv. Mater. 25, 1125–1130 (2013).

    Article  ADS  Google Scholar 

  84. Liu, H. et al. Porous carbon composites for next generation rechargeable lithium batteries. Adv. Energy Mater. 7, 1700283 (2017).

    Article  Google Scholar 

  85. Fu, A. et al. Recent advances in hollow porous carbon materials for lithium–sulfur batteries. Small 15, 1804786 (2019).

    Article  Google Scholar 

  86. Liu, J., Wang, S. & Sun, Q. All-carbon-based porous topological semimetal for Li-ion battery anode material. Proc. Natl Acad. Sci. USA 114, 651 (2017).

    Article  ADS  Google Scholar 

  87. Xie, H., Qie, Y., Imran, M. & Sun, Q. Topological semimetal porous carbon as a high-performance anode for Li-ion batteries. J. Mater. Chem. A 7, 14253–14259 (2019).

    Article  Google Scholar 

  88. Wang, J.-T. et al. Body-centered orthorhombic C16: a novel topological node-line semimetal. Phys. Rev. Lett. 116, 195501 (2016).

    Article  ADS  Google Scholar 

  89. Qie, Y., Liu, J., Wang, S., Sun, Q. & Jena, P. Tetragonal C24: a topological nodal-surface semimetal with potential as an anode material for sodium ion batteries. J. Mater. Chem. A 7, 5733–5739 (2019).

    Article  Google Scholar 

  90. Yi, X. et al. Topological dual double node-line semimetals NaAlSi(Ge) and their potential as cathode material for sodium ion batteries. J. Mater. Chem. C. 7, 15375–15381 (2019).

    Article  Google Scholar 

  91. Wang, J.-T., Weng, H. & Chen, C. Topological nodal line semimetals in graphene network structures. Adv. Phys. X 4, 1625724 (2019).

    Google Scholar 

  92. Chen, Y., Xie, Y., Yan, X., Cohen, M. L. & Zhang, S. Topological carbon materials: a new perspective. Phys. Rep. 868, 1–32 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  93. Liu, J., Li, X., Wang, Q., Kawazoe, Y. & Jena, P. A new 3D Dirac nodal-line semi-metallic graphene monolith for lithium ion battery anode materials. J. Mater. Chem. A 6, 13816–13824 (2018).

    Article  Google Scholar 

  94. Zhou, T. et al. Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 8, 8323–8333 (2014).

    Article  Google Scholar 

  95. Ma, C. et al. Investigating the energy storage mechanism of SnS2–rGO composite anode for advanced Na-ion batteries. Chem. Mater. 27, 5633–5640 (2015).

    Article  Google Scholar 

  96. Kim, H. et al. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6, 1600943 (2016).

    Article  Google Scholar 

  97. Feng, X. et al. Monoclinic C16: sp2sp3 hybridized nodal-line semimetal protected by PT-symmetry. Carbon 127, 527–532 (2018).

    Article  Google Scholar 

  98. Liu, J., Wang, S., Qie, Y., Zhang, C. & Sun, Q. High-pressure-assisted design of porous topological semimetal carbon for Li-ion battery anode with high-rate performance. Phys. Rev. Mater. 2, 025403 (2018).

    Article  Google Scholar 

  99. Shen, Y., Wang, Q., Kawazoe, Y. & Jena, P. Potential of porous nodal-line semi-metallic carbon for sodium-ion battery anode. J. Power Sources 478, 228746 (2020).

    Article  Google Scholar 

  100. Qie, Y. et al. Interpenetrating silicene networks: a topological nodal-line semimetal with potential as an anode material for sodium ion batteries. Phys. Rev. Mater. 2, 084201 (2018).

    Article  Google Scholar 

  101. Gao, Y. et al. Hexagonal supertetrahedral boron: a topological metal with multiple spin-orbit-free emergent fermions. Phys. Rev. Mater. 3, 044202 (2019).

    Article  Google Scholar 

  102. Xie, H., Qie, Y., Muhammad, I. & Sun, Q. B4 cluster-based 3D porous topological metal as an anode material for both Li- and Na-ion batteries with a superhigh capacity. J. Phys. Chem. Lett. 12, 1548–1553 (2021).

    Article  Google Scholar 

  103. Liu, X. et al. Exploring sodium storage mechanism of topological insulator Bi2Te3 nanosheets encapsulated in conductive polymer. Energy Stor. Mater. 41, 255–263 (2021).

    Article  Google Scholar 

  104. Soares, D. M. & Singh, G. Weyl semimetal orthorhombic Td-WTe2 as an electrode material for sodium- and potassium-ion batteries. Nanotechnology 32, 505402 (2021).

    Article  Google Scholar 

  105. Chang, T.-R. et al. Type-II symmetry-protected topological Dirac semimetals. Phys. Rev. Lett. 119, 026404 (2017).

    Article  ADS  Google Scholar 

  106. Sottmann, J. et al. How crystallite size controls the reaction path in nonaqueous metal ion batteries: the example of sodium bismuth alloying. Chem. Mater. 28, 2750–2756 (2016).

    Article  Google Scholar 

  107. Chiu, W.-C. et al. Topological Dirac semimetal phase in bismuth based anode materials for sodium-ion batteries. Condens. Matter 5, 39 (2020).

    Article  Google Scholar 

  108. Lv, B. Q., Qian, T. & Ding, H. Experimental perspective on three-dimensional topological semimetals. Rev. Mod. Phys. 93, 025002 (2021).

    Article  ADS  Google Scholar 

  109. Wu, W. & Sun, Q. Screening topological quantum materials for Na-ion battery cathode. ACS Mater. Lett. 4, 175–180 (2022).

    Article  Google Scholar 

  110. Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Comprehensive search for topological materials using symmetry indicators. Nature 566, 486–489 (2019).

    Article  ADS  Google Scholar 

  111. Li, X., Liu, J., Wang, F. Q., Wang, Q. & Jena, P. Rational design of porous nodal-line semimetallic carbon for K-ion battery anode materials. J. Phys. Chem. Lett. 10, 6360–6367 (2019).

    Article  Google Scholar 

  112. Zhang, Q. et al. Issues and rational design of aqueous electrolyte for Zn-ion batteries. SusMat 1, 432–447 (2021).

    Article  Google Scholar 

  113. Zhao, Y. et al. Vacancy modulating Co3Sn2S2 topological semimetal for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 61, e202111826 (2022).

    Google Scholar 

  114. Yu, P. et al. Controllable synthesis of atomically thin type-II Weyl semimetal WTe2 nanosheets: an advanced electrode material for all-solid-state flexible supercapacitors. Adv. Mater. 29, 1701909 (2017).

    Article  Google Scholar 

  115. Kumar, D. R., Nguyen, T. T., Lamiel, C. & Shim, J.-J. Layered 2-D Bi2Se3 nanosheets intercalated by Ni(OH)2 and their supercapacitor performance. Mater. Lett. 165, 257–262 (2016).

    Article  Google Scholar 

  116. Yang, J. et al. Integrated quasiplane heteronanostructures of MoSe2/Bi2Se3 hexagonal nanosheets: synergetic electrocatalytic water splitting and enhanced supercapacitor performance. Adv. Funct. Mater. 27, 1703864 (2017).

    Article  Google Scholar 

  117. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    Article  ADS  Google Scholar 

  118. König, M. et al. Quantum spin Hall insulator state in hgte quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  119. Bruno, F. Y. et al. Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe2. Phys. Rev. B 94, 121112 (2016).

    Article  ADS  Google Scholar 

  120. Feng, B. et al. Spin texture in type-II Weyl semimetal WTe2. Phys. Rev. B 94, 195134 (2016).

    Article  ADS  Google Scholar 

  121. Chen, H., Zhu, W., Xiao, D. & Zhang, Z. CO oxidation facilitated by robust surface states on Au-covered topological insulators. Phys. Rev. Lett. 107, 056804 (2011). This work theoretically confirmed that TSSs could interact with adsorbed molecules.

    Article  ADS  Google Scholar 

  122. Tang, M., Shen, H., Xie, H. & Sun, Q. Metal-free catalyst B2S sheet for effective CO2 electrochemical reduction to CH3OH. ChemPhysChem 21, 779–784 (2020).

    Article  Google Scholar 

  123. Yu, R., Weng, H., Fang, Z., Dai, X. & Hu, X. Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN. Phys. Rev. Lett. 115, 036807 (2015).

    Article  ADS  Google Scholar 

  124. Wang, X., Chen, J. & Xie, D. Prospect of node-line semimetal Cu3PdN to be a topological superconductor. J. Supercond. Nov. Magn. 30, 2727–2734 (2017).

    Article  Google Scholar 

  125. Jia, J., Hao, X., Chang, Y., Jia, M. & Wen, Z. Rational design of Cu3PdN nanocrystals for selective electroreduction of carbon dioxide to formic acid. J. Colloid Interface Sci. 586, 491–497 (2021).

    Article  ADS  Google Scholar 

  126. Vaughn, Ii,D. D. et al. Solution synthesis of Cu3PdN nanocrystals as ternary metal nitride electrocatalysts for the oxygen reduction reaction. Chem. Mater. 26, 6226–6232 (2014).

    Article  Google Scholar 

  127. Feng, B. et al. Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si. Nat. Commun. 8, 1007 (2017).

    Article  ADS  Google Scholar 

  128. He, Q. L., Lai, Y. H., Lu, Y., Law, K. T. & Sou, I. K. Surface reactivity enhancement on a Pd/Bi2Te3 heterostructure through robust topological surface states. Sci. Rep. 3, 2497 (2013).

    Article  Google Scholar 

  129. Xie, H. et al. Facet engineering to regulate surface states of topological crystalline insulator bismuth rhombic dodecahedrons for highly energy efficient electrochemical CO2 reduction. Adv. Mater. 33, 2008373 (2021).

    Article  Google Scholar 

  130. Wang, J., Fan, C. Y., Jacobi, K. & Ertl, G. The kinetics of CO oxidation on RuO2(110): bridging the pressure gap. J. Phys. Chem. B 106, 3422–3427 (2002).

    Article  Google Scholar 

  131. Wang, H. & Schneider, W. F. Adsorption and reactions of NOx on RuO2(110). Catal. Today 165, 49–55 (2011).

    Article  Google Scholar 

  132. Yu, H. et al. Capacitance dependent catalytic activity of RuO2·xH2O/CNT nanocatalysts for aerobicoxidation of benzyl alcohol. Chem. Commun. 17, 2408–2410 (2009).

    Article  Google Scholar 

  133. Trasatti, S. Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim. Acta 11, 1503–151286 (1984).

    Article  Google Scholar 

  134. Song, S. & Jiang, S. Selective catalytic oxidation of ammonia to nitrogen over CuO/CNTs: the promoting effect of the defects of CNTs on the catalytic activity and selectivity. Appl. Catal. B Env. 117-118, 346–350 (2012).

    Article  Google Scholar 

  135. Nelson, J. N. et al. Dirac nodal lines protected against spin–orbit interaction in IrO2. Phys. Rev. Mater. 3, 064205 (2019).

    Article  Google Scholar 

  136. Sun, Y., Zhang, Y., Liu, C.-X., Felser, C. & Yan, B. Dirac nodal lines and induced spin Hall effect in metallic rutile oxides. Phys. Rev. B 95, 235104 (2017).

    Article  ADS  Google Scholar 

  137. Jovic, V. et al. Dirac nodal lines and flat-band surface state in the functional oxide RuO2. Phys. Rev. B 98, 241101 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  138. Jovic, V. et al. Momentum for catalysis: how surface reactions shape the RuO2 flat surface state. ACS Catal. 11, 1749–1757 (2021). This work experimentally confirmed the concept of topological catalysis and pointed out the challenges in this research field.

    Article  Google Scholar 

  139. Zhu, X., Wang, Y., Jing, Y., Heine, T. & Li, Y. β-PdBi2 monolayer: two-dimensional topological metal with superior catalytic activity for carbon dioxide electroreduction to formic acid. Mater. Today Adv. 8, 100091 (2020).

    Article  Google Scholar 

  140. Yang, L.-M. et al. Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding. J. Am. Chem. Soc. 137, 2757–2762 (2015).

    Article  Google Scholar 

  141. Tang, M., Shen, H., Qie, Y., Xie, H. & Sun, Q. Edge-state-enhanced CO2 electroreduction on topological nodal-line semimetal Cu2Si nanoribbons. J. Phys. Chem. C. 123, 2837–2842 (2019).

    Article  Google Scholar 

  142. Kojima, T., Kameoka, S., Fujii, S., Ueda, S. & Tsai, A.-P. Catalysis-tunable Heusler alloys in selective hydrogenation of alkynes: a new potential for old materials. Sci. Adv. 4, eaat6063 (2018).

    Article  ADS  Google Scholar 

  143. Prinz, J. et al. Adsorption of small hydrocarbons on the three-fold PdGa surfaces: the road to selective hydrogenation. J. Am. Chem. Soc. 136, 11792–11798 (2014).

    Article  Google Scholar 

  144. Hui, T. et al. Atmosphere induced amorphous and permeable carbon layer encapsulating PtGa catalyst for selective cinnamaldehyde hydrogenation. J. Catal. 389, 229–240 (2020).

    Article  Google Scholar 

  145. Ebrahimian, A. & Dadsetani, M. Alkali-metal-induced topological nodal line semimetal in layered XN2 (X = Cr, Mo, W). Front. Phys. 13, 137309 (2018).

    Article  ADS  Google Scholar 

  146. Ma, L.-J. & Sun, Q. A topological semimetal Li2CrN2 sheet as a promising hydrogen storage material. Nanoscale 12, 12106–12113 (2020).

    Article  Google Scholar 

  147. Hu, D. et al. Green CO2-assisted synthesis of mono- and bimetallic Pd/Pt nanoparticles on porous carbon fabricated from sorghum for highly selective hydrogenation of furfural. ACS Sustain. Chem. Eng. 7, 15339–15345 (2019).

    Article  Google Scholar 

  148. Wang, A. et al. Selective production of γ-valerolactone and valeric acid in one-pot bifunctional metal catalysts. ChemistrySelect 3, 1097–1101 (2018).

    Article  Google Scholar 

  149. Qiao, Y. et al. Preparation of SBA-15 supported Pt/Pd bimetallic catalysts using supercritical fluid reactive deposition: how do solvent effects during material synthesis affect catalytic properties? Green Chem. 19, 977–986 (2017).

    Article  Google Scholar 

  150. Xu, Y. et al. High-throughput calculations of magnetic topological materials. Nature 586, 702–707 (2020).

    Article  ADS  Google Scholar 

  151. Chen, X.-Q., Liu, J. & Li, J. Topological phononic materials: computation and data. Innovation 2, 100134 (2021).

    Google Scholar 

  152. Katz, R. J., Zhu, Y., Mao, Z. & Schaak, R. E. Persistence and evolution of materials features during catalysis using topological and trivial polymorphs of MoTe2. ChemCatChem 14, e202101714 (2022).

    Google Scholar 

  153. Chen, Y. et al. Recent advances in topological quantum materials by angle-resolved photoemission spectroscopy. Matter 3, 1114–1141 (2020).

    Article  Google Scholar 

  154. Cuxart, M. G. et al. Molecular approach for engineering interfacial interactions in magnetic/topological insulator heterostructures. ACS Nano 14, 6285–6294 (2020).

    Article  Google Scholar 

  155. Kim, Y. & Lee, J. Time-resolved photoemission of infinitely periodic atomic arrangements: correlation-dressed excited states of solids. NPJ Comput. Mater. 6, 132 (2020).

    Article  ADS  Google Scholar 

  156. Wang, P. et al. Intrinsic magnetic topological insulators. Innovation 2, 100098 (2021).

    Google Scholar 

  157. Li, C. H., van ‘t Erve, O. M. J., Rajput, S., Li, L. & Jonker, B. T. Direct comparison of current-induced spin polarization in topological insulator Bi2Se3 and InAs Rashba states. Nat. Commun. 7, 13518 (2016).

    Article  ADS  Google Scholar 

  158. Pershoguba, S. S. & Yakovenko, V. M. Spin-polarized tunneling current through a thin film of a topological insulator in a parallel magnetic field. Phys. Rev. B 86, 165404 (2012).

    Article  ADS  Google Scholar 

  159. Garcés-Pineda, F. A., Blasco-Ahicart, M., Nieto-Castro, D., López, N. & Galán-Mascarós, J. R. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Energy 4, 519–525 (2019).

    Article  ADS  Google Scholar 

  160. Gupta, U. et al. Effect of magnetic field on the hydrogen evolution activity using non-magnetic Weyl semimetal catalysts. Dalton Trans. 49, 3398–3402 (2020).

    Article  Google Scholar 

  161. Li, G. et al. Carbon-tailored semimetal MoP as an efficient hydrogen evolution electrocatalyst in both alkaline and acid media. Adv. Energy Mater. 8, 1801258 (2018).

    Article  Google Scholar 

  162. Li, J. et al. Enhanced electrocatalytic hydrogen evolution from large-scale, facile-prepared, highly crystalline WTe2 nanoribbons with Weyl semimetallic phase. ACS Appl. Mater. Interfaces 10, 458–467 (2018).

    Article  Google Scholar 

  163. Mc Manus, J. B. et al. Low-temperature synthesis and electrocatalytic application of large-area PtTe2 thin films. Nanotechnology 31, 375601 (2020).

    Article  ADS  Google Scholar 

  164. Huang, K. et al. NiPS3 quantum sheets modified nitrogen-doped mesoporous carbon with boosted bifunctional oxygen electrocatalytic performance. J. Mater. Sci. Technol. 65, 1–6 (2021).

    Article  Google Scholar 

  165. Ni, Z. et al. Giant topological longitudinal circular photo-galvanic effect in the chiral multifold semimetal CoSi. Nat. Commun. 12, 154 (2021).

    Article  Google Scholar 

  166. Wu, T. et al. Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nat. Commun. 12, 3634 (2021).

    Article  ADS  Google Scholar 

  167. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  Google Scholar 

  168. Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918).

    Article  Google Scholar 

  169. Hwang, J. et al. Perovskites in catalysis and electrocatalysis. Science 358, 751–756 (2017).

    Article  ADS  Google Scholar 

  170. Yuan, Y. et al. Co3Mo3N — an efficient multifunctional electrocatalyst. Innovation 2, 100096 (2021).

    Google Scholar 

  171. Zhong, W. et al. Electronic spin moment as a catalytic descriptor for Fe single-atom catalysts supported on C2N. J. Am. Chem. Soc. 143, 4405–4413 (2021).

    Article  Google Scholar 

  172. BielaŃSki, A., DereŃ, J. & Haber, J. Electric conductivity and catalytic activity of semiconducting oxide catalysts. Nature 179, 668–669 (1957).

    Article  ADS  Google Scholar 

  173. Yun, T. G., Heo, Y., Bin Bae, H. & Chung, S.-Y. Elucidating intrinsic contribution of d-orbital states to oxygen evolution electrocatalysis in oxides. Nat. Commun. 12, 824 (2021).

    Article  ADS  Google Scholar 

  174. Liu, L. & Corma, A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat. Rev. Mater. 6, 244–263 (2021).

    Article  ADS  Google Scholar 

  175. Bi, W. et al. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution. Nat. Commun. 6, 8647 (2015).

    Article  ADS  Google Scholar 

  176. Tong, Y. et al. Spin-state regulation of perovskite cobaltite to realize enhanced oxygen evolution activity. Chem 3, 812–821 (2017).

    Article  Google Scholar 

  177. Rodgers, C. T. & Hore, P. J. Chemical magnetoreception in birds: the radical pair mechanism. Proc. Natl Acad. Sci. USA 106, 353–360 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11922415, 22078374, 21776324), Guangdong Basic and Applied Basic Research Foundation (2022A1515011168, 2019A1515011718, 2019B1515120058, 2020A1515011149), Key Research & Development Program of Guangdong Province, China (2019B110209003), the Pearl River Scholarship Program of Guangdong Province Universities and Colleges (20191001), the Scientific and Technological Planning Project of Guangzhou (202206010145) and Hundred Talent Plan from Sun Yat-sen University, and the Foundation of President of Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS).

Author information

Authors and Affiliations

Authors

Contributions

H.L. is the lead author in organizing this paper. All authors contributed to writing and polishing the manuscript.

Corresponding authors

Correspondence to Huixia Luo, Guowei Li or Kai Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Qiang Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Yu, P., Li, G. et al. Topological quantum materials for energy conversion and storage. Nat Rev Phys 4, 611–624 (2022). https://doi.org/10.1038/s42254-022-00477-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00477-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing