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The prospect of applying artificial neural networks to the 
detection of COVID-19 in chest radiographs has generated 
interest from machine learning (ML) researchers and radi-

ologists alike, given its potential to (1) help guide management 
in resource-limited settings that lack sufficient numbers of the 
gold-standard polymerase chain reaction with reverse transcription 
(RT-PCR) assay and (2) clarify cases of suspected false negatives 
from the RT-PCR assay1,2. Although numerous recent publications 
and preprints report machine learning models with high perfor-
mance at this task3–8, the trustworthiness of these models needs to 
be evaluated rigorously before deployment in a clinical setting9.

Our findings in this study support the troubling possibility that 
these models fail to learn the true underlying pathology reflecting 
the presence of COVID-19 and instead leverage spurious associa-
tions between the presence or absence of COVID-19 and radio-
graphic features that reflect variations in image acquisition, that is, 
‘shortcuts’10. Although such spurious associations may arise in any 
dataset, we have observed that many recent ML models for radio-
graphic detection of COVID-19 were trained using data with the 
potential for near worst-case confounding. These datasets are com-
posed of an exclusively COVID-19-negative source and a COVID-
19-positive source, such that any systematic differences between 
the sources correlate perfectly with COVID-19 status3–8. Similar 
combinations of data sources, where the source label correlates with 
disease status, have also been used to train AI systems for the detec-
tion of COVID-19 in computed tomography scans11 (although the 
non-public nature of the data precludes experimental verification of 
the extent of shortcut learning in this setting) and for other medical 
imaging tasks12,13, implying that our findings have broad implica-
tions for the field of medical machine learning.

In this Article, we evaluate the trustworthiness of recent deep 
learning models for COVID-19 detection from chest radiographs. 
After training deep convolutional neural networks14,15 (‘Datasets 
and preprocessing’ section and Supplementary Fig. 1) in the man-
ner of these previous publications3–8, we evaluate their performance 
in new hospital systems. We then interrogate the extent to which 

these models rely on confounds by identifying the most important 
image features using state-of-the-art explainable artificial intelli-
gence (AI) techniques, including both saliency maps and generative 
adversarial networks (GANs)16–19. These enquiries reveal how seem-
ingly high-performance AI systems may derive the majority of their 
performance from the exploitation of undesired shortcuts, high-
lighting the need to verify that AI systems rely on the desired sig-
nals. Finally, we evaluate several methods to alleviate the problem of 
shortcut learning in this setting, demonstrating the importance of 
improved data quality for the creation of robust and useful models.

Results
Overview of the experimental approach. Before examining our 
main results, we first outline our experimental approach (Fig. 1a). 
To begin, we reviewed the literature to examine the datasets and 
models used for the detection of COVID-19 from chest radiographs, 
with attention focused on studies with the potential for ‘worst-case 
confounding’. After choosing representative networks, we built two 
datasets: one that reproduces the data used in previous studies and 
a second that enables external validation on new hospitals. In a first 
experiment, we evaluated models that were trained on one dataset 
using test images from the other dataset, under the expectation that 
a model that relies on valid medical pathology—which should not 
change between datasets—should maintain high performance. We 
then probed deeper into specific shortcuts that these models lever-
age, using techniques from explainable AI.

In a ‘model-centric’ approach, which focuses on the specific por-
tions of the radiographs that contribute most to the predictions of 
our models in particular, we built saliency maps using expected 
gradients19. In essence, this approach attributes importance to each 
pixel of a radiograph based on the gradients of our models, while 
avoiding issues such as saturation or an arbitrary choice of baseline. 
We complemented this model-centric approach with a data-centric 
approach, focusing on the key aspects of the data that could be 
used to distinguish COVID-19-positive and COVID-19-negative 
cases. Specifically, we applied generative adversarial networks 
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(CycleGANs17) to transform COVID-19-positive radiographs to 
appear COVID-19-negative and vice versa, in the sense that key 
image features are transformed, such that a network can no lon-
ger discriminate between the real images of a given pathology label 
and the transformed images from the opposite class18. Rather than 
use our classifier networks to perform this discrimination task, we 
instead trained new discriminator networks simultaneously with 
generator networks that transformed the images, such that this 
experiment focused on key aspects of our data, rather than our clas-
sifiers in particular.

To further validate these findings, we went on to perform 
‘region-swapping’ experiments in which we swapped out portions 
of radiographs that our explainable AI approaches identified as 
important, with the expectation that changes to truly important 
regions would have a large impact on our classifiers’ outputs. We 
concluded by evaluating approaches to mitigate shortcut learn-
ing from the perspectives of both generalization performance and 
model explainability.

Literature review of model and dataset construction. In our inves-
tigation, we aimed to determine the extent to which shortcut learn-
ing affects AI systems for COVID-19 detection in chest radiographs, 
which is complicated by the diversity of these systems. We therefore 
trained a series of 10 models with various architectures, including 
state-of-the-art networks that were tailor-made for the detection 
of COVID-19 in chest radiographs4,6,20 and multiple ‘off-the-shelf ’, 
general-purpose architectures14,15,21,22. For our primary models, we 
chose a network based on the DenseNet-121 architecture14, which 

we judged faithfully replicated the modelling choices of recent 
high-performance models for COVID-19 classification, while also 
following established best practices for classification of patholo-
gies from chest radiographs using deep learning. Alongside these 
primary models, we also investigate multiple secondary models to 
help probe the generality of our findings and the extent to which 
they apply to AI systems found in the wild. These secondary mod-
els include the COVID-Net network, which was custom-designed 
for the detection of COVID-19 via a machine-based architecture 
search4, the DarkCovidNet model, which was modified from a 
standard DarkNet-19 model for the purpose of COVID-19 detec-
tion6, and the CV19-Net model20, which was built by ensembling 20 
DenseNet-121 networks and motivates our primary model, which 
uses the same architecture without ensembling, given that ensem-
bling did not provide performance gains but substantially increases 
the computational complexity (‘Evaluation of models on new hos-
pital systems’ section).

To train and evaluate these models, we created two datasets (Fig. 
1a and Supplementary Table 1). Dataset I consisted of COVID-
19-positive radiographs from the GitHub-COVID repository23, 
which aggregates radiographs from publication figures and other 
online sources with different geographic origins. We supplemented 
these with COVID-19-negative radiographs from the ChestX-ray14 
repository of the National Institutes of Health (NIH)24, which origi-
nate from a single hospital in the United States.

Dataset I is similar to the datasets used for training in recent 
publications on AI for COVID-19 detection3–8. Specifically, four of 
these publications3,5–7 combine the GitHub-COVID repository with 
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Fig. 1 | Overview of the study design. a, A neural network model is trained to detect COVID-19 using radiographs from either of two datasets, and then 
evaluated on both datasets to learn how performance may drop in deployment (that is, a generalization gap). Intepretability methods are then applied to 
infer what the model learned and which features were important for its decisions. Whereas dataset I draws radiographs from multiple hospital systems  
as well as cropped images from publication figures, dataset II draws radiographs from multiple hospitals from a single regional hospital system.  
b, Characteristics of the datasets used in this study. c, Model evaluation scheme (top) and corresponding receiver operating characteristic (ROC) curves 
(bottom), which show the performance of our neural network models evaluated on both an internal test set (new, held-out examples from the same data 
source as the training radiographs) and an external test set (radiographs from a new hospital system). Inset numbers indicate areas under the ROC curves, 
where a larger area corresponds to higher performance (area under the curve (AUC), mean ± standard deviation). The difference between internal and 
external test set performance is the generalization gap.
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either the NIH repository24 or the similar Radiological Society of 
North America pneumonia dataset25, which was derived from the 
NIH repository. Two others4,8 similarly combine these repositories, 
but then supplement them with additional COVID-19-positive 
images from other online repositories, many of which have since 
been added to the GitHub-COVID repository. Given the continu-
ally evolving nature of many of these repositories, the precise set of 
images used in each study remains unclear and additional uncer-
tainty is introduced by the dearth of documentation on the source 
of some images or the validity of their labels (for example, in the 
ActualMed and Fig. 1 databases at https://github.com/agchung/
Actualmed-COVID-chestxray-dataset and https://github.com/
agchung/Figure1-COVID-chestxray-dataset). This uncertainty 
notwithstanding, our core observation is that numerous well-cited 
studies build their datasets by gathering COVID-19-positive radio-
graphs from various sources, as exemplified most thoroughly 
by the GitHub-COVID repository (in which the image sources  
and labelling method are clearly documented), and then combine 
these with COVID-19-negative radiographs originating from the 
NIH repository, so that we judge that our dataset I fairly repre-
sents the key aspects of the data used in these earlier works. Other  
publications20,26–28 generally use non-public data, precluding our 
ability to audit their models, and do not share this issue of strong 
correlation between data source labels and COVID-19 status. 
However, based on our review of the literature, we find this issue in 
an alarming proportion of the publications, including many of the 
most high-profile studies4–6.

Unlike the datasets used in recent publications, which collected 
COVID-19-positive and -negative images from disparate sources, 
dataset II corresponds to a seemingly more ideal case where both 
COVID-19-positive and -negative images were drawn from simi-
lar sources. This dataset, which comprises the PadChest and 
BIMCV-COVID-19+ repositories (Fig. 1a,b), consisted of radio-
graphs from a single region and published by a shared research 
team, although BIMCV-COVID-19+ represents a greater diversity 
of hospitals than PadChest, and the repositories were acquired over 
different time periods29,30.

Evaluation of models on new hospital systems. After training on 
dataset I, we evaluated our models for reliance on confounding fac-
tors by comparing the predictive performance on an internal test 
set (new, held-out radiographs from dataset I) to performance on 
external radiographs from dataset II. Although our models attain 
high performance on internal test data, half of the models’ predic-
tive performance is lost when testing on dataset II (Fig. 1c, left). 
This performance drop (the generalization gap) suggests that these 
models rely on source-specific confounds in the radiographs, as we 
would expect models that use genuine markers of pathology to gen-
eralize well10. This finding held true for all nine additional archi-
tectures we examined, including those that were custom-tailored 
in recent studies for the detection of COVID-19 in radiographs 
(Supplementary Figs. 2 and 3).

Although we initially expected that a dataset built from radio-
graphs drawn from a single region would be less likely to contain 
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Fig. 2 | Explainable AI visualizes image factors important for deep neural networks trained to detect COVID-19 in radiographs. a, Saliency maps for 
our neural network models indicating the regions of each radiograph with the greatest influence on the models’ prediction. Top: in a COVID-19-negative 
radiograph, in addition to the highlighting in the lung fields (open arrow), the saliency maps also emphasize laterality tokens (filled arrow). Middle: in a 
COVID-19-positive radiograph, the most intensely highlighted regions of the image are the bottom corners (arrows), outside of the lung fields. Bottom: 
in a COVID-19-positive radiograph, the only highlighted region is the diaphragm (arrow). The colour bar indicates saliency map pixel importances 
by percentile. b, Radiographs and their corresponding transformations by a GAN, illustrating systematic differences that enable neural networks to 
differentiate between COVID-19-positive and -negative radiographs. COVID-19-negative images are transformed by the GAN to appear as if they were 
COVID-19-positive, and vice versa. Comparison of images before and after transformation with a GAN visualizes important image features for COVID-19 
prediction. Blue boxes indicate alterations to the opacity of the lung fields, which may represent the network’s attention to genuine COVID-19 pathology. 
Red solid boxes indicate altered laterality markers, and red dashed boxes indicate altered radiopacity at the image borders, both of which may spuriously 
correlate with a patient’s COVID-19 status in the training data. Figure adapted with permission from ref. 52, H. Winther et al. (a, bottom; b, bottom row); 
and ref. 53, Springer Nature Ltd (b, top row).
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spurious correlations that enable ML models to take shortcuts, we 
found that models trained on dataset II also exhibit high perfor-
mance on internal test data and low performance on external test 
data (Fig. 1c, right and Supplementary Fig. 2). Thus, dataset-level 
confounding may be a serious issue, even in datasets derived from 
more similar sources such as hospitals from a single region, contrary 
to the conclusions of contemporary work31. These findings argue for 
routine reporting of metadata on potential patient, hospital system 
and preprocessing confounds. By illuminating the construction 
of radiographic datasets in greater detail, these data will make it 
easier for domain experts to identify likely sources of confound-
ing. Additionally, these metadata enable the construction of models 
that explicitly control for confounds, providing a route to AI sys-
tems that generalize well even in the context of confounded train-
ing data32–34. By contrast, we note that a popular set of approaches 
to improve generalization performance, known as ‘unsupervised 
domain adaptation’, are precluded by the presence of worst-case 
confounding because these methods rely on learning models invari-
ant to data-source labels, which will be perfectly correlated with the 
pathology labels35.

Alternative hypotheses do not explain poor generalization. 
To verify the hypothesis that exploitation of dataset-specific con-
founding leads to poor generalization performance, we investigated 

alternative explanations for the generalization gap. Previous publi-
cations have suggested that more complex models—that is, those 
with higher capacity—may be particularly prone to learning con-
founds36, so we evaluated the generalization performance of simpler 
models, including a logistic regression and a simple convolutional 
neural network architecture, but found that the generalization gap 
did not improve (Supplementary Fig. 3). This result further sup-
ports the broad applicability of our findings, because the general-
ization gap was present regardless of network architecture, aligning 
with a previous study that showed that radiograph classification 
performance is robust to neural network architecture37. Similarly, 
we found that replacing the multilabel classification scheme of our 
original models with a simpler single-label classification scheme 
(‘Model architecture and training procedure’ section) did not 
improve generalization performance.

In addition to the choice of model architecture, an alternative 
explanation for poor generalization performance is that, rather than 
the model learning a spurious correlation that does not general-
ize, the model learns a genuine relationship between a radiograph’s 
appearance and its COVID-19 label that still does not generalize. 
One such scenario is that the COVID-19 detection task differs 
between training and test time, which may occur in our datasets 
given that most of the images in the GitHub-COVID dataset were 
cropped from scientific publications and thus are perhaps more 
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likely to show radiographic evidence of COVID-19, while labels 
in the BIMCV dataset are derived solely from RT-PCR or serol-
ogy and therefore may or may not feature radiographic evidence 
of COVID-19. However, when we modified the label scheme of 
BIMCV-COVID-19+ such that radiographs are only labelled posi-
tive if a radiologist noted evidence of COVID-19, the generaliza-
tion gap persisted (Supplementary Fig. 4), suggesting that such a 
concept shift between training and test time does not explain the 
performance difference, leaving the use of spurious correlations as 
the best explanation38.

Explainable AI identifies spurious confounders. We further inter-
rogated the trained AI models using saliency maps16,39,40, which 
highlight the regions of each radiograph that contribute most to the 
models’ prediction (Supplementary Note 1 and Supplementary Fig. 
5), to determine specific confounds exploited by deep convolutional 
networks for COVID-19 detection. Although our saliency maps 
sometimes highlight the lung fields as important (Fig. 2a), which 
suggests that our model may take into account genuine COVID-19 
pathology, concerningly, the saliency maps also highlight regions 
outside the lung fields that may represent confounds. The saliency 
maps frequently highlight laterality markers that originate during 
the radiograph acquisition process (Fig. 2a and Supplementary 
Fig. 6), which differ in style between the COVID-19-negative and 
COVID-19-positive datasets, and similarly highlight arrows and 
other annotations that are uniquely found in the publication-sourced 
radiographs of the GitHub-COVID data source23 (Supplementary 
Fig. 7), which aligns with a previous study finding that ML models 
can learn to detect pneumonia based on spurious differences in text 
on radiographs41. Our saliency maps also indicate that the image 
edges, the diaphragm and the cardiac silhouette are important for 

our models’ predictions of a patient’s COVID-19 status, although 
these regions are not among those routinely used by radiologists 
to assess for COVID-1942 and instead probably reflect dataset-level 
differences in patient positioning and radiographic projection, that 
is, the anterior–posterior (AP) view versus posterior–anterior (PA) 
view34. Reliance on such confounds, which do not consistently cor-
relate with COVID-19 status in outside datasets, helps explain the 
previously observed poor generalization performance.

To further investigate what features could be used by an ML 
model to differentiate between the COVID-19-positive and 
COVID-19-negative datasets, we trained GANs to transform 
COVID-19-negative radiographs to resemble COVID-19-positive 
radiographs and vice versa. This technique should capture a broader 
range of features than saliency maps, as the GANs are optimized 
to identify all possible features that differentiate the datasets. 
Consistent with our knowledge of how radiologists detect evidence 
of COVID-19 in chest radiographs, the GAN increases the radi-
opacity or radiolucency of the lung fields bilaterally to respectively 
add or remove evidence of COVID-19, indicating that neural net-
work models are capable of learning genuine markers of COVID-19 
(Fig. 2b, blue boxes and Supplementary Figs. 8 and 9). However, 
the generative networks frequently add or remove laterality markers 
and annotations (Fig. 2b, solid red boxes), reinforcing our observa-
tion from saliency maps that these spurious confounds also enable 
ML models to differentiate the COVID-19-positive and COVID-
19-negative radiographs. The generative networks additionally 
alter the radiopacity of image borders (Fig. 2b, dashed red boxes),  
supporting our previous assertion that systematic, dataset-level 
differences in patient positioning and radiographic projection pro-
vide an undesirable shortcut for ML models to detect COVID-19. 
Given this strong evidence that ML models can leverage spurious 
confounds to detect COVID-19, we also investigated the extent to 
which our classifiers, in particular, relied on the features altered by 
the GAN. We found that images transformed by the GANs were 
reliably predicted by the classifiers to be the transformed class rather 
than the original class (Supplementary Fig. 10), demonstrating that 
the majority of features used by our classifiers were altered by the 
GAN; that is, the features identified by the GAN are approximately 
a superset of those used by the classifiers. Thus, the image transfor-
mations from the GANs enable us to see hypothetical versions of the 
same radiographs that would have caused our classifiers to predict 
the opposite COVID-19 status.

Experimental validation of factors identified by interpretability 
methods. We next aimed to experimentally validate the impor-
tance of spurious confounds to our models by manually modifying 
key features (Fig. 3a,b). We first swapped laterality markers from 
a COVID-19-positive and COVID-19-negative image, and found 
that introduction of a laterality marker more common in COVID-
19-positive images increased the models’ predicted odds that the 
patient had COVID-19, while the converse also held. As a control, 
we compared to randomly swapped image patches of the same size 
and found that the change in model output from swapping lateral-
ity markers is significantly greater than expected by random (Fig. 
3a), indicating that laterality markers are key features leveraged by 
our models to determine a patient’s COVID-19 status. Although 
these markers vary consistently between the datasets (Fig. 4 and 
Supplementary Figs. 7–9), these markers would not reliably indicate 
COVID-19 status in more general settings. We similarly investigated 
the shoulder region of radiographs, which was often highlighted 
as an important feature in our saliency maps (Supplementary Fig. 
7), and found that moving the clavicle region of a radiograph to 
the top border of the radiograph increased the models’ predicted 
odds that the patient has COVID-19 (Fig. 3b and Supplementary 
Fig. 11), suggesting that the models leverage the consistent but 
medically irrelevant difference in patient positioning between the 
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Fig. 4 | Average images from the four repositories used to construct 
datasets in this study, demonstrating systematic differences between the 
radiograph repositories that could be exploited by AI systems. Solid red 
boxes indicate systematic differences in laterality markers that are visible 
in the average images. Dashed red boxes indicate systematic differences in 
the radiopacity of the image borders, which could arise from variations in 
patient position, radiographic projection or image processing.
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COVID-19-negative and COVID-19-positive data sources. To ver-
ify whether these findings held on a population basis, we sampled 
a random subset of the radiographs and repeated our experiments 
involving the swapping of laterality markers and movement of the 
shoulder region (Supplementary Fig. 12), which confirmed that our 
models indeed leverage these shortcuts throughout the dataset.

Shortcuts have a variable effect on generalization. Importantly, 
some shortcuts will impair generalization performance, but other 
shortcuts will not. While the large generalization gap is explained 
well by shortcut learning, a portion of the remaining external 
test set performance may still be due to shortcuts that happen to  
generalize for our datasets. Both types of shortcut are undesirable, 
because even those that generalize between our datasets may not 
consistently generalize to other settings, and the use of clinical 
rather than strictly radiological information extracted from these 
radiographs may be redundant, depending on the clinical workflow.

To analyse which shortcuts may contribute to poor generaliza-
tion, we considered clinical metadata (Supplementary Table 1) and 
average images from each repository (Fig. 4). Among the shortcuts 
that do not generalize are the textual markers, which were clearly 
identified by our explainability approaches as important for predic-
tion of COVID-19 but appear differently in the COVID-19-negative 
and COVID-19-positive images from each repository (Fig. 4). In 
addition, the radiographic projection, which may contribute to (but 
does not completely explain) the importance of the image edges and 
shoulder position, does not generalize between the datasets (Fig. 1b, 
‘% AP images’ row) and therefore may contribute to poor general-
ization performance.

Among the shortcuts that do generalize (at least between our 
datasets) are aspects of patient positioning that do not result from 
the radiographic projection. These aspects of patient positioning 

also probably contribute to the previously observed importance of 
image edges and shoulder position, and they maintain a consistent 
relationship with COVID-19-negative and COVID-19-positive 
radiographs in each dataset (Fig. 4), despite the inconsistent rela-
tionship of the radiographic projection with COVID-19 status. An 
additional factor that may generalize well is patient sex, because, 
within both datasets, a higher proportion of males were COVID-
19-positive (Supplementary Table 1). Taken together with our 
observation that half of our models’ performance is attributable 
to confounds that do not generalize well, we conclude that only a 
minority of our models’ performance is attributable to monitoring 
for genuine COVID-19 pathology.

Given that radiographic projection and patient sex are diffusely 
represented in radiographs and therefore less clearly pointed out by 
our explainability approaches, we also validated whether our mod-
els could leverage these factors as shortcuts. We reasoned that, for 
a model to be able to leverage these concepts as shortcuts, the same 
model (when retrained) must be able to predict these concepts well. 
Indeed, our models accurately predict both the radiographic pro-
jection and patient sex for both internal and external test data (Fig. 
5), which supports that these concepts are easily learned and avail-
able to be leveraged as shortcuts. Considering that these concepts 
are easily learned and are also predictive of COVID-19 status (that 
is, they are correlated with COVID-19 in our datasets), we judge 
that our networks probably incorporate this information to predict 
COVID-19 status.

Improved data mitigate shortcut learning. Given this strong evi-
dence that neural networks leverage dataset-level differences as 
shortcuts for COVID-19 status, we enquired to what extent this 
issue might be mitigated. Although an initial hypothesis may be that 
the choice of neural network architecture determines the propensity 
for shortcut learning, all architectures that we examined displayed 
similar evidence for shortcut learning, as quantified by the gener-
alization performance (Supplementary Fig. 2). Although our tests 
hinted that data augmentation may help alleviate shortcut learning, 
the effect was small and not statistically significant (Supplementary 
Fig. 2b; external test set ROC-AUC of 0.76 ± 0.04 versus 0.79 ± 0.03 
before and after data augmentation, respectively, when trained on 
dataset I, P = 0.22, U = 6 based on a Mann–Whitney U-test; exter-
nal test set ROC-AUC of 0.70 ± 0.05 versus 0.69 ± 0.05 before and 
after data augmentation, respectively, when trained on dataset II, 
P = 1.00, U = 13 using Mann–Whitney U-test).

In principle, an attractive solution to mitigate shortcut learning 
is to remove the image factors that the models leverage as shortcuts. 
However, in practice, it is difficult to remove all such image fac-
tors. As a simple test case, we enquired whether removing textual 
markers by cropping to the centre 75% of each radiograph would 
reduce shortcut learning and thus improve generalization perfor-
mance. After retraining our models on these cropped radiographs, 
we found that such cropping does not improve generalization 
performance (Supplementary Fig. 13), which naively may suggest 
that these textual markers do not contribute to shortcut learning. 
However, considering the consistent identification of this factor by 
saliency maps, the CycleGANs and manual image modifications 
(Figs. 2a,b and 3a), a more likely explanation is that a multitude 
of redundant shortcuts exist, such that a model may shift its atten-
tion toward other shortcuts in the absence of a particular shortcut. 
Conjecturally, such image attributes could include the size of the 
lung fields relative to the image, the positioning of the scapular 
shadows, the size of the cardiac silhouette, image intensities or tex-
tural features that enable inference of the data source.

Perhaps a more reliable solution to remove the image factors that 
enable shortcut learning is to simply collect data that is less con-
founded. To test this hypothesis, we created a third dataset (dataset 
III) to represent a nearly optimal case, where the COVID-19-positive 
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and -negative cases were taken from the BIMCV-COVID-19+ 
repository and its paired BIMCV-COVID-19− repository (https://
bimcv.cipf.es/bimcv-projects/bimcv-covid19/), respectively, which 
were collected from the same hospitals over the same time period 
(Supplementary Fig. 14). If this near-optimal dataset solved the 
‘shortcut problem’, then we would expect that models trained on 
these data may (1) attain higher performance on an external test 
set, because bona fide pathology should transfer between data-
sets while shortcuts may or may not, and (2) exhibit a lower gen-
eralization gap, in the sense that performance on an internal test 
set would not as drastically misrepresent the true performance, as 
measured on external data. We trained models to detect COVID-19 
in dataset III and then tested these models on external data from 
dataset I, and compared these results to models that were trained 
on dataset II and tested on dataset I. Despite that dataset III con-
tains ~1/20th the images of dataset II, it attains significantly higher 
performance on external data (Fig. 6), and exhibits little generaliza-
tion gap (Supplementary Fig. 15), suggesting that collection of less 
confounded data indeed alleviates the issue of shortcut learning. 
Furthermore, saliency maps for the model trained on dataset III 
tend to attribute more importance to the lung fields, where COVID-
19 pathology would be expected, than to potentially confounding 
regions, as compared to the equivalent saliency maps generated for 
the model trained on dataset II (Supplementary Fig. 16), although 
the saliency maps still show some attention toward shortcuts. Taken 
together, these findings argue for careful collection of data so as to 
minimize the potential for shortcut learning, with continued caution 
that improved data collection may only partially solve the problem.

Discussion
ML models that were built and trained in the manner of recent stud-
ies generalize poorly and owe the majority of their performance to 
the learning of shortcuts. This undesired behaviour is due partially 
to the synthesis of training data from separate datasets of COVID-
19-negative and COVID-19-positive images, which introduces 
near worst-case confounding and thus abundant opportunity for 
models to learn these shortcuts. Importantly, because undesirable 
‘shortcuts’ may be consistently detected in both internal and exter-
nal domains, our results warn that external test set validation alone 
may be insufficient to detect poorly behaved models.

Previous studies also audited AI systems for the detection of 
COVID-19 in radiographs, with mixed success at identification 

of shortcuts. In a simple yet clever approach, one study found that 
models retain high performance when examining only the bor-
ders of radiographs, such that genuine COVID-19 pathology was 
removed from the images31. This study concurs with our findings 
but comments primarily on the possibility of this issue rather than 
its occurrence in the wild, though it is nonetheless alarming. The 
study that introduces the COVID-Net model also audits its model, 
using a saliency map approach known as ‘GSInquire’, but, in con-
trast, does not identify evidence of shortcut learning in a set of 
three published images4. Given the similarity of that study’s train-
ing data to our own dataset I and the large generalization gap that 
we observe with the same architecture, we suspect that shortcut 
learning probably did occur, and it remains unclear whether audit-
ing decisions about additional radiographs beyond the three pre-
sented would have revealed evidence of shortcut learning or if the 
GSInquire approach, which is not available through a public-facing 
repository, fails to identify the shortcuts. A number of other stud-
ies that involve datasets with severe confounding between pathol-
ogy and image source3,5–8 similarly audit their models using saliency 
map approaches (most prominently, the Grad-CAM approach43) 
and report findings on one to three radiographs, without noting 
evidence of shortcut learning. Based on this pattern, we recom-
mend that researchers examine and report results from explainable 
AI or saliency map approaches on a population level, employing a 
sampling-based approach as necessary, and to remain sceptical of 
high performances in the absence of external validation. Moreover, 
we find that population-level audits using saliency maps are highly 
labour-intensive to perform in a rigorous manner and may depend 
on domain knowledge, which motivates future approaches for 
explainable AI in medical imaging that simplify population-level 
analysis.

Our findings support common-sense solutions to alleviate short-
cut learning in AI systems for radiographic COVID-19 detection, 
including (1) improved collection of training data, that is, data in 
which radiographs are collected and processed in a way matching 
the target population of a future AI system and (2) improved choice 
of the prediction task to involve more clinically relevant labels, 
such as a numeric quantification of the radiographic evidence for 
COVID-1927,44. However, we demonstrate that shortcut learning 
may occur even in a more ideal data collection scenario, highlight-
ing the importance of explainable AI and principled external vali-
dation. Although AI promises eventual benefits to radiologists and 
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their patients, our findings demonstrate the need for continued cau-
tion in the development and adoption of these algorithms9.

Methods
Model architecture and training procedure. For our primary neural network, we 
used a convolutional neural network with the DenseNet-121 architecture to predict 
the presence versus absence of COVID-1914. This architecture has not only been 
used in a variety of recent models for COVID-19 classification4,5, but has also been 
used for the diagnosis of non-COVID pneumonia34,39, as well as for more general 
radiographic classification45.

Following the approach in recent COVID-19 models4,5, we first pre-trained 
the model on ImageNet, a large database of natural images46. Forcing models to 
first learn general image features should also serve as an inductive bias to prevent 
overfitting on domain-specific features34. After ImageNet pre-training, the final 
1,000-node classification layer of the trained ImageNet model was removed and 
replaced by a 15-node layer, corresponding to the 14 pathologies recorded in 
the ChestX-ray14 dataset plus an additional node corresponding to COVID-
19 pathology. Only the prediction for COVID-19 was used for evaluating the 
model, but we followed previous works that showed simultaneous learning of 
multiple tasks was useful for achieving the highest predictive performance39. To 
obtain a consistent label scheme, labels in the GitHub-COVID, PadChest and 
BIMCV-COVID-19+ repositories were mapped to the 14 ChestX-ray14 categories.

The model was optimized end to end using mini-batch stochastic gradient 
descent with a batch size of 16, momentum parameter of 0.9, weight decay of 10−4 
and learning rate of 0.01, which was decreased by a factor of 10 every five epochs. 
We chose a binary cross-entropy loss as the optimization criterion. To prevent 
overfitting, we monitored the area under the ROC curve (AUC) for COVID-19 
classification on a held-out validation set, and chose the epoch with the highest 
validation AUC as the final model. All models were trained for 30 epochs, which was 
long enough for all models to reach a maximum in the validation AUC. All models 
were trained using the PyTorch software library47, version 1.4, on NVIDIA RTX 2080 
TI graphics processing units and required ~5 h of training time per replicate.

We also examined three architectures that were designed in previous 
publications specifically for the task of COVID-19 detection, with the hypothesis 
that these specialized architectures may better learn genuine COVID-19 
pathology and generalize better to external data. These architectures were 
CV19-Net20, DarkCovidNet6 and COVID-Net4. We trained these models 
on datasets I and II, following the image preprocessing procedures, data 
augmentation pipelines and optimization schemes used in the original 
publications (we note that although dataset I is analogous to the original datasets 
used to train DarkCovidNet and COVID-Net, CV19-Net was trained on data 
that are not publicly available). For both CV19-Net and DarkCovidNet, the base 
architectures were downloaded from the torchvision library47, then modified to 
match the descriptions in each respective paper. The COVID-Net network was 
adapted from an open-source, PyTorch implementation (by Ilias Papastratis; 
https://github.com/iliasprc/COVIDNet). For the CV19-Net paper, the data 
augmentation pipeline was altered to match the pipeline in the original paper: 
when loading images, each radiograph is additionally randomly flipped with 
probability 0.5 then rotated between −30° and 30°. To disentangle performance 
differences due to the ensembling present in the CV19-Net architecture from 
performance differences due to the change in data augmentation, we also 
trained a single DenseNet-121 model with the same data augmentation steps as 
CV19-Net. In the case of CV19-Net and DarkCovidNet, we maintained the same 
multilabel classification task (that is, the 14 ChestX-ray14 labels plus a label for 
COVID-19) to facilitate optimal comparison between architectures. In the case 
of the COVID-Net architecture, due to problems with vanishing and exploding 
gradients when using the full multilabel classification task, we reduced our 
full label set to only the three labels used in the COVID-Net paper (COVID-
19 Pneumonia, Non-COVID Pneumonia, No Pneumonia). We also trained 
additional, popular architectures that were not tailored specifically for C 
OVID-19 detection, including MobileNetv221 and ResNeXt-5022. These  
networks were again modified from the ImageNet-pretrained base models in  
the torchvision library47. We trained these architectures using the same 
preprocessing scheme and optimization parameters as for our DenseNet-121 
models, again replacing the standard, 1,000-label classification layers with an 
analogous layer for our 15 labels.

To test the hypothesis that lower-capacity models may not learn spurious 
correlations36, we also trained two lower-capacity models. The first, an AlexNet 
model15, was trained in the same manner as the DenseNet-121, with the weights 
randomly initialized rather than pretrained on ImageNet. The second was a 
logistic regression with ‘deep features’: because individual pixels do not have stable 
semantic meaning over different samples in the dataset, we first extract a set of 
1,024 higher-level features using the feature embedding (that is, the activations 
of the penultimate layer) of a DenseNet-121 trained on ImageNet and then fit 
a logistic regression to these fixed features. This procedure is accomplished by 
training the DenseNet-121 architecture with the weights of its feature embedding 
subnetwork frozen. The AlexNet and logistic regression were optimized using the 
same training parameters as the full DenseNet-121 model specified above. The 

fact that lower-capacity models did not generalize better in our setting may be due 
to the fact that Sagawa et al. focus on a reweighted training scheme36, while our 
models were trained to minimize empirical risk to replicate the training schemes 
used by recent COVID-19 detection models (see above).

Datasets and preprocessing. To train and evaluate our models, we combined 
images from five large open-access repositories of chest radiographs into three 
datasets (Fig. 1a and Supplementary Table 1). The first, which we refer to as dataset 
I, was designed to replicate the datasets used to develop and evaluate the most 
popular COVID-19 diagnostic models4. In this dataset, we collected COVID-
19-negative images from the NIH ChestX-ray14 repository, representing 112,120 
radiographs from 30,805 patients from the NIH Clinical Center24. We collected 
COVID-19-positive images from the GitHub-COVID repository23 (commit ID 
9b9c2d5; https://github.com/ieee8023/covid-chestxray-dataset/commit/9b9c2d5), 
representing 408 radiographs from 262 patients, where the data were originally 
collected from figures in scientific publications and assorted web sources of 
COVID-19-positive cases.

The second dataset, which we refer to as dataset II, was designed to represent 
a more ideal case in terms of domain confounding—both COVID-19-positive and 
COVID-19-negative images were acquired from hospitals from a common region 
and were published by a shared research team. We collected COVID-19-negative 
images from the PadChest repository, representing 96,270 radiographs from 63,939 
patients from a hospital in Valencia, Spain29. The COVID-19-positive images in 
our dataset were taken from the BIMCV-COVID-19+ dataset (version 1), which 
represents 1,596 images from 1,015 patients (after exclusions), from the same 
regional hospital system in Valencia, Spain30. We note that while PadChest and 
BIMCV-COVID-19+ originate from the same region, potential for confounding 
remains, because (1) PadChest was collected from a single hospital whereas 
BIMCV-COVID-19+ was collected from multiple hospitals and (2) the repositories 
were collected over different time periods, over which image acquisition 
techniques may have changed.

The third dataset, referred to as dataset III, was designed to represent 
the most ideal case in terms of domain confounding. Unlike dataset II, the 
COVID-19-positive and COVID-19-negative images were collected not only 
from the same region, but also from the same hospitals and over the same time 
period. Like dataset II, the COVID-19-positive images were collected from the 
BIMCV-COVID-19+ repository. The COVID-19-negative images were taken from 
the corresponding BIMCV-COVID-19− repository, which includes 3,086 images 
from 2,327 patients (after exclusions).

Following the recommendations by Cohen et al.48, we filtered radiographs from 
the online repositories to include only PA and upright AP radiographs. Lateral 
radiographs, AP supine radiographs, radiographs with unknown projections and 
computed tomography scans were excluded from the datasets. Images with absent 
radiographic windowing information, which was necessary to display radiographs 
from the BIMCV-COVID-19+ and BIMCV-COVID-19− repositories, were also 
excluded.

We partitioned each repository into training, validation and test folds, 
ensuring that all radiographs of any given patient belong to a single fold. Because 
the ChestX-ray14 dataset specifies a ‘test’ partition, we used these radiographs 
as part of our dataset I test fold. Of the remaining portion, 5% were reserved as 
a validation fold, while the rest were used directly for training. In the PadChest, 
BIMCV-COVID-19+ and BIMCV-COVID-19− repositories, we reserved 5% of 
the radiographs for testing and 5% of the remaining radiographs for validation. 
Owing to the smaller size of the GitHub-COVID repository, we reserved 10% of 
the radiographs for testing and 10% of the remaining radiographs for validation. 
With the exception of the ChestX-ray14 test fold, which was held fixed as explained 
above, the folds were drawn at random for each model replicate.

Model interpretability using saliency maps. To generate saliency maps, which 
enable interpretation of machine learning models by assigning importance values 
to each pixel of an input image, we apply a state-of-the-art approach known as 
‘Expected Gradients’19. Broadly, this approach captures the notion of ‘importance’ 
by tracking how each pixel of an image impacts the output of the model when 
contrasted with a set of non-informative baseline examples, where the impact is 
measured by accumulating the model’s gradients (a mathematical measure of a 
model’s sensitivity to small changes in a feature) as the image is interpolated from 
the baseline example to the image of interest. Formally, the Expected Gradients 
attribution ϕ for an input sample x and input feature i is defined as

ϕi(x) := Ex′∼D,α∼U(0,1) [ (xi − x′) × δf(x′ + α × (x − x′))
δxi

] (1)

where D represents a background distribution from which reference samples x′ are 
drawn, f represents the model, and the parameter α enables interpolation between 
the baseline x′ and the input sample x. This method is an extension of the popular 
saliency map approach ‘Integrated Gradients’, which is the special case of Expected 
Gradients in which there is only a single reference sample.

For our application, Expected Gradients improves over Integrated Gradients in 
terms of the accuracy of its saliency maps19 and the inclusion of multiple reference 
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samples, which avoids the choice of a single reference that may be arbitrary but 
nonetheless impactful upon the resultant saliency maps49. Finally, path-based 
approaches like Expected Gradients and Integrated Gradients are preferable 
to other methods for generating saliency maps because they are theoretically 
principled: these methods are provably guaranteed to attribute importance to 
important pixels and guaranteed not to attribute importance to unimportant pixels 
(Supplementary Note 1) 16.

As the background distribution D for Expected Gradients, we used the 
COVID-19-negative images from the training dataset for each model we explain. 
Intuitively, we are explaining how the output of our model for our input image x 
differs on average from the output of the model for images in the training data 
D. We demonstrate that Expected Gradients is not overly sensitive to choice of 
D by comparing the saliency maps for several radiographs with a background 
distribution of images from the training data to attributions for those same 
radiographs with a background distribution of images from the external dataset, 
and find that the resultant attributions are similar (Supplementary Fig. 17).

Data interpretability using CycleGAN. To attain visual explanations of the 
differences between COVID-19-positive and COVID-19-negative images in each 
dataset, we aimed to understand which characteristics of the chest radiograph 
would have to change to make a COVID-19-negative image appear to be a 
COVID-19-positive image, and vice versa. Formally, let X  be a domain of  
COVID-19-negative images and let Y be a domain of COVID-19-positive images. 
Our goal is to learn a mapping G : X �→ Y that takes a COVID-19-negative chest 
radiograph, X ∈ X , and transforms it so that it is indistinguishable from  
COVID-19-positive chest radiographs. We also aim to learn the inverse 
transformation, F : Y �→ X .

Because GANs have previously been shown to be effective for the 
interpretation of neural networks, we learn these two transformations using 
the CycleGAN approach17,18. The mappings G and F are learned by two neural 
networks, which are optimized in conjunction with two discriminator networks 
DY and DX. These networks are optimized to minimize a series of losses. The first, 
referred to as the adversarial loss, encourages the mapping functions G and F to 
match the distribution of generated images from each source domain to the true 
data distribution of each target domain:

LGAN(G, DY ,X ,Y) = EY∼pdata(Y)[logDY(Y)] + EX∼pdata(X)[log (1 − DY(G(X)) ]
(2)

LGAN(F, DX ,Y ,X ) = EX∼pdata(X)[logDX (X)] + EY∼pdata(Y)[log (1 − DX (F(Y)) ]
(3)

where pdata(X) and pdata(Y) represent the data distributions for each domain. In 
addition to the adversarial loss, the networks are also trained to enforce cycle 
consistency, meaning that F(G(X)) = X. This is desirable, because it enforces a 
similarity between the original and transformed images. The loss here is

Lcyc(G, F) = EX∼pdata(X)[||F(G(X)) − X||1] + EY∼pdata(Y)[||G(F(Y)) − Y||1] (4)

The full loss that is optimized then is simply the sum of these three losses:

L = LGAN(G, DY ,X ,Y) + LGAN(F, DX ,Y ,X ) + Lcyc(G, F) (5)

To understand which image features are important in distinguishing the 
domains X  and Y, we transform a COVID-19-negative radiograph X ∈ X  or a 
COVID-19-positive radiograph Y ∈ Y using the learned generator networks G 
or F to map the image to the opposite domain. We then compare which image 
features are changed in the transformation.

Our CycleGAN networks were implemented in Python 3.7 using the PyTorch 
software library and an open-source implementation of the CycleGAN approach 
(by Aitor Ruano; https://github.com/aitorzip/PyTorch-CycleGAN). To attain 
comparable training time, the networks were trained for 3,000 epochs (dataset I) 
or 1,000 epochs (dataset II). Each network required approximately one week of 
training time on an NVIDIA RTX 2080 graphics processing unit.

Experimental validation of feature attributions. We experimentally validated 
our findings from saliency maps and GANs by modifying important radiographic 
features. To detect whether the higher-level features that our saliency maps 
highlight are major contributors to the model’s classification, we used methods 
inspired by a behavioural testing approach50. For example, saliency maps highlight 
dataset-specific laterality markers and text within the images. If these text markers 
are indeed important, then moving a marker from a COVID-19-positive image to 
a COVID-19-negative image should increase the predicted log odds of COVID-
19. For a pair of COVID-19-positive and COVID-19-negative images, we swap 
the text markers and measure the change in the output for each image. To assess 
the significance of the change in the model’s output at the level of each individual 
image, we generate empirical P values by comparing to a null distribution generated 
by swapping 1,000 random patches of each image of the same dimensions as the 
text markers (Fig. 3a). We conduct a similar experiment to validate whether the 
shoulder regions frequently highlighted in the saliency maps have a significant 

impact on the model’s decisions. We observe that the shoulder region of COVID-
19-positive images tends to appear at the upper image border, while the shoulder 
region of COVID-19-negative images appears slightly lower. Furthermore, the 
saliency maps highlight the clavicles and shoulders of the COVID-19-positive 
images, but not of the COVID-19-negative images. We hypothesized that the model 
was looking for the presence of shoulders in the upper corners of the image. To 
test our hypothesis, we moved the clavicles and shoulders of a COVID-19-negative 
image to the top corners of the radiograph and measured the change in model 
output (Fig. 3b). We tested for statistical significance at the level of individual 
images by generating empirical P values. Our distribution was generated by 
randomly sampling and replacing 1,000 patches of the same size as the shoulder 
region, following the same procedure as described for the laterality markers.

To verify the significance of these regions for our models at a population 
level, we repeated the procedure described in the paragraph above for a sample 
of randomly selected radiographs from the datasets (Supplementary Fig. 12). For 
the dataset-specific laterality markers (Supplementary Fig. 12, left), we randomly 
sampled 10 COVID-19-negative images with laterality or other text markers and 
10 COVID-19-positive images with laterality or other text markers. To test for the 
significance of the text markers across the datasets, we used a Wilcoxon signed 
rank test to compare the distribution of the magnitudes of changes in model 
output after swapping the text markers to the distribution of the magnitudes of 
the average changes in model output after swapping 1,000 random patches of 
the same size (P = 8.86 × 10−5, Siegel’s T statistic = 0.0). For the positioning of the 
shoulder regions (Supplementary Fig. 12, right), we randomly sampled 20 COVID-
19-negative images. We then used a Wilcoxon signed rank test to compare the 
distribution of changes in model output after moving the clavicles and shoulder 
regions to the top of the image with the distribution of the average changes in 
model output after moving 1,000 random patches of the same size (P = 8.86 × 10−5, 
Siegel’s T statistic = 0.0).

Statistics. In our experiments involving manual modification of radiographs (Fig. 
3a,b and Supplementary Fig. 11), we computed empirical P values by first generating 
the distribution of the change in the model output (in log odds space) for a set of 
random, non-specific modifications as described in each caption. The P value was 
then calculated as (r + 1)/(n + 1) where r is the number of non-specific modifications 
that produced a greater increase in model output (greater magnitude decrease in  
Fig. 3a, top row) and n is the total number of non-specific modifications51.

To compare the generalization performance of models (for example, Fig. 6), we 
performed a two-tailed Mann–Whitney U-test, given that the ROC-AUC values 
are bounded by 0 and 1 and therefore unlikely to be normally distributed.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.

Data availability
All radiographs are compiled from publicly available data repositories. 
The ChestX-ray14 repository is available at https://nihcc.app.box.com/v/
ChestXray-NIHCC. The GitHub-COVID dataset is available at https://github.com/
ieee8023/covid-chestxray-dataset. The PadChest repository is available at https://
bimcv.cipf.es/bimcv-projects/padchest/. The BIMCV-COVID19 repositories are 
available at https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/.

Code availability
All of the code necessary to reproduce our experimental findings can be found 
at https://github.com/suinleelab/cxr_covid (archived at https://doi.org/10.5281/
zenodo.4623792).
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