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The Russian invasion of Ukraine has destabilized global agri-
cultural markets, triggering food price increases. We present 
scenarios of reduced exports and production affecting both 
countries that increase maize and wheat prices by up to 4.6% 
and 7.2%, respectively. Production expansion in other regions 
can partially compensate for export declines but may increase 
carbon emissions and will exacerbate ongoing global food 
security challenges.

Disruptions in agricultural markets can be the result of events 
such as armed conflicts, trade wars, droughts or climate change1–3. 
Agricultural markets are globally integrated and disturbances can 
trigger changes in price expectations with cascading effects beyond 
the region(s) in crisis4. Higher commodity prices signal to farmers 
in other regions to expand cropland, which usually occurs at the 
expense of land allocated to other crops or grassland/grazing land, 
forest and/or natural vegetation. Land conversion to cropland is 
associated with carbon emissions that contribute to climate change. 
In a feedback loop, climate change affects agricultural production, 
leading to a shift in comparative advantage across countries5,6. 
For example, wheat yields in Russia and Ukraine are expected to 
increase due to climate change and CO2 fertilization, and hence 
unrestricted trade of both countries is important for food security7,8.

The Russian invasion of Ukraine on 24 February 2022 exacer-
bated food insecurity alongside high energy costs and supply-chain 
disruptions arising from the COVID-19 pandemic9,10. To shed light 
on potential medium-term effects of the war between Russia and 
Ukraine and longer-term effects associated with climate change, 
a global agricultural trade model coupled with a carbon account-
ing model is used to assess export and production restrictions in 
Ukraine and/or Russia as well as changes in biofuel policy in the 
European Union and the United States. The effects on crop prices, 
per-capita food consumption and carbon emissions from land-use 
change are quantified for the following scenarios involving crop 
production and exports: (A1) no exports from Ukraine; (A2) no 
exports from Ukraine and 50% export reductions from Russia; (A3) 
no exports from Ukraine and 50% biofuel reduction in the European 
Union and the United States; (A4) 50% reduction in Ukrainian 
crop production but no export restrictions (see Supplementary 
Information for scenario development, additional scenarios and 
sensitivity analysis for the scenarios in the main text). The first two 
scenarios simulate the effects of an inability to export for one or 
both countries, whereas the third scenario quantifies the effect of a 

policy option to compensate for the lack of Ukrainian exports. The 
last scenario can be justified by Ukrainian farmers being unable to 
produce due, for example, to war-induced destruction of infrastruc-
ture and equipment.

The trade model presents results after production adjust-
ments have taken place over a year, and thus does not account 
for short-term spikes. The results focus on countries other than 
Russia and Ukraine due to the difficulty of assessing agricultural 
production in those places given the current situation. In scenario 
A1, ‘no exports from Ukraine’, global maize and wheat prices are 
higher by 3.9% and 3.6%, respectively, compared with the baseline 
(Table 1). Assuming that Russia reduces its grain exports by 50% 
(in addition to no Ukrainian exports), price increases of 4.6% and 
7.2% for maize and wheat, respectively, are observed. Russia is more 
important than Ukraine in exporting wheat, which explains the 
sharper price increase in this scenario. Those increases are lower 
that the 8–22% price surges estimated by the Food and Agricultural 
Organization of the United Nations (FAO)9. This can be explained 
in part by the inclusion of higher inputs costs in the FAO analysis 
as a result of the conflict, and by the reduced capacity of alterna-
tive producers to increase output. Our model assumes full adjust-
ment capacity. The increases are on top of the already elevated and 
rising preconflict levels that were reflecting the difficulty of some 
countries, such as Pakistan and Egypt, to acquire enough food for 
a healthy diet10. The biofuel reduction policies in the presence of 
no Ukrainian exports have a price impact that is substantial for the 
feedstock crops (mostly maize for ethanol and rapeseed for bio-
diesel) but modest for wheat because the supply gap remains due to 
no Ukrainian wheat exports. The supply gap caused by the decline 
in exports is partly closed by an increase in crop production in other 
countries (Table 1). In the ‘no exports’ scenario, some of the major 
wheat-producing countries increase their exports by double-digit 
percentages; these include India (72.4%), the European Union 
(36.1%), the United States (24.2%), and Argentina (11.4%). There 
is also a substantial increase in Australian and Canadian wheat 
exports of 9.4% and 8.6%, respectively. For maize, which is the other 
commodity affected by the war in Ukraine, Brazil and the United 
States increase their exports by 13.8% and 15.6%, respectively.

In scenario A1, ‘no exports from Ukraine’, aggregate (on a caloric 
basis) per-capita consumption of barley, maize, rice, sorghum and 
wheat changes to between −1.2% and 0.1% across countries due to 
price increases (Fig. 1). The range increases to −2.0% to 0.4% if Russian 
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exports are reduced by 50% in addition to no Ukrainian exports. At the 
lower end, the decrease almost doubles because of the importance of 
Russia as a wheat exporter. In scenario A3, ‘no exports from Ukraine 
and 50% biofuel reduction in the European Union and the United 
States’, the range of per-capita food consumption changes to −1.0% 
to 0.3%. In the model region ‘rest of the world’, which contains many 
low-income countries, per-capita food consumption is least changed 
(−0.2%) in the scenario in which the European Union and the United 
States reduce their biofuel use. The reduction in food consumption 
is more pronounced for the individual crops. Maize and wheat con-
sumption is reduced by up to 1.5% (Argentina) and 1.1% (Brazil), 
respectively, without Ukrainian exports. This is in stark contrast to the 
scenario where less biofuel is used in European Union and the United 
States. Per-capita maize consumption increases between 0.6% and 
1.3% in all countries, whereas wheat consumption is still reduced by 
up to 1.0%. The decrease in the food consumption of wheat and maize 
in scenario A1, ‘no exports from Ukraine’, is partially compensated by 
an increase in the consumption of rice. However, this increase for all 
countries is below 0.4%. The region ‘rest of the world’ accounts for 
approximately 2.5 bn people including the world’s poorest. None of the 
scenarios analysed increases their per-capita food consumption. Many 
of those countries, especially in Africa, have low baseline per-capita 
caloric intake, a high number of people in food-insecure situations 
and a high reliance (as a share of total caloric intake) on grains, roots 
and tubers. Thus, even a seemingly small decrease in caloric intake can 
have adverse effects of undernourishment and food security.

To increase production and close the supply gap in scenario A1, 
‘no exports from Ukraine’, major agricultural wheat producers (other 
than Ukraine and Russia) increase crop area. Australia, China, the 

European Union and India increase their wheat area by 1.0%, 1.5%, 
1.9% and 1.2%, respectively. Across the four scenarios analysed, the 
total global cropland area (excluding Ukraine and Russia) increases 
by at least 6.6 Mha (in scenario A3, ‘no exports from Ukraine and 
50% biofuel reduction in the European Union and the United States’) 
and up to 18.2 Mha (in scenario A2, ‘no exports from Ukraine and 
50% export reductions from Russia’). The increase in Brazilian area 
is 1.3 Mha (with maize being responsible for more than half of the 
increase) in the no-Ukrainian-exports scenario, which is problematic 
in view of greenhouse gas (GHG) emissions due to the country’s bio-
mass and soil carbon stock as well as biodiversity11.

Total increase in global crop area (not including Russia and 
Ukraine) is 11.1 Mha, an increase of 1.4% relative to the baseline 
in scenario A1, ‘no exports from Ukraine’. This crop area expan-
sion due to the invasion of Ukraine by Russia can lead to significant 
carbon emissions from land-use change. Using mean carbon coef-
ficients, land-use change emissions are 1,011.2 MtCO2e (Extended 
Data Fig. 1). Land-use change and emissions from Russia and 
Ukraine are excluded in this number because it is difficult to quan-
tify area changes at this point. Thus, the emission numbers men-
tioned represent upper bounds. Compared to other estimates in 
GHG emissions from different macroeconomic developments or 
policy scenarios, the land-use change emissions from the Russian 
invasion into Ukraine are significant. For example, analysing the 
emissions from a 30% reduction in biofuels in the United States and 
the European Union from an increase in fuel efficiency and vehicle 
electrification results in a decrease in emission of between 188.8 
and 468.1 MtCO2e for minimum and maximum carbon coefficients, 
respectively12. The land-use-change-induced emissions are reduced 
to 527.2 MtCO2e if EU and US biofuel use is cut in half.

The increase in maize production in Brazil represents an impor-
tant contribution to the aforementioned carbon emissions. Scenario 
A3, ‘no exports from Ukraine and 50% biofuel reduction in the 
European Union and the United States’, leads to an increase in the 
exports of US maize at the expense of exports from other countries. 
For example, maize exports from Brazil decrease compared to the 
baseline if the United States reduces its biofuel production by 50%. 
This changes the emission profile in Brazil notably (Extended Data 
Fig. 1). There are important reductions in terms of lower GHG from 
land use, although those are not all net gains as less biofuels will lead 
to an increase in fossil fuel use.

While the Russia–Ukraine grain agreement from July 2022 
is a positive development, the situation in Ukraine and the sta-
tus of agricultural exports remains uncertain. The attack on the 
port of Odesa or, potentially, mines in the Black Sea have made 
grain shipments expensive and far below normal (so far, less than 
0.4 Mt). Our analysis presents plausible ranges from no exports to 
some production shortfall from Ukraine to give a sense of impacts 
given the unknown outcome and end of this war. However, it 
assumes that countries are able to respond to price signals by 
increasing production and trade. Yet, drought conditions in South 
America, the decision by major producing countries (for example, 
Argentina and Indonesia) to curb exports of agricultural com-
modities, and high fertilizer costs are exacerbating food insecurity 
in many poor communities. Policy for aiding vulnerable popula-
tions could include domestic food subsidies and the reduction 
or elimination of trade restrictions. The effect of future climate 
change can be mitigated by unrestricted trade, allowing a shift of 
comparative advantage across countries. These and other mul-
tifaceted approaches will be needed in the near and long term13. 
Although price increases are dampened by area and production 
expansions in other countries, this may come at the expense of 
potentially large carbon emissions—highlighting how trade and 
production disruptions in Russia and Ukraine have the double 
impact of compromising global food security and efforts to miti-
gate climate change.

Table 1 | Changes in global commodity prices and production 
(other than from Russia and Ukraine) for the following 
scenarios: no exports from Ukraine (A1), no exports from 
Ukraine and 50% export reduction from Russia (A2), no 
exports from Ukraine and 50% EU and US biofuel reduction 
(A3), and reduction in total cropland (or arable area) in Ukraine 
by 50% (A4)

A1 A2 A3 A4

Price

Barley 5.7% 9.9% 5.7% 5.3%

Maize 3.9% 4.6% −0.8% 2.8%

Oilpalm −0.5% −1.7% −2.7% 0.1%

Rapeseed 5.6% 7.2%− 5.4% 4.1%

Rice 0.3% 0.6% 0.2% 0.4%

Sorghum 0.7% 0.7% 0.0% 0.7%

Soybeans 3.3% 4.3% 3.7% 2.1%

Sunflower 35.9% 62.4% 34.7% 21.8%

Wheat 3.6% 7.2% 3.5% 2.9%

Production

Barley 2.8% 5.2% 3.1% 2.3%

Maize 1.8% 2.3% −0.2% 1.2%

Oilpalm 0.1% −0.1% −0.5% 0.1%

Rapeseed 2.1% 2.8% −2.0% 1.4%

Rice 0.3% 0.6% 0.3% 0.2%

Sorghum 0.8% 1.3% 0.8% 0.5%

Soybeans 1.8% 2.6% 2.0% 1.1%

Sunflower 15.1% 26.7% 14.7% 9.0%

Wheat 1.1% 2.4% 1.1% 0.8%
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Reporting summary. Further information on research design is 
available in the Nature Research Reporting Summary linked to this 
article.

Data availability
All data required to evaluate the conclusions in the paper are 
present in the paper and/or the Supplementary Information. 
The output of the agricultural trade model is available at www.
github.com/foodclimate. The repository also includes the codes 
to generate all results, figures and GHG calculations based on the 
agricultural trade model output. Source data are provided with  
this paper.

Code availability
Details and code for the agricultural trade model are available from 
the corresponding author upon request.
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Fig. 1 | Changes in per-capita food consumption. Aggregated changes in per-capita food consumption on a caloric basis for barley, maize, rice, sorghum 
and wheat for scenarios A1–A4. RU, Russia, UA, Ukraine.
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Extended Data Fig. 1 | Carbon emissions in MMT CO2-e for minimum, mean, and maximum and potential biomass carbon coefficients. The land-use 
change emissions calculations are based on previous research14,15.
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