Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Synthetic biology for the engineering of complex wine yeast communities

Abstract

Wine fermentation is a representation of complex higher-order microbial interactions. Despite the beneficial properties that these communities bring to wine, their complexity poses challenges in predicting the nature and outcome of fermentation. Technological developments in synthetic biology enable the potential to engineer synthetic microbial communities for new purposes. Here we present the challenges and applications of engineered yeast communities in the context of a wine fermentation vessel, how this represents a model system to enable novel solutions for winemaking and introduce the concept of a ‘synthetic’ terroir. Furthermore, we introduce our vision for the application of control engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Management of mixed-species wine ferments is more complex than single-species ferments.
Fig. 2: A model fermentation vessel may house a multiplexed community that includes engineered yeast strains with defined roles.

Similar content being viewed by others

References

  1. Pretorius, I. S. Tasting the terroir of wine yeast innovation. FEMS Yeast Res. https://doi.org/10.1093/femsyr/foz084 (2020).

  2. Bartle, L., Sumby, K., Sundstrom, J. & Jiranek, V. The microbial challenge of winemaking: yeast-bacteria compatibility. FEMS Yeast Res. https://doi.org/10.1093/femsyr/foz040 (2019).

  3. Fleet, G. H. Yeast interactions and wine flavour. Int. J. Food Microbiol. 86, 11–22 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Denby, C. M. et al. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat. Commun. 9, 965 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Lee, D., Lloyd, N. D., Pretorius, I. S. & Borneman, A. R. Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion. Microbial Cell Factories 15, 49 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Timmins, J. B., Kroukamp, H., Paulsen, I. T. & Pretorius, I. S. The sensory significance of apocarotenoids in wine: importance of carotenoid cleavage dioxygenase 1 (CCD1) in the production of beta-ionone. Molecules https://doi.org/10.3390/molecules25122779 (2020).

  7. Goold, H. D. et al. Yeast’s balancing act between ethanol and glycerol production in low-alcohol wines. Microb. Biotechnol. 10, 264–278 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Conacher, C. G. et al. The ecology of wine fermentation: a model for the study of complex microbial ecosystems. Appl. Microbiol. Biotechnol. 105, 3027–3043 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. McCarty, N. S. & Ledesma-Amaro, R. Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol. 37, 181–197 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stovicek, V., Borodina, I. & Forster, J. CRISPR-Cas system enables fast and simple genome editing of industrial saccharomyces cerevisiae strains. Metabolic Eng. Commun. 2, 13–22 (2015).

    Article  Google Scholar 

  11. Brenner, K., You, L. & Arnold, F. H. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 26, 483–489 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Tsoi, R. et al. Metabolic division of labor in microbial systems. Proc. Natl Acad. Sci. USA 115, 2526–2531 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hays, S. G., Patrick, W. G., Ziesack, M., Oxman, N. & Silver, P. A. Better together: engineering and application of microbial symbioses. Curr. Opin. Biotechnol. 36, 40–49 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Conacher, C. G., Naidoo-Blassoples, R. K., Rossouw, D. & Bauer, F. F. Real-time monitoring of population dynamics and physical interactions in a synthetic yeast ecosystem by use of multicolour flow cytometry. Appl. Microbiol. Biotechnol. 104, 5547–5562 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Vega, N. M. & Gore, J. Simple organizing principles in microbial communities. Curr. Opin. Microbiol. 45, 195–202 (2018).

    Article  PubMed  Google Scholar 

  17. Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).

    Article  PubMed  Google Scholar 

  18. Gorter, F. A., Manhart, M. & Ackermann, M. Understanding the evolution of interspecies interactions in microbial communities. Phil. Trans. R. Soc. B. 375, 20190256 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rodriguez-Verdugo, A. & Ackermann, M. Rapid evolution destabilizes species interactions in a fluctuating environment. ISME J. 15, 450–460 (2021).

    Article  PubMed  Google Scholar 

  20. Avramova, M. et al. Brettanomyces bruxellensis population survey reveals a diploid–triploid complex structured according to substrate of isolation and geographical distribution. Sci. Rep. 8, 4136 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. Du Toit, M. & Pretorius, I. Microbial spoilage and preservation of wine: using weapons from nature’s own arsenal—a review. S. Afr. J. Enol. Vitic. 21, 74–96 (2000).

    Google Scholar 

  22. Mannazzu, I. et al. Yeast killer toxins: from ecological significance to application. Crit. Rev. Biotechnol. 39, 603–617 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Chessa, R. et al. Biotechnological exploitation of Tetrapisispora phaffii killer toxin: heterologous production in Komagataella phaffii (Pichia pastoris). Appl. Microbiol. Biotechnol. 101, 2931–2942 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Schoeman, H., Vivier, M. A., Du Toit, M., Dicks, L. M. & Pretorius, I. S. The development of bactericidal yeast strains by expressing the Pediococcus acidilactici pediocin gene (pedA) in Saccharomyces cerevisiae. Yeast 15, 647–656 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Borrero, J. et al. Cloning, production, and functional expression of the bacteriocin enterocin A, produced by Enterococcus faecium T136, by the yeasts Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Arxula adeninivorans. Appl. Environ. Microbiol. 78, 5956–5961 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jayaraman, P., Holowko, M. B., Yeoh, J. W., Lim, S. & Poh, C. L. Repurposing a two-component system-based biosensor for the killing of Vibrio cholerae. ACS Synth. Biol. 6, 1403–1415 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Shaw, W. M. et al. Engineering a model cell for rational tuning of GPCR signaling. Cell 177, 782–796.e727 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ostrov, N. et al. A modular yeast biosensor for low-cost point-of-care pathogen detection. Sci. Adv. 3, e1603221 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  29. Meng, Q. et al. Optimization of electrotransformation parameters and engineered promoters for Lactobacillus plantarum from wine. ACS Synthetic Biology 10, 1728–1738 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Badura, J. et al. Development of genetic modification tools for Hanseniaspora uvarum. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22041943 (2021).

  31. Avbelj, M., Zupan, J. & Raspor, P. Quorum-sensing in yeast and its potential in wine making. Appl. Microbiol. Biotechnol. 100, 7841–7852 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Volschenk, H., Viljoen-Bloom, M., Subden, R. E. & van Vuuren, H. J. Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae. Yeast 18, 963–970 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Carpenter, A. C., Paulsen, I. T. & Williams, T. C. Blueprints for biosensors: Design, limitations, and application. Genes https://doi.org/10.3390/genes9080375 (2018).

  34. Krstic, M. P., Johnson, D. L. & Herderich, M. J. Review of smoke taint in wine: smoke-derived volatile phenols and their glycosidic metabolites in grapes and vines as biomarkers for smoke exposure and their role in the sensory perception of smoke taint. Aust. J. Grape Wine Res. 21, 537–553 (2015).

    Article  CAS  Google Scholar 

  35. Morcillo-Parra, M. Á., Beltran, G., Mas, A. & Torija, M.-J. Determination of melatonin by a whole cell bioassay in fermented beverages. Sci. Rep. 9, 9120 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  36. Dixon, T. A., Williams, T. C. & Pretorius, I. S. Bioinformational trends in grape and wine biotechnology. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2021.05.001 (2021).

  37. Dixon, T. A., Williams, T. C. & Pretorius, I. S. Sensing the future of bio-informational engineering. Nat. Commun. 12, 388 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Grandel, N. E., Reyes Gamas, K. & Bennett, M. R. Control of synthetic microbial consortia in time, space, and composition. Trends Microbiol. https://doi.org/10.1016/j.tim.2021.04.001 (2021).

  40. Johns, N. I., Blazejewski, T., Gomes, A. L. & Wang, H. H. Principles for designing synthetic microbial communities. Curr. Opin. Microbiol. 31, 146–153 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen, M.-T. & Weiss, R. Artificial cell–cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana. Nat. Biotechnol. 23, 1551–1555 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Khakhar, A., Bolten, N. J., Nemhauser, J. & Klavins, E. Cell–cell communication in yeast using auxin biosynthesis and auxin responsive CRISPR transcription factors. ACS Synth. Biol. 5, 279–286 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Hennig, S. et al. New approaches in bioprocess-control: consortium guidance by synthetic cell–cell communication based on fungal pheromones. Eng. Life Sci. 18, 387–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Williams, T. C. et al. Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae. Metab. Eng. 29, 124–134 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Billerbeck, S. et al. A scalable peptide–GPCR language for engineering multicellular communication. Nat. Commun. 9, 5057 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Hennig, S., Clemens, A., Rödel, G. & Ostermann, K. A yeast pheromone-based inter-species communication system. Appl. Microbiol. Biotechnol. 99, 1299–1308 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Terrell, J. L. et al. Bioelectronic control of a microbial community using surface-assembled electrogenetic cells to route signals. Nat. Nanotechnol. 16, 688–697 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Tschirhart, T. et al. Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling. Nat. Commun. 8, 14030 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Milias-Argeitis, A., Rullan, M., Aoki, S. K., Buchmann, P. & Khammash, M. Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth. Nat. Commun. 7, 12546 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lalwani, M. A., Kawabe, H., Mays, R. L., Hoffman, S. M. & Avalos, J. L. Optogenetic control of microbial consortia populations for chemical production. ACS Synth. Biol. 10, 2015–2029 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Bhokisham, N. et al. A redox-based electrogenetic CRISPR system to connect with and control biological information networks. Nat. Commun. 11, 2427 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dozon, N. M. & Noble, A. C. Sensory study of the effect of fluorescent light on a sparkling wine and its base wine. Am. J. Enol. Viticult. 40, 265 (1989).

    Google Scholar 

  53. Shou, W., Ram, S. & Vilar, J. M. Synthetic cooperation in engineered yeast populations. Proc. Natl Acad. Sci. USA 104, 1877–1882 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rovner, A. J. et al. Recoded organisms engineered to depend on synthetic amino acids. Nature 518, 89–93 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Biava, H. D. Tackling Achilles’ heel in synthetic biology: pairing intracellular synthesis of noncanonical amino acids with genetic-code expansion to foster biotechnological applications. ChemBioChem 21, 1265–1273 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Yang, Y., Nemhauser, J. L. & Klavins, E. Synthetic bistability and differentiation in yeast. ACS Synth. Biol. 8, 929–936 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Aditya, C., Bertaux, F., Batt, G. & Ruess, J. A light tunable differentiation system for the creation and control of consortia in yeast. Nat. Commun. 12, 5829 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Del Vecchio, D., Dy, A. J. & Qian, Y. Control theory meets synthetic biology. J. Roy. Soc. Interface https://doi.org/10.1098/rsif.2016.0380 (2021).

  59. Perrino, G., Hadjimitsis, A., Ledesma-Amaro, R. & Stan, G. B. Control engineering and synthetic biology: working in synergy for the analysis and control of microbial systems. Curr. Opin. Microbiol. 62, 68–75 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Markley, L. & Crassidis, J. Fundamentals of Spacecraft Attitude Determination and Control (Springer, 2014).

  61. Briat, C., Gupta, A. & Khammash, M. Antithetic integral feedback ensures robust perfect adaptation in noisy biomolecular networks. Cell Systems 2, 15–26 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Lindemann, S. R. et al. Engineering microbial consortia for controllable outputs. ISME J. 10, 2077–2084 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fedorec, A. J. H., Karkaria, B. D., Sulu, M. & Barnes, C. P. Single strain control of microbial consortia. Nat. Commun. 12, 1977 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Swiegers, J. H. & Pretorius, I. S. Modulation of volatile sulfur compounds by wine yeast. Appl. Microbiol. Biotechnol. 74, 954–960 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Bell, S.-J. & Henschke, P. A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 11, 242–295 (2005).

    Article  CAS  Google Scholar 

  66. Pretorius, I. S. Conducting wine symphonics with the aid of yeast genomics. Beverages https://doi.org/10.3390/beverages2040036 (2016).

  67. Det-udom, R. et al. Towards semi-synthetic microbial communities: enhancing soy sauce fermentation properties in B. subtilis co-cultures. Microb. Cell Fact. 18, 101 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Bioplatforms Australia, the New South Wales (NSW) Chief Scientist and Engineer and the NSW Government’s Department of Primary Industries for external support for Macquarie University’s Synthetic Biology initiative. Australian Government funding through its investment agency, the Australian Research Council, towards the Macquarie University-led ARC Centre of Excellence for Synthetic Biology is gratefully acknowledged. We thank B. Turner from Serpentine Studio for the original artwork used for the figures. We thank J. Timmins for his helpful discussions during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

R.S.K.W. conceived, developed and wrote the Perspective. I.S.P. helped to refine and develop the concept, and co-wrote this Perspective. I.S.P. conceived, developed and co-produced the figures.

Corresponding authors

Correspondence to Roy S. K. Walker or Isak S. Pretorius.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Vladimir Jiranek, Frank Delvigne and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, R.S.K., Pretorius, I.S. Synthetic biology for the engineering of complex wine yeast communities. Nat Food 3, 249–254 (2022). https://doi.org/10.1038/s43016-022-00487-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-022-00487-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research