Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stem cell-based strategies and challenges for production of cultivated meat

Abstract

Cultivated meat scale-up and industrial production will require multiple stable cell lines from different species to recreate the organoleptic and nutritional properties of meat from livestock. In this Review, we explore the potential of stem cells to create the major cellular components of cultivated meat. By using developments in the fields of tissue engineering and biomedicine, we explore the advantages and disadvantages of strategies involving primary adult and pluripotent stem cells for generating cell sources that can be grown at scale. These myogenic, adipogenic or extracellular matrix-producing adult stem cells as well as embryonic or inducible pluripotent stem cells are discussed for their proliferative and differentiation capacity, necessary for cultivated meat. We examine the challenges for industrial scale-up, including differentiation and culture protocols, as well as genetic modification options for stem cell immortalization and controlled differentiation. Finally, we discuss stem cell-related safety and regulatory challenges for bringing cultivated meat to the marketplace.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cell sources and differentiation pathways necessary to produce cultivated meat.
Fig. 2: Brief summary of differentiation (myogenesis) and maturation (with protein synthesis) of myocytes starting with satellite cells (MuSCs).
Fig. 3: Brief summary of differentiation (adipogenesis) and maturation (lipogenesis) starting with adipogenic precursor cells.

Similar content being viewed by others

References

  1. Li, X., Fu, X., Yang, G. & Du, M. Enhancing intramuscular fat development via targeting fibro-adipogenic progenitor cells in meat animals. Animal 14, 312–321 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Weston, A. R., Rogers, R. W. & Althen, T. G. The role of collagen in meat tenderness. Prof. Anim. Sci. 18, 107–111 (2002).

    Article  Google Scholar 

  3. Le Grand, F. & Rudnicki, M. A. Skeletal muscle satellite cells and adult myogenesis. Curr. Opin. Cell Biol. 19, 628–633 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu, G. & Chen, X. Isolating and characterizing adipose-derived stem cells. Methods Mol. Biol. 1842, 193–201 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Reggio, A. et al. Adipogenesis of skeletal muscle fibro/adipogenic progenitors is affected by the WNT5a/GSK3/β-catenin axis. Cell Death Differ. 27, 2921–2941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bogliotti, Y. S. et al. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc. Natl Acad. Sci. USA 115, 2090–2095 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    Article  CAS  PubMed  Google Scholar 

  8. Lee, S. H., Joo, S. T. & Ryu, Y. C. Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality. Meat Sci. 86, 166–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Listrat, A. et al. How muscle structure and composition influence meat and flesh quality. Sci. World J. 2016, 3182746 (2016).

    Article  Google Scholar 

  10. Fraeye, I., Kratka, M., Vandenburgh, H. & Thorrez, L. Sensorial and nutritional aspects of cultured meat in comparison to traditional meat: much to be inferred. Front. Nutr. 7, 35 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Will, K., Schering, L., Albrecht, E., Kalbe, C. & Maak, S. Differentiation of bovine satellite cell-derived myoblasts under different culture conditions. In Vitro Cell. Dev. Biol. Anim. 51, 885–889 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Li, B. J. et al. Isolation, culture and identification of porcine skeletal muscle satellite cells. Asian Australas. J. Anim. Sci. 28, 1171–1177 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yablonka-Reuveni, Z., Quinn, L. B. S. & Nameroff, M. Isolation and clonal analysis of satellite cells from chicken pectoralis muscle. Dev. Biol. 119, 252–259 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Suárez-Calvet, X. et al. Isolation of human fibroadipogenic progenitors and satellite cells from frozen muscle biopsies. FASEB J. 35, e21819 (2021).

    Article  PubMed  Google Scholar 

  15. Melzener, L. et al. Comparative analysis of cattle breeds as satellite cell donors for cultured beef. Preprint at bioXriv https://doi.org/10.1101/2022.01.14.476358 (2022).

  16. Ding, S. et al. Characterization and isolation of highly purified porcine satellite cells. Cell Death Discov. 3, 17003 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Campion, D. R., Richardson, R. L., Reagan, J. O. & Kraeling, R. R. Changes in the satellite cell population during postnatal growth of pig skeletal muscle. J. Anim. Sci. 52, 1014–1018 (1981).

    Article  CAS  PubMed  Google Scholar 

  18. Mulvaney, D. R., Marple, D. N. & Merkel, R. A. Proliferation of skeletal muscle satellite cells after castration and administration of testosterone propionate. Proc. Soc. Exp. Biol. Med. 188, 40–45 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Fish, K. D., Rubio, N. R., Stout, A. J., Yuen, J. S. K. & Kaplan, D. L. Prospects and challenges for cell-cultured fat as a novel food ingredient. Trends Food Sci. Technol. 98, 53–67 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ben-Arye, T. & Levenberg, S. Tissue engineering for clean meat production. Front. Sustain. Food Syst. 3, 46 (2019).

    Article  Google Scholar 

  21. Wood, J. D. et al. Effects of fatty acids on meat quality: a review. Meat Sci. 66, 21–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. van Vliet, S. et al. A metabolomics comparison of plant-based meat and grass-fed meat indicates large nutritional differences despite comparable Nutrition Facts panels. Sci. Rep. 11, 13828 (2021).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  23. Dohmen, R. G. J. et al. Muscle-derived fibro-adipogenic progenitor cells for production of cultured bovine adipose tissue. npj Sci. Food 6, 6 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen, Q. et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ. 23, 1128–1139 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bosnakovski, D. et al. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res. 319, 243–253 (2005).

    Article  PubMed  Google Scholar 

  26. Cawthorn, W. P., Scheller, E. L. & MacDougald, O. A. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J. Lipid Res. 53, 227–246 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gupta, R. K. et al. Transcriptional control of preadipocyte determination by Zfp423. Nature 464, 619–623 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Huang, Y., Das, A. K., Yang, Q. Y., Zhu, M. J. & Du, M. Zfp423 promotes adipogenic differentiation of bovine stromal vascular cells. PLoS ONE 7, e47496 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Rosen, E. D. et al. PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4, 611–617 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Lefterova, M. I. & Lazar, M. A. New developments in adipogenesis. Trends Endocrinol. Metab. 20, 107–114 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Yamada, T., Kawakami, S.-I. & Nakanishi, N. Expression of adipogenic transcription factors in adipose tissue of fattening Wagyu and Holstein steers. Meat Sci. 81, 86–92 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Sztalryd, C. & Brasaemle, D. L. The perilipin family of lipid droplet proteins: gatekeepers of intracellular lipolysis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 1221–1232 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Kraus, N. A. et al. Quantitative assessment of adipocyte differentiation in cell culture. Adipocyte 5, 351–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, J. et al. Adipose-derived stem cells: current applications and future directions in the regeneration of multiple tissues. Stem Cells Int. 2020, 8810813 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen, Y. J. et al. Isolation and differentiation of adipose-derived stem cells from porcine subcutaneous adipose tissues. J. Vis. Exp. 2016, e53886 (2016).

    Google Scholar 

  36. Wei, S. et al. Bovine mature adipocytes readily return to a proliferative state. Tissue Cell 44, 385–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Matsumoto, T. et al. Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J. Cell. Physiol. 215, 210–222 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Oki, Y., Hagiwara, R., Matsumaru, T. & Kano, K. Effect of volatile fatty acids on adipocyte differentiation in bovine dedifferentiated fat (DFAT) cells in vitro. Genes Cells 27, 5–13 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Spadaro, V., Allen, D. H., Keeton, J. T., Moreira, R. & Boleman, R. M. Biomechanical properties of meat and their correlation to tenderness. J. Texture Stud. 33, 59–87 (2002).

    Article  Google Scholar 

  40. Mackey, A. L., Magnan, M., Chazaud, B. & Kjaer, M. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration. J. Physiol. 595, 5115–5127 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Contreras, O., Rossi, F. M. & Brandan, E. Adherent muscle connective tissue fibroblasts are phenotypically and biochemically equivalent to stromal fibro/adipogenic progenitors. Matrix Biol. Plus 2, 100006 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Soundararajan, M. & Kannan, S. Fibroblasts and mesenchymal stem cells: two sides of the same coin? J. Cell. Physiol. 233, 9099–9109 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Green, B. B. & Kerr, D. E. Epigenetic contribution to individual variation in response to lipopolysaccharide in bovine dermal fibroblasts. Vet. Immunol. Immunopathol. 157, 49–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Melzener, L., Verzijden, K. E., Buijs, A. J., Post, M. J. & Flack, J. E. Cultured beef: from small biopsy to substantial quantity. J. Sci. Food Agric. 101, 7–14 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Ding, S. et al. Maintaining bovine satellite cells stemness through p38 pathway. Sci. Rep. 8, 10808 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  46. Westerman, K. A. Myospheres are composed of two cell types: one that is myogenic and a second that is mesenchymal. PLoS ONE 10, e0116956 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kolkmann, A. M., Van Essen, A., Post, M. J. & Moutsatsou, P. Development of a chemically defined medium for in vitro expansion of primary bovine satellite cells. Front. Bioeng. Biotechnol. 10, 895289 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Steakholder Foods. Steakholder Foods https://steakholderfoods.com/ (2022).

  49. Rubio, N., Datar, I., Stachura, D., Kaplan, D. & Krueger, K. Cell-based fish: a novel approach to seafood production and an opportunity for cellular agriculture. Front. Sustain. Food Syst. 3, 43 (2019).

    Article  Google Scholar 

  50. Benson, C. A. & Madden, L. R. Cell-cultured food products and related cells, compositions, methods and systems. US patent WO2022221261A2 (2022).

  51. Our approach—full of flavor, free of harm. Mission Barns https://missionbarns.com/process/ (2022).

  52. A new source of seafood. Wildtype https://www.wildtypefoods.com/about-us (2023).

  53. About our innovation. Shiok Meats https://shiokmeats.com/about-our-innovation/ (2023)

  54. New Zealand’s first cultivated meat company emerges from stealth mode. Protein Report https://www.proteinreport.org/newswire/new-zealands-first-cultivated-meat-company-emerges-stealth-mode (2022).

  55. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  PubMed  ADS  Google Scholar 

  56. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  ADS  Google Scholar 

  57. Kinoshita, M. et al. Pluripotent stem cells related to embryonic disc exhibit common self-renewal requirements in diverse livestock species. Development 148, dev199901 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Soto, D. A. et al. Simplification of culture conditions and feeder-free expansion of bovine embryonic stem cells. Sci. Rep. 11, 11045 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  59. Choi, K.-H. et al. Pluripotent pig embryonic stem cell lines originating from in vitro-fertilized and parthenogenetic embryos. Stem Cell Res. 49, 102093 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Vilarino, M. et al. Derivation of sheep embryonic stem cells under optimized conditions. Reproduction 160, 761–772 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Wu, S. M. & Hochedlinger, K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat. Cell Biol. 13, 497–505 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pillai, V. V. et al. Efficient induction and sustenance of pluripotent stem cells from bovine somatic cells. Biol. Open 10, bio058756 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ezashi, T. et al. Derivation of induced pluripotent stem cells from pig somatic cells. Proc. Natl Acad. Sci. USA 106, 10993–10998 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  65. Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  66. Wu, J. et al. An alternative pluripotent state confers interspecies chimaeric competency. Nature 521, 316–321 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  67. Gao, X. et al. Establishment of porcine and human expanded potential stem cells. Nat. Cell Biol. 21, 687–699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Huangfu, D. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 26, 795–797 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brambrink, T. et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2, 151–159 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. Induced pluripotent stem cells generated without viral integration. Science 322, 945–949 (2008).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  72. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T. & Yamanaka, S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949–953 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  73. Woltjen, K. et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766–770 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  74. Kim, D. et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4, 472–476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sokka, J. et al. CRISPR activation enables high-fidelity reprogramming into human pluripotent stem cells. Stem Cell Rep. 17, 413–426 (2022).

    Article  CAS  Google Scholar 

  76. Bressan, F. F. et al. Generation of induced pluripotent stem cells from large domestic animals. Stem Cell Res. Ther. 11, 247 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kawaguchi, T. et al. Generation of naïve bovine induced pluripotent stem cells using piggyBac transposition of doxycycline-inducible transcription factors. PLoS ONE 10, e0135403 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yang, X. et al. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat. Genet. 39, 295–302 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Li, D. et al. Generation of transgene-free porcine intermediate type induced pluripotent stem cells. Cell Cycle 17, 2547–2563 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu, K. et al. Generation of porcine-induced pluripotent stem cells by using OCT4 and KLF4 porcine factors. Cell. Reprogram. 14, 505–513 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Esteban, M. A. et al. Porcine induced pluripotent stem cells may bridge the gap between mouse and human iPS. IUBMB Life https://doi.org/10.1002/iub.307 (2010).

  82. Zhang, W. et al. Pluripotent and metabolic features of two types of porcine iPSCs derived from defined mouse and human ES cell culture conditions. PLoS ONE 10, e0124562 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Marei, H. E., Althani, A., Lashen, S., Cenciarelli, C. & Hasan, A. Genetically unmatched human iPSC and ESC exhibit equivalent gene expression and neuronal differentiation potential. Sci. Rep. 7, 17504 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  84. Hussein, S. M. et al. Copy number variation and selection during reprogramming to pluripotency. Nature 471, 58–62 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  85. Mayshar, Y. et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7, 521–531 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Kim, K. et al. Epigenetic memory in induced pluripotent stem cells. Nature 467, 285–290 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  87. Chal, J. et al. Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro. Nat. Protoc. 11, 1833–1850 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Shelton, M. et al. Derivation and expansion of PAX7-positive muscle progenitors from human and mouse embryonic stem cells. Stem Cell Rep. 3, 516–529 (2014).

    Article  CAS  Google Scholar 

  89. Genovese, N. J., Domeier, T. L., Telugu, B. P. V. L. & Roberts, R. M. Enhanced development of skeletal myotubes from porcine induced pluripotent stem cells. Sci. Rep. 7, 41833 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  90. Wittler, L. et al. Expression of Msgn1 in the presomitic mesoderm is controlled by synergism of WNT signalling and Tbx6. EMBO Rep. 8, 784–789 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Takada, S. et al. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev. 8, 174–189 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Miyagoe-Suzuki, Y. & Takeda, S. Skeletal muscle generated from induced pluripotent stem cells—induction and application. World J. Stem Cells 9, 89–97 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. Brand-Saberi, B., Müller, T. S., Wilting, J., Christ, B. & Birchmeier, C. Scatter factor/hepatocyte growth factor (SF/HGF) induces emigration of myogenic cells at interlimb levelin vivo. Dev. Biol. 179, 303–308 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Laron, Z. Somatomedin-1 (recombinant insulin-like growth factor-1): clinical pharmacology and potential treatment of endocrine and metabolic disorders. BioDrugs 11, 55–70 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Tahimic, C. G. T., Wang, Y. & Bikle, D. D. Anabolic effects of IGF-1 signaling on the skeleton. Front. Endocrinol. 4, 6 (2013).

    Article  Google Scholar 

  96. van der Velden, J. L. J. et al. Inhibition of glycogen synthase kinase-3β activity is sufficient to stimulate myogenic differentiation. Am. J. Physiol. Cell Physiol. 290, C453–C462 (2006).

    Article  PubMed  Google Scholar 

  97. Barberi, T. et al. Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat. Med. 13, 642–648 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Chang, H. et al. Generation of transplantable, functional satellite-like cells from mouse embryonic stem cells. FASEB J. 23, 1907–1919 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Baker, M. Reproducibility: respect your cells! Nature 537, 433–435 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  100. Messmer, T. et al. A serum-free media formulation for cultured meat production supports bovine satellite cell differentiation in the absence of serum starvation. Nat. Food 3, 74–85 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Ahfeldt, T. et al. Programming human pluripotent stem cells into white and brown adipocytes. Nat. Cell Biol. 14, 209–219 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Taura, D. et al. Adipogenic differentiation of human induced pluripotent stem cells: comparison with that of human embryonic stem cells. FEBS Lett. 583, 1029–1033 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Rubin, C. S., Hirsch, A., Fung, C. & Rosen, O. M. Development of hormone receptors and hormonal responsiveness in vitro. Insulin receptors and insulin sensitivity in the preadipocyte and adipocyte forms of 3T3-L1 cells. J. Biol. Chem. 253, 7570–7578 (1978).

    Article  CAS  PubMed  Google Scholar 

  104. Elks, M. L. & Manganiello, V. C. A role for soluble cAMP phosphodiesterases in differentiation of 3T3-L1 adipocytes. J. Cell. Physiol. 124, 191–198 (1985).

    Article  CAS  PubMed  Google Scholar 

  105. Liao, W. et al. Suppression of PPAR-γ attenuates insulin-stimulated glucose uptake by affecting both GLUT1 and GLUT4 in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 293, E219–E227 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Houseknecht, K. L., Cole, B. M. & Steele, P. J. Peroxisome proliferator-activated receptor gamma (PPARγ) and its ligands: a review. Domest. Anim. Endocrinol. 22, 1–23 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Tang, Q.-Q., Otto, T. C. & Lane, M. D. Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc. Natl Acad. Sci. USA. 101, 9607–9611 (2004).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  108. Mehta, F., Theunissen, R. & Post, M. J. Adipogenesis from bovine precursors. Methods Mol. Biol. 1889, 111–125 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Busato, S. & Bionaz, M. When two plus two is more than four: evidence for a synergistic effect of fatty acids on peroxisome proliferator-activated receptor activity in a bovine hepatic model. Genes 12, 1283 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hesami, M. & Jones, A. M. P. Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture. Appl. Microbiol. Biotechnol. 104, 9449–9485 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Rupert, J. E., Jengelley, D. H. A. & Zimmers, T. A. In vitro, in vivo, and in silico methods for assessment of muscle size and muscle growth regulation. Shock 53, 605–615 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Trott, D. A., Cuthbert, A. P., Overell, R. W., Russo, I. & Newbold, R. F. Mechanisms involved in the immortalization of mammalian cells by ionizing radiation and chemical carcinogens. Carcinogenesis 16, 193–204 (1995).

    Article  CAS  PubMed  Google Scholar 

  113. Gardell, A. M., Qin, Q., Rice, R. H., Li, J. & Kültz, D. Derivation and osmotolerance characterization of three immortalized tilapia (Oreochromis mossambicus) cell lines. PLoS ONE 9, e95919 (2014).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  114. Keller, C. & Guttridge, D. C. Mechanisms of impaired differentiation in rhabdomyosarcoma. FEBS J. 280, 4323–4334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sulak, M. et al. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. eLife 5, e11994 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Pasitka, L. et al. Spontaneous immortalization of chicken fibroblasts generates stable, high-yield cell lines for serum-free production of cultured meat. Nat. Food 4, 35–50 (2022).

    Article  PubMed  Google Scholar 

  117. Saad, M. K. et al. Continuous fish muscle cell line with capacity for myogenic and adipogenic-like phenotypes. Sci. Rep. 13, 5098 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  118. Soice, E. & Johnston, J. Immortalizing cells for human consumption. Int. J. Mol. Sci. 22, 11660 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Harada, H. et al. Telomerase induces immortalization of human esophageal keratinocytes without p16INK4a inactivation. Mol. Cancer Res. 1, 729–738 (2003).

    CAS  PubMed  Google Scholar 

  120. Mamchaoui, K. et al. Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skelet. Muscle 1, 34 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Thorley, M. et al. Skeletal muscle characteristics are preserved in hTERT/cdk4 human myogenic cell lines. Skelet. Muscle 6, 43 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wang, W. et al. Immortalization of chicken preadipocytes by retroviral transduction of chicken TERT and TR. PLoS ONE 12, e0177348 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Stout, A. J. et al. Immortalized bovine satellite cells for cultured meat applications. ACS Synth. Biol. 12, 1567–1573 (2023).

    Article  CAS  PubMed  Google Scholar 

  124. Sharples, A. P., Al-Shanti, N., Lewis, M. P. & Stewart, C. E. Reduction of myoblast differentiation following multiple population doublings in mouse C2C12 cells: a model to investigate ageing? J. Cell. Biochem. 112, 3773–3785 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Quevedo, R. et al. Assessment of genetic drift in large pharmacogenomic studies. Cell Syst. 11, 393–401.e2 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).

    Article  CAS  PubMed  Google Scholar 

  127. Lattanzi, L. et al. High efficiency myogenic conversion of human fibroblasts by adenoviral vector-mediated MyoD gene transfer. An alternative strategy for ex vivo gene therapy of primary myopathies. J. Clin. Invest. 101, 2119–2128 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ito, N., Kii, I., Shimizu, N., Tanaka, H. & Shin’Ichi, T. Direct reprogramming of fibroblasts into skeletal muscle progenitor cells by transcription factors enriched in undifferentiated subpopulation of satellite cells. Sci. Rep. 7, 8097 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  129. Yin, J. et al. In vitro myogenic and adipogenic differentiation model of genetically engineered bovine embryonic fibroblast cell lines. Biotechnol. Lett. 32, 195–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79, 1147–1156 (1994).

    Article  CAS  PubMed  Google Scholar 

  131. Teboul, L. et al. Thiazolidinediones and fatty acids convert myogenic cells into adipose-like cells. J. Biol. Chem. 270, 28183–28187 (1995).

    Article  CAS  PubMed  Google Scholar 

  132. Tanaka, A. et al. Efficient and reproducible myogenic differentiation from human iPS cells: prospects for modeling miyoshi myopathy in vitro. PLoS ONE 8, e61540 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  133. Rao, L., Qian, Y., Khodabukus, A., Ribar, T. & Bursac, N. Engineering human pluripotent stem cells into a functional skeletal muscle tissue. Nat. Commun. 9, 126 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  134. Shahini, A. et al. Ameliorating the hallmarks of cellular senescence in skeletal muscle myogenic progenitors in vitro and in vivo. Sci. Adv. 7, eabe5671 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  135. Shahini, A. et al. NANOG restores the impaired myogenic differentiation potential of skeletal myoblasts after multiple population doublings. Stem Cell Res. 26, 55–66 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  136. Kallunki, T., Barisic, M., Jäättelä, M. & Liu, B. How to choose the right inducible gene expression system for mammalian studies? Cells 8, 796 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Stout, A. J. et al. Engineered autocrine signaling eliminates muscle cell FGF2 requirements for cultured meat production. Preprint at bioRxiv https://doi.org/10.1101/2023.04.17.537163 (2023).

  138. Stout, A. J., Mirliani, A. B., Soule-Albridge, E. L., Cohen, J. M. & Kaplan, D. L. Engineering carotenoid production in mammalian cells for nutritionally enhanced cell-cultured foods. Metab. Eng. 62, 126–137 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Simsa, R. et al. Extracellular heme proteins influence bovine myosatellite cell proliferation and the color of cell-based meat. Foods 8, 521 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Genovese, N. J., Desmet, D. N. & Schulze, E. Methods for extending the replicative capacity of somatic cells during an ex vivo cultivation process. US patent WO2017124100A1 (2017).

  141. Genovese, N. J., Roberts, R. M. & Telugu, B. P. V. L. Method for scalable skeletal muscle lineage specification and cultivation. US patent US20160227830A1 (2021).

  142. Genovese, N. J., Schulze, E. & Desmet, D. N. Compositions and methods for increasing the efficiency of cell cultures used for food production. US patent WO2019014652A1 (2019).

  143. Dhadwar, S. S., Kayser, K. J. & Genovese, N. J. Generation of cell-based products for consumption that comprise proteins from exotic, endangered, and extinct species. US patent US20220333081A1 (2022).

  144. Factsheet on Alternative Proteins (Singapore Food Agency, 2022).

  145. FDA completes first pre-market consultation for human food made using animal cell culture technology. FDA https://www.fda.gov/food/cfsan-constituent-updates/fda-completes-first-pre-market-consultation-human-food-made-using-animal-cell-culture-technology (2022).

  146. Schulze, E. Premarket Notice for Integral Tissue Cultured Poultry Meat (FDA, 2021).

  147. Holt, S. E., Wright, W. E. & Shay, J. W. Regulation of telomerase activity in immortal cell lines. Mol. Cell. Biol. 16, 2932–2939 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Van Eenennaam, A. L., De Figueiredo Silva, F., Trott, J. F. & Zilberman, D. Genetic engineering of livestock: the opportunity cost of regulatory delay. Annu. Rev. Anim. Biosci. 9, 453–478 (2021).

    Article  PubMed  Google Scholar 

  149. USDA and FDA announce a formal agreement to regulate cell-cultured food products from cell lines of livestock and poultry. USDA https://www.usda.gov/media/press-releases/2019/03/07/usda-and-fda-announce-formal-agreement-regulate-cell-cultured-food (2019).

  150. Human food made with cultured animal cells. FSIS USDA http://www.fsis.usda.gov/inspection/compliance-guidance/labeling/labeling-policies/human-food-made-cultured-animal-cells (2023).

  151. Food Safety Aspects of Cell-Based Food (FAO and WHO, 2023); https://doi.org/10.4060/cc4855en

  152. O’Neill, E. N., Cosenza, Z. A., Baar, K. & Block, D. E. Considerations for the development of cost-effective cell culture media for cultivated meat production. Compr. Rev. Food Sci. Food Saf. 20, 686–709 (2021).

    Article  PubMed  Google Scholar 

  153. Bodiou, V., Moutsatsou, P. & Post, M. J. Microcarriers for upscaling cultured meat production. Front. Nutr. 7, 10 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Stout, A. J. et al. Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell cultured meat. Commun. Biol. 5, 466 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Skrivergaard, S., Rasmussen, M. K., Therkildsen, M. & Young, J. F. Bovine satellite cells isolated after 2 and 5 days of tissue storage maintain the proliferative and myogenic capacity needed for cultured meat production. Int. J. Mol. Sci. 22, 8376 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhu, H. et al. Production of cultured meat from pig muscle stem cells. Biomaterials 287, 121650 (2022).

    Article  CAS  PubMed  Google Scholar 

  157. Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S. & Blau, H. M. Self-renewal and expansion of single transplanted muscle stem cells. Nature 456, 502–506 (2008).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  158. Garcia, S. M., Tamaki, S., Xu, X. & Pomerantz, J. H. Human satellite cell isolation and xenotransplantation. Methods Mol. Biol. 1668, 105–123 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Baquero-Perez, B., Kuchipudi, S. V., Nelli, R. K. & Chang, K.-C. A simplified but robust method for the isolation of avian and mammalian muscle satellite cells. BMC Cell Biol. 13, 16 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Burns, T. A., Kadegowda, A. K. G., Duckett, S. K., Pratt, S. L. & Jenkins, T. C. Palmitoleic (16:1 cis-9) and cis-vaccenic (18:1 cis-11) acid alter lipogenesis in bovine adipocyte cultures. Lipids 47, 1143–1153 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Hirai, S. et al. Myostatin inhibits differentiation of bovine preadipocyte. Domest. Anim. Endocrinol. 32, 1–14 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Yuen, J. S. K. Jr et al. Aggregating in vitro-grown adipocytes to produce macroscale cell-cultured fat tissue with tunable lipid compositions for food applications. eLife 12, e82120 (2023).

    Article  PubMed  Google Scholar 

  163. Shi, X.-E. et al. MicroRNA-199a-5p affects porcine preadipocyte proliferation and differentiation. Int. J. Mol. Sci. 15, 8526–8538 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wojciechowicz, T. et al. Original research: orexins A and B stimulate proliferation and differentiation of porcine preadipocytes. Exp. Biol. Med. 241, 1786–1795 (2016).

    Article  CAS  Google Scholar 

  165. Vahmani, P. et al. Individual trans 18:1 isomers are metabolised differently and have distinct effects on lipogenesis in 3T3-L1 adipocytes. Lipids 50, 195–204 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Rodeheffer, M. S., Birsoy, K. & Friedman, J. M. Identification of white adipocyte progenitor cells in vivo. Cell 135, 240–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Gojanovich, A. D. et al. Human adipose-derived mesenchymal stem/stromal cells handling protocols. Lipid droplets and proteins double-staining. Front. Cell Dev. Biol. 6, 33 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Hemmrich, K. et al. Implantation of preadipocyte-loaded hyaluronic acid-based scaffolds into nude mice to evaluate potential for soft tissue engineering. Biomaterials 26, 7025–7037 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the UC Davis Cultivated Meat Consortium led by D. Block, along with K. Baar, for discussions supporting this work. The National Science Foundation has supported the Cultivated Meat Consortium (2021132) and L.R.S. has received support from the Good Food Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Smith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jara, T.C., Park, K., Vahmani, P. et al. Stem cell-based strategies and challenges for production of cultivated meat. Nat Food 4, 841–853 (2023). https://doi.org/10.1038/s43016-023-00857-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-023-00857-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing