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Recent marine heatwaves in the North Pacific
warming pool can be attributed to rising
atmospheric levels of greenhouse gases
Armineh Barkhordarian 1✉, David Marcolino Nielsen1,2 & Johanna Baehr1

Over the last decade, the northeast Pacific experienced marine heatwaves that caused

devastating marine ecological impacts with socioeconomic implications. Here we use two

different attribution methods and show that forcing by elevated greenhouse gases levels has

virtually certainly caused the multi-year persistent 2019–2021 marine heatwave. There is less

than 1% chance that the 2019–2021 event with ~3 years duration and 1.6 ∘C intensity could

have happened in the absence of greenhouse gases forcing. We further discover that the

recent marine heatwaves are co-located with a systematically-forced outstanding warming

pool, which we attribute to forcing by elevated greenhouse gases levels and the recent

industrial aerosol-load decrease. The here-detected Pacific long-term warming pool is

associated with a strengthening ridge of high-pressure system, which has recently emerged

from the natural variability of climate system, indicating that they will provide favorable

conditions over the northeast Pacific for even more severe marine heatwave events in the

future.
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On the global scale, the frequency of marine heatwaves
(MHWs)—periods of anomalously high sea surface
temperature (SST) at a particular location that lasts for at

least 5 consecutive days—is projected to increase further in the
twenty-first Century1–5. The probability of MHWs exceeding the
pre-industrial 99th-%tile will increase under future global
warming1. Attribution results by Laufkoetter et al.6 further show
that the occurrence probabilities of the duration and intensity of
high-impact MHWs have increased 20-fold in the historical
period (1982–2017) in comparison to the pre-industrial climate.
MHWs are extreme events with wide-ranging impacts on marine
ecosystems, including geographical shifts of species7, and mor-
tality of marine mammals and sea birds8. Beyond their impacts
on marine ecosystems, ecological responses to MHWs can have
socioeconomic implications9, such as loss of fisheries income,
food availability, erosion of essential ecosystem services (e.g.,
carbon capture, water quality), and mass mortality of iconic
species9. The aim of this study is to identify the fraction of the
likelihood of a MHW event’s magnitude that is attributable to
GHG forcing, which is important not only scientifically, but also
for decision-making regarding ocean ecosystems, the economics
of regional fisheries, and marine life8–11 as the GHGs emissions
continue to rise.

Over the last decade, the northeast Pacific ocean experienced a
rapid resurgence of the Blob-like SST anomalies that caused
devastating marine ecological impacts11,12, such as very low-
ocean productivity13; dramatic mortality events in seabird
species14; and major outbreaks of harmful algal blooms that
produce extremely dangerous toxins15. Furthermore, they con-
tributed to severe drought conditions across the US West Coast16.
The 2014–2015MHW17–19, the so-called first warm “blob”20,21,
which appeared off the coast of Alaska, originated in winter and
was the result of a resilient atmospheric ridge in the Northeast
Pacific, which weakened the climatological Aleutian Low and
related surface winds20. The prolonged nature18 of the
201–2015MHW is suggested 17 to be linked to the dynamics and
coupling between the two dominant modes of winter
(January–March) SST variability in the North Pacific, namely the
Pacific Decadal Oscillation (PDO22), and the North Pacific Gyre
Oscillation (NPGO23). A stronger NPGO-PDO coupling is pre-
dicted under anthropogenic forcing17. The second Blob (2.0)
peaked in summer 2019 and resulted from a weakened North
Pacific High, which reduced the strength of the surface winds,
resulting in reduced evaporative cooling in the Northeast
Pacific24,25. The study by Holbrook et al.12 identifies multiple
drivers that can enhance the occurrence of MHWs over the North
Pacific, including El Niño and the positive PDO phases.

Unlike previous studies which have focused on linking the SST
patterns in the North Pacific to changes in the oceanic circulation
and the extratropical/tropical teleconnections2,12,17,18,20,24,26, we
here perform two different statistical attribution methodologies in
order to identify the human fingerprint in Northeast Pacific SST
changes both on multidecadal timescale (changes of mean SST)
and on extreme SST events on daily timescale (Marine Heat-
waves). Evidence that anthropogenic forcing has altered the base
state (long-term changes of mean SST) over the northeast Pacific,
which is characterized by strong low-frequency SST fluctuations,
would increase confidence in the attribution of MHWs27, since
rising mean SST is the dominant driver of increasing MHW
frequency and intensity, outweighing changes due to temperature
variability1,2.

In this study, we provide a quantitative assessment of whether
GHG forcing, the main component of anthropogenic forcings,
was necessary for the North Pacific high-impact MHWs (the
Blob-like SST anomalies) to occur, and whether it is a sufficient
cause for such events to continue to repeatedly occur in the

future. With these purposes, we use two high-resolution observed
SST datasets, along with harnessing two initial-condition large
ensembles of coupled general circulation models (CESM1-LE28,29

with 35 members, and MPI-GE30 with 100 members). These large
ensembles can provide better estimates of an individual model’s
internal variability and response to external forcing31,32, and
facilitate the explicit consideration of stochastic uncertainty in
attribution results33. We also use multiple single-forcing experi-
ments from the Detection and Attribution Model Intercompari-
sion Project (DAMIP34) component of Coupled Model
Intercomparison Project phase 6 (CMIP635).

Two statistical methodologies are used: (1) with the first
method, we analyze the observed long-term spatiotemporal
changes of SST to (a) detect the presence of a signal beyond
changes solely due to natural (internal) variability, and to (b)
attribute the detected changes in long-term SST to external cli-
mate drivers. The climate over North Pacific is potentially
influenced by two external climate drivers: well-mixed green-
house gases (GHGs) and anthropogenic aerosols (AER), which
have opposing effects on the radiation energy balance36. Our
attribution analysis is based on assessing the amplitude of the
response of SST to each external forcing from the observations via
the estimation of scaling factors37,38. (2) The second statistical
method is extreme event attribution27,39, which determines how
anthropogenic forcings have changed the likelihood of occurrence
of a particular event. Following Hannart et al.40,41, we present
extreme event attribution in terms of necessary and sufficient
causation. Our results, based on the two different attribution
methods, provide a complete picture of anthropogenic influence
on SST extremes over the North Pacific.

In this study, we show that forcing by elevated well-mixed
GHG levels, has virtually certainly caused the multiyear persistent
2019–2021 marine heatwave, in a necessary causation sense.
There is less than 1% chance that the 2019–2021 event with ~3
years duration and 1.6 °C intensity could have happened in the
absence of GHG forcing. We further discover an outstanding
warming pool over the Northeast Pacific, co-located with the
multi-year persistent MHW events. The warming pool is marked
by concurrent and pronounced increase in annual mean, and
variance of SSTs, decrease in cold-season low-cloud’s cooling
effect, and strengthening cold-season atmospheric ridge of high-
pressure system. There is less than 5% chance that natural
(internal) variability is responsible for the observed cold-season
strengthening high-pressure system. Our long-term SST detection
and attribution results further reveal that forcing by elevated
GHG levels and the recent industrial aerosol-load decrease are the
key causes for the configuration of the here-detected long-term
warming pool (P < 0.05).

Results
Marine heatwaves characteristics. We detect 40MHW events
over the Northeast Pacific from January 1982 to March 2022 in
NOAA OISSTv242 daily SST data (Fig. 1). The detected MHWs
over the twenty-first century (2000–03/2022) are 4.5-fold more
frequent, ninefold longer-lasting, and threefold more intense in
comparison with those occurred in the previous decades (Fig. 1c).
During the three major MHWs over the northeast Pacific in
2014–2015 (Fig. 2b), 2016 (Fig. 2c), and 2019–2021 (Fig. 2a) the
maximum SST anomalies (above the climatology in the peak date
of the event) reached 5.6 °C, 5 °C, and 5.8 °C, respectively. The
2014–2015MHW, which received major societal concerns, lasts
for 600 days with 1.4 °C intensity (average SST anomaly during
the event). The 2019–2021 MHW, which lasts for almost 3 years
(1000 days) with 1.6 °C intensity, is the most severe MHW both
in terms of intensity and duration that has ever been detected
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Fig. 1 External forcing had a significant contribution to the observed marine heatwaves characteristics. a Intensity, b duration of the observed 40 marine
heatwave events (MHWs) detected between January 1982 to March 2022 over the northeast Pacific (160°W–100°E, 10°N–60°N). Each black (red) bar
represents a MHW event and the gray (blue) whiskers show the 98%-tile distribution of MHW characteristics in an undisturbed Pre-industrial climate.
Detection is claimed in cases where the whiskers do not include the zero line (Ho: Obs. ± P98%≠ 0). Events that are statistically distinguishable (P < 0.02)
from the distribution of events in Pre-industrial climate are denoted by red bars with blue whiskers. Up to 60% of the events detected over the last decade
(2010–2021) are either more intense and/or longer-lasting than could solely be attributed to climate variability in the absence of external climate drivers.
The two major MHWs with high impact occurred in 2014–2015, and 2019–2021 are denoted with stars. c Changes in MHWs characteristics (duration,
frequency, and intensity) over 2000–03/2022 in comparison with those detected over 1982–1999.

Fig. 2 Evolution of the MHWs, and the long-term trends of the background state. a SST anomaly patterns (above the 1983–2012 climatology) during the
evolution of the MHW from 2019 to 2021, b the MHW from 2014 to 2015, and c the MHW from 05/2016 to 11/2016. Observed pattern of trends over
1996–2021 in (d) annual mean SST (OISST; Units: ∘C decade−1), e SST annual variance (OISST; units: °C2 decade−1), f cold-season (November-to-
February) geopotential height at 500-hPa (ERA5 reanalysis; units: m decade−1).
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since the year 1982. This raises the question of whether their
occurrence, intensity, and duration have been influenced by
external climate drivers.

Our results reveal that up to 60% of the MHW events detected
over the last decade (2010–03/2022) are either more intense
(Fig. 1a) and/or longer-lasting (Fig. 1b) than could solely be
attributed to climate variability in the absence of external climate
drivers. We arrive at this conclusion by comparing the detected
MHWs with events occurring solely in response to the natural
variability of the climate system. To obtain these estimates, we use
CMIP6 pre-industrial control simulations of daily SST, which
provide pseudorealizations of MHWs characteristics in the
absence of external climate drivers43,44. In this manner, we can
identify events that are significantly distinguishable from the
distribution of events detected in Pre-industrial climate (Ho:
Obs. ± P98% ≠ 0).

Here, we conclude, therefore, that external forcing has a
significant contribution (P < 0.02) to the intensity and duration of
the detected MHWs, including the three major 2014–2015, 2016,
and 2019–2021MHWs. However, it remains unclear whether the
well-mixed GHG forcing is a sufficient causation for the
occurrence of these MHWs and to what extend GHG forcing
has changed the likelihood of the observed events. In the
following, we use “Extreme Event Attribution27,39” framework to
identify the fraction of the likelihood of these events duration and
intensity that is attributable to GHG forcing.

Marine heatwaves attribution (extreme event attribution). We
use extreme event-attribution technique39, and assess the influ-
ence of GHG forcing on the duration and intensity of the
observed MHWs. In extreme events attribution approach27,45,46,
Y is defined as an observed extreme situation based on excee-
dance over a threshold u of a relevant climate index Z. We
evaluate the extent to which an external climate forcing f, for
instance greenhouse gas (GHG) forcing, has changed the prob-
ability of occurrence of the event Y. The variable Xf is introduced
to indicate whether or not the forcing f is present. The probability
p1= P(Y= 1∣Xf= 1) of the event occurring in the real world,
with f present, is referred to as factual, while p0= P(Y= 1∣Xf= 0)
is referred to as counterfactual (with forcing f being absent)45,46.
Following Hannart et al.40,41, we present event attribution in
terms of necessary and sufficient causation. According to their
definitions, requiring the presence of a particular forcing scenario
(f) for an event to occur would be necessary causation. In con-
trast, if the particular forcing scenario (f) always produces the
event in question, this would be sufficient causation40,41. In this
study, the event is MHW’s intensity and duration (Y) and that
particular forcing scenario (f) is GHG forcing.

For each detected MHW, we estimate the probabilities that a
MHW has occurred that equals or exceeds the duration and

intensity of the observed MHW in ALL forcing (actual world)
and fixGHG forcing (counterfactual world) scenarios. That is, we
calculate the probability, Pduration

fixGHG , of the threshold (duration of
the observed MHW) being exceeded without GHG forcing, and
the probability, Pduration

ALL , of exceeding the threshold with GHG
forcing. Similarly, we calculate the probability, Pintensity

fixGHG , of the
threshold (intensity of the observed MHW) being exceeded
without GHG forcing, and the probability, Pintensity

ALL , of exceeding
the threshold with GHG forcing. Choosing the 1982–2021 time
period, the MHW characteristics (duration and intensity) from
each year and each 20 realizations of CESM1 model are pooled
together (780 years total) and probabilities are estimated.

The estimated probabilities are used to calculate three event-
attribution metrics40,47 (see “Methods”). The probability ratio
(PR), which describes how many times as likely the event
occurrence is with ALL forcing than ALL minus GHG forcing
(fixGHG). The probability of necessary causation (PN) describes
the probability that GHG forcing is a necessary cause of the
particular event; that is, that GHG forcing is required for the
event’s occurrence, and finally the probability of sufficient
causation (PS) describes the probability that GHG forcing is
sufficient for the event, such that a scenario with GHG forcing
will see the occurrence of this event every time. A summary of the
PS, PN, and PR values for the duration and intensity of the three
selected MHWs is presented in Table 1.

The probability ratio values (PR, Eq. (1), Eq. (2)), which
quantifies the additional probability of an event’s intensity
(duration) due to GHG forcings, increases for the more extreme
MHWs (Table 1). A PR value of 106 for both 2014–2015 and
2019–2021 MHWs implies that the occurrence of such events is
106 times more likely under the influence of GHG forcing. The
probability of necessary causality (PN, Eq. (1), Eq. (2)), which
describes the probability that GHG forcing is a necessary cause of
the detected MHWs, increases with increasing the severity of
MHWs in terms of both duration and intensity. For instance, a
PN value of approximately 0.99 ([0.98–1.0]) for the
2019–2021MHW means that 99% of the probability of such an
event is due to GHG forcing. In other words, there is a 99%
chance that GHG forcing is required for this event to occur. The
probability of sufficient causation (PS, Eq. (1), Eq. (2)), which
describes the probability that the inclusion of GHG forcing is
sufficient for the event’s occurrence, is small (<0.01) for the more
extreme events (Table 1), as such events are rare even with ALL-
forcing scenarios.

In summary, event-attribution results provide evidence that the
occurrence of a multiyear persistent MHW, such as that occurred
in 2014–2015 (with 600 days duration and 1.4 °C intensity) and in
2019–2021 (with 1000 days duration and 1.6 °C intensity), are
entirely attributable to the combination of anthropogenic and

Table 1 Attribution of MHWs duration and intensity to GHG forcing.

Date of event Threshold of intensity PR of intensity PN of intensity PS of intensity

2014–2015 1.4 °C >106 1.0 [0.98–1.0] 0.00
2016 1.1 °C >106 1.0 [0.97–1.0] 0.05
2019–2021 1.6 °C >106 1.0 [0.98–1.0] 0.00

Date of event Threshold of duration PR of duration PN of duration PS of duration

2014–2015 600 days >106 1.0 [0.98–1.0] 0.02
2016 163 days 2.4 0.58 [0.57–0.78] 0.08
2019–2021 1000 days >106 1.0 [0.98–1.0] 0.02

We present the event-attribution results as the probability of necessary (PN) and sufficient (PS) causation as well as the probability ratio (PR) for three high-impact MHWs detected over the North
Pacific, 2014–2015, 2016, and 2019–2021.
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natural forcings (ALL forcing). The occurrence of the MHWs was
extremely unlikely in the absence of GHG forcing (with less than
1% occurrence probability under no-GHG effect), and GHG
forcing is necessary for the occurrence of these events (PN= 1.0
[0.98–1.0]; Table 1). Those MHWs are extreme in the current
climate, so the inclusion of GHG forcing is a necessary, but not
just merely sufficient, causation (PS < 0.01; Table 1). In other
words, a MHW of this magnitude requires GHG forcing to occur
(with >99% probability), but the inclusion of GHG forcing alone
is not enough to guarantee the event’s occurrence.

Discovering an outstanding long-term warming pool. We dis-
cover an outstanding warming pool over the Gulf of Alaska in the
high-resolution NOAA OISST42 dataset, co-located with the
MHWs induced SST anomalies. The region is marked by a con-
current and pronounced increase in annual mean (0.4 °C decade−1;
Fig. 2d), and annual variance of SSTs (0.6 °C2 decade−1; Fig. 2e)
over 1996–2021. Hereafter, we refer to this region as the Pacific
long-term warming pool.

The co-location of the major MHWs over the Northeast Pacific
(Fig. 2a–c) with the here-detected long-term warming pool points
towards possible positive feedback, and suggests that the
prominent MHWs occur where mean warming (Fig. 2d), and
higher variance overlap (Fig. 2e). We also detect significant
changes in daily mean SST and seasons over the warming pool.
SSTs are now (2000–2021) higher on average for every day of the
year than they were in the late twentieth Century (1982–1999).
Over the last two decades, summers are on average 1.5 °C warmer
and 37 days longer. SSTs that marked the start of summer (June
1) now come 11 days earlier, and SSTs that marked the end of
summer (September 1) now come around 27 days later. Winters
are on average 0.5 °C warmer and 11 days shorter (Fig. 3f).

Large-scale atmospheric circulations play an important role in
the occurrence of extremes48. In the cold season (November-to-
February), the observed trends in geopotential height at 500-hPa
(500 Gph) according to ERA549 reanalysis show a tendency
towards a ridge with a magnitude on the order of ~+30m
decade−1 increase, located over the warming pool area (Fig. 3a),
resembling the ridiculously resilient ridge50,51, which we show that
is getting intensified over the 1996–2021 time period. The cold-
season enormous strengthening ridge is associated with a
~+250 Pa decade−1 increase in mean sea-level pressure (SLP,
Fig. 3b), resulting in an amplification of the background state of the
MHWs. The pronounced increase in 500 Gph and SLP, which
enforce heat-trapping systems, are also associated with a decreasing
trend in cloud cover starting in 1995/1996. The EUMETSAT52

satellite data shows a 5% decade−1 decreasing trend in cold-season
cloud cover during 1995–2018 (Fig. 3e). Low-cloud cover reduction
is the major contribution to the observed decline in total cloud
fraction (not shown), resulting in decreases of winter-time low-
cloud’s cooling effect.

The detected long-term pacific warming pool could have major
ecological consequences. For instance, marine species shift their
distributions in response to warming trends7,11, and the size of
various fishes decline due to increasing water temperature and
reduced oxygen levels53,54, causing changes to the entire
ecosystem.

Detection of systematic changes in the Pacific warming pool.
However, it remains unclear whether the here-detected Pacific
long-term warming pool, and the associated trends in large-scale
circulation patterns (SLP and 500 Gph), are a simple manifestation
of internal climate variability or are externally and systematically
forced. To address this question, we begin with comparing the

Fig. 3 Detection of externally forced trends in large-scale circulation patterns. a Observed trend pattern in cold-season (November-to-February) over
1996–2021 of 500-hPa geopotential height (500 Gph; units: m decade−1), and b of mean sea-level pressure (SLP; units: Pa decade−1). Regions where
systematically and externally forced changes are detectable at 95% confidence level in (c) 500 Gph, and (d) SLP, in comparison with 280
pseudorealizations of unforced trends in 500 Gph and SLP due to pre-industrial variability derived from CMIP6 control runs. e Observed pattern of trends
over 1995–2018 in total cloud-cover fraction (EUMETSAT; units: % decade−1). f Changes in daily mean SST and seasons based on NOAA OISST over the
Northeast Pacific warming pool (indicated with a black box on Fig. 4c). Expansion of summers by more than one month and shrinking of winters over the
warming pool.
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observed trends with estimates corresponding to the natural
(internal) variability of the climate system, which ENSO, PDO,
NPGO etc. are part of. To obtain estimates of the natural (internal)
variability we use three data sources (see “Methods”). We test the
null hypothesis that the observed trends in SST, SLP, and 500Gph
over 1996–2021 are within the 2.5–97.5%-tile distribution of
unforced trends of those variables (as derived either from the pre-
industrial climate or historical variability) or naturally forced
trends (as derived from the 850–1850 millennium simulation)38,55.

There is less than 5% chance that internal variability is
responsible for the observed cold-season strengthening high-
pressure system in the region. In spite of the large interannual
variability over the north Pacific region, our detection analyses
(displayed in Fig. 3c, d) show that the pronounced increases in
500 Gph (+30 m decade−1) and SLP (+250 hPa decade−1),
respectively, over 1996–2021 are systematically forced and larger
than could be due to natural (internal) variability alone (with
<0.05 risk of error). Such changes serve to systematically enhance
atmospheric stability, supporting the configuration of the
warming pool.

Detection analyses on the SST trends (displayed in Fig. 3c–e)
reveal that the SST increase over the warming pool is as well
stronger than could be due to natural (internal) variability alone,
and systematically forced changes of SST are detectable at the
95% confidence level in summer and autumn (JJASON;
June–November). This result is robust across comparisons of
observed SST trends with (1) unforced trends derived from
CMIP635 pre-industrial control simulations, which provide up to
280 pseudorealizations of how SST might have changed in the
absence of external climate drivers (Fig. 4b), (2) trends obtained
from time-evolving historical variability over 1996–2021, derived
from the MPI-ESM GE30 100-member ensemble (Fig. 4c), and (3)
naturally forced trends derived from CCSM456 Paleo simulations
over 850–1850 (Fig. 4d).

On the one hand, in winter (JDF), and in spring (MAM) a
substantial portion of SST trends over the North Pacific can be
explained by the natural variability alone, over 80% and 75% of
the grids, respectively (Supplementary Fig. 1). On the other hand,
annually, in summer (JJA), and in autumn (SON), the
configuration of the Pacific warming pool emerges from the
natural variability and is found to be externally and systematically
forced (P < 0.05).

Having demonstrated that the here-detected warming pool
significantly deviates from natural variability, that is, externally
forced changes are detectable over the region (P < 0.05), we
proceed to an attribution step by checking whether the detected
changes are consistent with what climate models describe as the
expected response to anthropogenic forcing. The following
attribution analysis focuses on JJASON months, where the most
significant and pronounced warming trends in SST are detectable
over the last decades (Supplementary Fig. 1).

As a first step to determining if the observed SST trends
constitute the system’s forced response to external climate drivers,
we project the observed SST changes on the model simulated
forced response, ALL signal (anthropogenic + natural) by using
univariate total least square (TLS) regression analysis (Eq. (3) in
“Methods”). The forced response (ALL signal) is derived from
two ensembles of model simulations: the CESM1 35-member
Large Ensemble (CESM-LE28) and the MPI-ESM 100-member
Grand Ensemble (MPI-GE30).

The 1-year moving scaling factors (ai) during 1983 to 2021
time period demonstrates that the 25-year SST trends in the
warming pool emerge from natural variability in 2018 and later
on (Fig. 4e). We reach this conclusion, as the 95%-tile range of
the internal variability-generated uncertainty of scaling factors for
the row (dark gray), and double (light gray) the model variance

(assessed from fits of the regression model (Eq. (3)) to control run
segments) does not include the zero line but is consistent with
unity (ai ≠ 0⋂ ai = 1) for 25-year trends ending in 2018 and later
on (1993–2018, 1994–2019, 1995–2020, and 1996–2021; Fig. 4e).
This indicates the emergence of a detectable ALL signal
(anthropogenic forcing being dominant) in SST changes in the
twenty-first century (with <5% risk of error) over the warming
pool. The similarity of the forced response in CESM-LE (Fig. 4e)
and MPI-GE (Supplementary Fig. 2) suggests that the smaller
ensemble size of the CESM-LE does not affect the forced signal.

It is interesting to note that, the range of internal variability-
generated uncertainty in the scaling factors (the gray shaded area)
decreases when more recent years are included in the analysis
(Fig. 4e). This could imply that the signal of SST increase is
becoming dominated by the external forcing, which makes it
easier to separate the signal’s large contribution from the internal
climate variability (noise). In other words, the region might
become more responsive to anthropogenic forcing as a result of,
for instance, decreasing mixed layer depth that could cause a
stronger SST response for the same heat flux57.

The climate over North Pacific is potentially influenced by two
external climate drivers: well-mixed greenhouse gases (GHGs)
and anthropogenic aerosols (AER), which have evolving con-
tribution in driving SST over the Gulf of Alaska. In the following,
we focus on 1996–2021 time period and assess the response of
SST to the GHGs-only forcing and the AER-only forcing in
isolation.

Evolution of forced SST trends. Here we are isolating the
evolving contributions of industrial aerosols, AERindust (Note that
biomass burning aerosols are not considered), and greenhouse
gases (GHGs) in driving annual SST trends during the 1920–2021
time period (Fig. 5a). We use two ensembles that are identical to
the CESM-LE28,32, but each ensemble excludes the time evolution
of one forcing agent: greenhouse gases (LE-fixGHG, include 20
members) and anthropogenic aerosols (LE-fixAERindust, include
20 members). We define the response to the withheld forcing as
i.e., ALLem− fixGHGem

29. The time series of GHG-induced SST
anomalies shows a steep positive trend, with an increase in
magnitude over 1920 to 2025 time period (Fig. 5a). The SST trend
pattern driven by AERindust-forcing only shows that AERindust

cools North Pacific over the 1980’s (Fig. 5a), and offsets GHG-
induced radiative warming (Fig. 5b), with the most pronounced
SST declines over the Northeast Pacific during 1956–1980
(Fig. 5c). Noteworthy, aerosols contribute negatively to the
radiative forcing response (cooling effect), and there is indeed an
observed increase in aerosols in this period36. However, in the
most recent period, the cooling due to AER-forcing is replaced by
warming (Fig. 5a, g). The reversal of the cooling trends due to
AER-forcing to warming after around 1995/1996 is very likely a
result of concurrent aerosols optical depth (AOD) declines over
North America and Europe58,59. Consequently, the ALL-forcing
trend pattern over 1996–2021 is characterized by amplified
warming, when both GHG-induced radiative warming and
AERindust-induced local warming have contributed, individually,
to the SST increase (Fig. 5e).

Interestingly, the AERindust-forcing only simulation over
1996–2021 shows a horseshoe-like pattern of SST warming that
is reminiscent of the PDO (Fig. 5g). Despite the PDO being
commonly recognized as an internally generated mode of the
climate system, recent studies have suggested that PDO phase
transition is also significantly affected by external climate
drivers60–62. Regional trends in anthropogenic aerosols over
North Pacific, with aerosols-cloud interaction being the dominant
aerosols forcing63, can influence the PDO through modulation of
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the Aleutian low63–66. The CESM1-LE model simulates a
strengthening of the Aleutian Low in DJF (decrease in mean
sea-level pressure in the north Pacific index (NPI) region defined
by the 160–220°E, 30–65°N latitude–longitude domain) in
response to AER-forcing over 1996–2021 (Fig. 5h). The winter-
time strengthening of the Aleutian Low (−50 Pa decade−1

decreasing trend in SLP), induce SST trends in the northeast
Pacific that resemble the PDO (Fig. 5g). This makes it difficult to
distinguish PDO-related anomalies from climate change signals.
Thus, it is plausible that the anthropogenic aerosols have
influenced both on North Pacific SSTs and the PDO index itself.

Univariate trend detection and bivariate trend attribution. The
univariate detection analysis, which is based on estimating the
amplitude of the response of SST to each external forcing from
the observations via the estimation of scaling factors37,38,67 (see
“Methods”), reveals that irrespective of the models used, the
elevated GHG concentration has a robust detectable influence on
the observed SST increase over the region (P < 0.05, Fig. 6a). As
the internal variability-generated uncertainty of scaling factors (ai
in Eq. (3)) does not include the zero line for the GHG signal
derived either from CESM1-LE (ensemble mean of

20 simulations, green bar, Fig. 6a) or CMIP6-DAMIP models
(ensemble mean of 34 simulations conducted by 5 DAMIP
models, cyan bar, Fig. 6a). Neither the scaling factors of the AER
signal derived from CESM1-LE (red bar) nor from CMIP6-
DAMIP models (purple bar) include the zero line, suggesting that
the AER-induced local warming over the Gulf of Alaska also
contributes significantly to the observed increase in SST over the
region in JJASON.

Furthermore, in order to separate the driver’s contributions to
the response, a combined influence of GHG, and AER should be
considered. In this case, a bivariate (two-dimensional) attribution
analysis is required, where the observed trend of SST is projected
onto two hypothetical signals (GHG and AER) simultaneously37,38.
The two-dimensional (bivariate) uncertainty contour for the GHG
and AER is shown with an ellipse (Fig. 6c). The ellipse containing
90% of the estimated joint distribution of scaling factors for the two
signals (GHG and AER) excludes the origin (0,0), indicating that
the effects of GHG and AER signals are detectable simultaneously.
In addition, the scaling factors are consistent with unit amplitude
since the point (1,1) lies within the ellipse (Fig. 6c).

In summary, we detect a signal from both GHG and AER in
the observed long-term trend of SST in JJASON, and demonstrate

Fig. 4 Detection of systematically forced trends in observed sea surface temperature (SST) record. a Observed trend pattern of SST over 1996–2021 in
JJASON (June-to-November) based on OISSTv2. Regions where systematically forced changes of SST are detectable at 95% significant level (b) in
comparison with 280 pseudorealizations of unforced trends of SST due to pre-industrial variability derived from CMIP6 control runs, (c) in comparison
with trends due to historical variability over 1996–2021 estimated from the 100 realizations of MPI-GE and, (d) in comparison with 39 pseudorealizations
of naturally (internal + external) forced trends derived from CCSM4 850–1850 Paleo simulation (P < 0.05). e One-year moving scaling factors of observed
25-year SST trends onto the ALL signal (anthropogenic + natural) derived from the ensemble mean of CESM1-LE 35 members over 1983 to 2021 in
JJASON over the warming pool (black box in c). The gray shaded area displays the 95%-tile range of the internal variability-generated uncertainty of
scaling factors (a) assessed from fits of the regression model to 280 control run segments for the raw (dark gray) and double (light gray) the model
variance. Detection of ALL signal is claimed when the gray shaded area does not include the zero line but is consistent with unity (ai≠ 0⋂ ai = 1, with <5%
risk of error).
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Fig. 5 Evolving roles of the greenhouse gases forcing and industrial aerosols in driving annual SST over the North Pacific. a Area mean annual SST
anomalies over the Gulf of Alaska (black dotted box in e), derived from the ensemble mean of 20 realizations of CESM1-LE model, ALLem minus fixGHGem

in red, and ALLem minus fixAERem in blue. Response of annual SST to the ALL forcing (anthropogenic + natural), greenhouse gases (GHG) forcing and
industrial aerosols (AER) forcing (b–d) over 1956–1980, and (e–g) over 1996–2021. h Response of mean sea-level pressure (SLP) to AER-forcing in DJF
(December–February). The Aleutian low region defined by 160–220°E, 30–65°N latitude–longitude is denoted by a red box in h.

Fig. 6 Detection and attribution of sea surface temperature trends over the warming pool. a Univariate attribution: Scaling factors (a) of observed SST
changes over the warming pool (black box in b), and its 95-%tile uncertainty range, assessed from fits of the regression model to control run segments, in
JJASON (June-to-November) over 1996–2021 against the ALL signal (anthropogenic+ natural) derived fromMPI-GE (100 runs; black bar), and CESM1-LE (35
runs; red bar). Scaling factors (a) of observed SST changes and its 95-%tile uncertainty range against the greenhouse gases signal (GHG) and the
anthropogenic aerosols signal (AER) derived from CESM1-LE (20 runs; green and blue bars, respectively), and derived from DAMIP-CMIP6 (34 runs
conducted by 5 models; cyan and purple bars, respectively). b Observed trend pattern of SST over 1996–2021 time period. c Bivariate attribution: The ellipse
displays the 90% of the estimated joint distribution of scaling factors for the GHG & AER signals when observed data are regressed onto two signals
simultaneously during 1996–2021. The one-dimensional uncertainty intervals for the univariate and bivariate analysis for two signals are shown as red and black
whiskers, respectively. Bivariate attribution is claimed in cases where the ellipse excludes the origin (0,0) but the point (1,1) lies inside the ellipse.
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that AER-forcing can act in favor of GHG-induced warming,
amplifying this warming. Therefore, we conclude that forcing by
elevated GHG levels and the recent industrial aerosol-load
decrease are identified as key causes for the here-detected long-
term warming pool (P < 0.05).

Conclusions. Over the last decade, the North Pacific experienced
strong marine heatwaves (MHWs) that produced devastating
marine ecological as well as socioeconomic impacts, and received
major societal concerns. We use the extreme event-attribution
technique based on causal counterfactual theory40,41,47, and
provide a quantitative assessment of whether GHG forcing, the
main component of anthropogenic forcings, was necessary for the
North Pacific high-impact MHWs (the Blob-like SST anomalies)
to occur, and whether it is a sufficient cause for such events to
continue to repeatedly occur in the future.

In this study, we show that forcing by elevated well-mixed
GHG levels, has virtually certainly caused the multiyear persistent
2019–2021 marine heatwave. In other words, there is less than 1%
chance that the 2019–2021 event with ~3 years duration and
1.6 °C intensity could have happened in the absence of GHG
forcing. Our extreme event-attribution analysis further reveals
that the GHG forcing is a necessary, but not sufficient, causation
for the multiyear persistent MHW events in the current climate,
such as that happened in 2014–2015, and 2019–2021. That is, a
MHW of this magnitude requires GHG forcing to occur (with
99% probability), but the inclusion of GHG forcing alone is not
enough to guarantee the occurrence of the events. However, given
that the occurrence of the 2019–2021 (2014–2015) MHW was
extremely unlikely in the absence of GHG forcing (with <1%
occurrence probability under no-GHG forcings), combined with
increasing trends in MHWs duration and intensity, it is likely that
future MHW events will be attributable to GHG forcing, and that
the inclusion of GHG forcings will become a sufficient cause for
events of the magnitude of the 2019–2021 (2014–2015)
record event.

We further discover a systematically-forced outstanding warm-
ing pool in the high-resolution NOAA OISST42 dataset, co-
located with the MHWs maximum SST anomalies. The region is
marked by concurrent and pronounced increase in annual mean
(0.4 °C decade−1), and variance of SSTs (0.6 °C2 decade−1),
decreases in winter-time low-cloud’s cooling effect, and increases
in atmospheric stability with a strengthening ridge. The region is
further identified with 0.5 ∘C warmer and shorter winters with
37 days longer summers. Consequently, greater exposure to heat,
and lack of usual winter-time cooling leads to 4.5-fold more
frequent, ninefold longer-lasting, and threefold more intense
MHWs in the twenty-first century, in comparison with those
detected in the twentieth century. We further show that up to
60% of the MHW events detected over the last decade
(2010–2021) are either more intense and/or longer-lasting than
could solely be attributed to climate variability in the absence of
external climate drivers (P < 0.05). We refer to this region as the
Pacific long-term warming pool.

The univariate detection analysis indicate that anthropogenic
signal has recently emerged from the natural variability of SST
over the warming pool in JJASON (June-to-November). The
pronounced increases in 500 Gph (+30 m decade−1) and SLP
(+250 Pa decade−1) in the cold season are also found to be
externally forced, and larger than could be as a result of natural
(internal) variability alone (P < 0.05). Such changes enforce heat-
trapping systems, and serve to systematically enhance atmo-
spheric stability in cold season together with decreases in winter-
time low-cloud’s cooling effect, supporting the configuration of
the warming pool.

The evolution of anthropogenic aerosols plays an important
role in the northeast Pacific SST trends subsequently (post-1996)
when East Asian aerosol emissions decreases. The cooling to
warming SST transition after around 1995/1996 is reproduced in
the aerosol-forced historical simulation, when the ALL-forcing
trend pattern is characterized by amplified warming, with the
contribution of both GHG-induced radiative warming and
AERindust-induced local warming to the SST increase over the
region. Our bivariate attribution analysis over 1996–2021, based
on multiple model data sources, demonstrates that forcing by
elevated GHG levels and the recent industrial aerosol-load
decrease are key causes for the here-detected warming pool
(P < 0.05). These results further strengthen the MHWs attribution
findings, that GHG forcing has virtually certainly caused the
2019–2021MHW, by demonstrating that GHG forcing has also
discernibly changed the background state against which MHW
events occur. This indicates that the region will very likely
experience more intense MHW events as the GHGs emissions
continue to rise.

The here-detected long-term Pacific warming pool together
with the strengthening high-pressure system on the background
state of the high-impact MHWs, which we show that significantly
deviate from natural variability, and that will continue and
intensify in the course of unfolding anthropogenic climate
change, will provide favorable conditions over the northeast
Pacific for even more sever marine heatwave events in the future.
Such change could have profound societal and marine ecosystem
impacts over the region.

Methods
Observations. The area of research is the North Pacific ocean defined by the
10°N–60°N, 90°E–90°W latitude–longitude domain. Two datasets of sea surface
temperature are used: (1) NOAA OISSTv242, which is daily remotely sensed
National Oceanic and Atmospheric Administration (NOAA) Optimum Inter-
polation (OI) SST V2 high-resolution (0.25∘) gridded SST data available over
January 1982 to April 2021. (2) The Hadley Centre HadISST68, which is produced
monthly with 1° grid resolution since 1870. The mean sea-level pressure (SLP) and
500 hPa geopotential height (500Gph) are derived from ERA549 reanalysis. Cloud-
cover data is from EUMETSAT’s Satellite Application Facility on Climate Mon-
itoring (CM SAF) available over 1982–201852. The summary of observation and
model data used in this study is presented in Table 2 and Supplementary Table 1.

Large ensembles. Two ensembles of ocean-atmosphere coupled model simula-
tions are used; the Community Earth System Model 35-members Large Ensemble
(CESM-LE)28, and the Max Planck Institute for Meteorology 100-members Grand
Ensemble (MPI-GE)30. The CESM-LE includes 35 simulations (members) running
from 1920 to 2100. From 2006 to 2100, the Representative Concentration Pathway
8.5 forcing (RCP8.569) is used. The MPI-GE is conducted by using the Max Planck
Institute Earth System Model (MPI-ESM1.1) and includes 100 simulations
(members) running from 1850 to 2100 under the RCP8.5 scenarios. For disen-
tangling the forced response and the internal climate variability each member in
the ensembles is initialized with different initial conditions. The large size of the
ensemble is a crucial requirement to robustly sample internal variability. The mean
of each ensemble averages out the internal variability, thus represents the forced
response of the system.

In addition, for attributing the detectable signal to a specific forcing agent we
make use of two ensembles that are identical to the CESM-LE28, but each ensemble
excludes the time evolution of one forcing agent: greenhouse gases (LE-fixGHG,
include 20 members) and anthropogenic aerosols (LE-fixAERindust, include 20
members).

CMIP6-DAMIP. We also analyze five models that participate in the Detection and
Attribution Model Intercomparison Project (DAMIP34) component of the Coupled
Model Intercomparison Project Phase 6 (CMIP635). From the DAMIP34 single-
forcing runs, we consider two groups of simulations. One group (GHG) includes
34 simulations conducted by five models forced with historical well-mixed
greenhouse gases only. A second group (AER) includes 34 simulations conducted
by 5 models forced with anthropogenic aerosols only. The DAMIP models
(ensemble size) are CNRM-CM6-1 (6), CanESM5 (10), GISS-E2-1-G (4),
HadGEM3-GC3-LL (4), and IPSL-CM6A-LR (10). In these simulations, aerosol
and GHG emissions (or concentrations) are allowed to vary in time whereas all
other forcing variables are set to pre-industrial values. The formula to give equal
weighting of the individual models is, n ¼ d2

∑d
i¼1

1
li

, where d is the number of models
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and l is the ensemble size70. The final internal variance is then just 1/n the internal
variance. Thus, in the multimodel ensemble mean of 34 simulations conducted by
five models (GHG-only and AER-only simulations), the internal variability is
reduced by about 70%, which leads to an enhanced signal-to-noise ratio in esti-
mated signal patterns. The name of the models from DAMIP-CMIP6, the number
of model ensemble members and the pre-industrial control years used in the study
is presented in Table 2 and Supplementary Table 1.

The summary of single-forcing experiments used in this study is as follows:

● ALL signal: Ensemble of 35 runs from CESM-LE, and the ensemble of 100
runs from MPI-GE forced with ALL forcing, which includes anthropogenic
factors such as human emissions of greenhouse gases, atmospheric
aerosols, ozone, land-use changes, and natural external factors such as
stratospheric aerosols due to the large volcanic eruptions and solar forcing.

● GHG signal: Ensemble of 20 runs from CESM-LE, and the ensemble of 34
runs conducted by 5 CMIP6-DAMIP models forced with historical changes
in well-mixed greenhouse gases.

● AER signal: Ensemble of 20 runs from CESM-LE, and the ensemble of 34
runs conducted by 5 CMIP6-DAMIP models forced with historical changes
in anthropogenic aerosols.

Defining marine heatwaves. We identify marine heatwaves (MHWs) from daily
NOAA OISST time series available from January 1982 to March 2022 and follow
the standardized and widely used1,2,12,71 MHWs definition developed in Hobday
et al.19. MHWs occur when SSTs exceed a seasonally varying threshold, defined as
the 95th-%tile of SST variations based on a 30-year climatological period
(1983–2012), for at least five consecutive days. At each location and for each
MHW, we calculated the event duration (time between start and end dates), fre-
quency and intensity (SST anomaly above the threshold average over the event
duration). In the analysis, two events with a peak of less than 3 days are considered
as a single event. The MHW definition used in this study is available as software
modules in R (heatwaveR72).

Extreme event attribution. Extreme event attribution39 is used to assess the
influence of GHG forcing on the duration and intensity of the observed MHWs.
Following Hannart et al.40,41, we present event attribution in terms of necessary
and sufficient causation. In order to obtain reliable estimates of the probabilities,
we use daily SST output from CESM1-LE with a 20-member ensemble with ALL
forcing and a 20-member ensemble with excluded time evolution of GHG forcing
(LE-fixGHG). The differences among 20 ensemble members are due to internal
variability and the 20 simulations can be considered as 20 plausible realizations of
the real world31. To the best of our knowledge, the CESM1-LE is the only com-
prehensive model available with complementary historical single-forcing large
ensembles in daily timescale. Given that the magnitude of daily SST variability in
CESM1-LE compares well with observations (standard deviation of 1.91 vs 1.94 °C,
respectively, based on detrended data during 1982–2021), this model ensemble can
be used for MHWs attribution analysis. In addition, the results of detection and
attribution analysis of long-term SST presented in “Detection of systematic changes
in the Pacific warming pool” and “Univariate trend detection and bivariate trend
attribution”, indicate that the CESM-LE is suitable for an analysis of the attribution
of MHWs in the region because of its strong detection of the anthropogenic signal
(scaling factor ai is very close to unity; Figs. 4e and 6a).

Choosing the 1982–2021 time period, the MHW characteristics (duration and
intensity) from each year and each 20 realizations of CESM1 model are pooled
together (780 years total) and probabilities are estimated. For each detected MHW,
we estimate the probabilities that a MHW has occurred that equals or exceeds the
duration and intensity of the observed MHW in ALL forcing (actual world) and
fixGHG forcing (counterfactual world) scenarios.

We calculate the probability of necessary causation (PN), sufficient causation
(PS) and probability ratio (PR) separately for MHWs duration as:

PR ¼ Pduration
ALL

Pduration
fixGHG

; PN ¼ 1�
Pduration
fixGHG

Pduration
ALL

; PS ¼ 1� 1� Pduration
ALL

1� Pduration
fixGHG

; ð1Þ

and similarly for MHWs intensity:

PR ¼ Pintensity
ALL

Pintensity
fixGHG

; PN ¼ 1�
Pintensity
fixGHG

Pintensity
ALL

; PS ¼ 1� 1� Pintensity
ALL

1� Pintensity
fixGHG

ð2Þ

It should be noted that the equations presented here only apply as PN or PS if
the resulting values are greater than 0; if negative, the PN or PS is assigned a
probability of 0.

Calculating uncertainties on PN. To calculate the uncertainty on the probability of
necessary causation (PN) a resampling39 method is used. The pool of data from
each year in 1982–2021 and from each 20 ensemble member in CESM1-LE is re-
sampled to reproduce a set of data to use for the calculation of the probabilities.
With 1000 estimates of the density curves, a nonparametric 90% confidence
interval for each of the metrics can be determined.

Estimating natural (internal) variability. We used three sources for the estima-
tion of time-invariant and time-evolving (historical) internal variability of climate
system, of which PDO, ESNO, NPGO, etc. are part, as well as natural (internal +
external) variability.

1: Time-invariant internal variability. The long pre-industrial control simulations
from global climate models (GCMs) participating in the CMIP6 project are per-
formed under control conditions (i.e., with constant atmospheric composition, no
episodic volcanic influences, and no variation in solar output). The models
(number of years used from control integration) are CESM1-LE (1000), MPI-GE
(2000), CNRM-CM6-1 (500), CanESM5 (1000), GISS-E2-1-G (1000), HadGEM3-
GC3-LL (500) and IPSL-CM6A-LR (1000). Since climate models may under-
estimate variability, we double the simulated variance prior to the attribution
analysis73. The 7000-year pre-industrial control (PIC) runs, which are the con-
catenated PIC runs of 7 models, provide up to 280 pseudorealizations (the series is
split into 280 nonoverlapping 25-year segments) of how the climate might have
changed in the absence of external influences ("Pre-industrial variability"). The pre-
industrial variability are calculated using concatenated control runs in order to
capture the very low-frequency 10–20 years fluctuation of SST. For all piControl
simulations, a linear trend is subtracted, to reduce a possible tiny influence of
model drift.

2: Time-evolving (historical) internal variability. We further utilize MPI-GE30 large
initial-condition ensemble, which produces 100 realizations of single model’s
response to ALL forcing. This ensemble can provide better estimates of an indi-
vidual model’s historical internal variability and response to external forcing31,32.
The transient forced response (Ft) is quantified by taking the ensemble mean of 100

members at each time step, Ft ¼ ∑e¼100
e¼1 f et
100 , where fet is a single ensemble member at

time step t. The “evolving internal variability” is estimated at each time step by
removing the ensemble mean (Ft) from each 100 ensemble members (fet) and
calculate the standard deviation across the ensemble30.

3: Natural (internal+ external) variability. We use the Paleo simulations over the
0850–1850 millennium derived from CCSM456 model to obtain an estimate of
natural external variability of SST, associated with solar variability and strato-
spheric aerosols due to large volcanic eruptions. This millennium simulation is split
into 39 nonoverlapping 25-year segments, which provides 39 pseudorealizations of
how SST might have changed in the absence of anthropogenic influences55.

With the estimated internal variability, derived from the three sources
mentioned above, we test the null hypothesis that the observed trend over
1996–2021 is within the 2.5–97.5%-tile distribution of unforced trends (as derived
either from the pre-industrial control simulations or MPI-GE 100-member
historical runs) or naturally forced trends (as derived from the 850–1850
millennium simulation). If the null hypothesis is rejected, it indicates that the
observed SST changes deviates significantly from internal variability, that is, the
observed change in SST cannot be explained by internal variability alone, and
externally (systematically) forced changes are detectable in observed SST record at
5% significant level. We note here the adoption of risk of false rejection (P < 0.05)
of the null hypothesis of “no external forcing”. Since when the regional null
hypothesis is valid, on an average n= 0.05 m local alternatives will falsely be
rejected (m number of grid points)74.

Long-term trend detection and attribution. We follow the same detection and
attribution approach used in previous studies by Barkhordarian et al.37,38,55,67 that is
a two-step process. In the first step—detection—consists of assessing whether sys-
tematically (externally) forced changes are detectable in the observed SST change.
This is achieved by testing the null hypothesis that the observed change in SST is

Table 2 Observation and model data used in this study.

Observation data Source

Sea surface temperature (SST) NOAA OISST42 V2; HadISST68
Mean sea-level pressure ERA549 reanalysis (1979–2021)
Geopotential height at 500 hPa ERA5 reanalysis (1979–2021)
Cloud-cover fraction EUMETSAT52 satellite data (1983–2018)

Model data Source

Historical simulations in
monthly timescale (ALL forcing)

CESM1-LE29 (35) and MPI-GE30 (100)

Historical simulations in daily
timescale

CESM1-LE29 (20 members; ALL and fixGHG)

GHG-forcing only, AER-forcing
only runs

34 runs conducted by 5 models of
CMIP635-DAMIP34
20 runs conducted by CESM1-LE29

Pre-industrial control
simulations (7000 years)

CMIP635

Paleo simulations (0850–1850
millennium)

CCSM456 Paleo simulations
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drawn from the population of an undisturbed climate. In the second step—attribution
—we examine the null hypothesis that the observed change in SST is drawn from a
hypothetical population of a climate disturbed by a specific external influence.

The attribution analysis here is based on estimating the amplitude of the
response of SST to each external forcing from the observations via the estimation of
scaling factors75,76, which is a linear regression model as follows:

yobs ¼ ∑
m

i¼1
ðxi � uiÞai þ uobs; ð3Þ

where yobs represents the observations and each xi the modeled response to one of
m forcings that is anticipated by climate models. ai is an unknown scaling factor.
The noise on yobs, denoted by uobs, is assumed to represent internal climate
variability, while the noise on xi, denoted by ui, is a result of both internal
variability and the finite ensemble used to estimate the model response. In order to
account for the noise in response patterns Total Least Squares (TLS)
methodology77, which minimizes the perpendicular distance between the scatter
points and the best-fit line is used.

Uncertainties in ai are estimated by accounting for the effect of internal climate
variability on yobs, using samples from climate model control simulations.
Therefore, the distribution of the scaling factor ai is assessed from fits of the
regression model (Eq. (3)) to 280 nonoverlapping control run segments derived
from 7000-year control simulations (conducted by 7 global climate models).

Detection of a climate change signal occurs if the uncertainty range around a
scaling factor ai is shown to be significantly different from zero. This is handled by
testing the null hypothesis HDE: a = 0 (where 0 is a vector of zeros). If the null
hypothesis HDE is rejected, it indicates that the observed representation of climate
change deviates significantly from internal variability, that is, the observed change
yobs cannot be explained by internal variability uobs alone. Once detection has been
established, attribution (consistency of observed changes with a combination of
external forcing) is assessed by testing the null hypothesis HAT: a = 1 (where 1
denotes a vector of unit). When there is insufficient evidence to reject HAT, the
attribution of changes to the respective forcing is claimed37,38,67.

Data availability
The NOAA OISST dataset is publicly available at https://downloads.psl.noaa.gov/
Datasets/noaa.oisst.v2.highres. The climate model simulations are available via the Earth
System Grid Federation (ESGF) archive of Coupled Model Intercomparison Project 6
(CMIP6) data (https://esgf-index1.ceda.ac.uk/projects/esgf-ceda/). The ERA5 reanalysis
data can be obtained from https://cds.climate.copernicus.eu, and the observed cloud-
cover data from https://www.eumetsat.int. The CESM1 Large Ensemble (LE) data are
publicly available at https://www.earthsystemgrid.org/dataset.

Code availability
The marine heatwave definition used in this study is available as software modules in R
(heatwaveR72).

Received: 10 November 2021; Accepted: 19 May 2022;

References
1. Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global

warming. Nature 560, 360–364 (2018).
2. Oliver, E. C. et al. Longer and more frequent marine heatwaves over the past

century. Nat. Commun. 9, 1–12 (2018).
3. Oliver, E. C. et al. Projected marine heatwaves in the 21st century and the

potential for ecological impact. Front. Marine Sci. 6, 734 (2019).
4. Oliver, E. C., Perkins-Kirkpatrick, S. E., Holbrook, N. J. & Bindoff, N. L.

Anthropogenic and natural influences on record 2016 marine heat waves. Bull.
Am. Meteorol. Soc. 99, S44–S48 (2018).

5. Oliver, E. C. et al. Marine heatwaves. Annu. Rev. Marine Sci. 13, 313–342
(2021).

6. Laufkötter, C., Zscheischler, J. & Frölicher, T. L. High-impact marine
heatwaves attributable to human-induced global warming. Science 369,
1621–1625 (2020).

7. Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat.
Clim. Change 3, 919–925 (2013).

8. Cavole, L. M. et al. Biological impacts of the 2013–2015 warm-water anomaly
in the northeast pacific: winners, losers, and the future. Oceanography 29,
273–285 (2016).

9. Smith, K. E. et al. Socioeconomic impacts of marine heatwaves: global issues
and opportunities. Science 374, eabj3593 (2021).

10. Mills, K. E. et al. Fisheries management in a changing climate: lessons from
the 2012 ocean heat wave in the northwest Atlantic. Oceanography 26,
191–195 (2013).

11. Cheung, W. W. & Frölicher, T. L. Marine heatwaves exacerbate climate
change impacts for fisheries in the northeast pacific. Sci. Rep. 10, 1–10 (2020).

12. Holbrook, N. J. et al. A global assessment of marine heatwaves and their
drivers. Nat. Commun. 10, 1–13 (2019).

13. Whitney, F. A. Anomalous winter winds decrease 2014 transition zone
productivity in the ne pacific. Geophys. Res. Lett. 42, 428–431 (2015).

14. Walsh, J. E. et al. The high latitude marine heat wave of 2016 and its impacts
on Alaska. Bull. Am. Meteorol. Soc 99, S39–S43 (2018).

15. McCabe, R. M. et al. An unprecedented coastwide toxic algal bloom linked to
anomalous ocean conditions. Geophys. Res. Lett. 43, 10–366 (2016).

16. IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing
Climate (eds. Pörtner, H.-O. et al.) (2019) In press.

17. Joh, Y. & Di Lorenzo, E. Increasing coupling between npgo and pdo leads to
prolonged marine heatwaves in the northeast pacific. Geophys. Res. Lett. 44,
11–663 (2017).

18. Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 north
pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).

19. Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves.
Progress Oceanography 141, 227–238 (2016).

20. Bond, N. A., Cronin, M. F., Freeland, H. &Mantua, N. Causes and impacts of the
2014 warm anomaly in the NE pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).

21. Bond, N., Cronin, M., Freeland, H. & Mantua, N. The blob: an extreme warm
anomaly in the northeast pacific [in state of the climate in 2014]. Bull. Amer.
Meteor. Soc 96, S62–S63 (2015).

22. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A pacific
interdecadal climate oscillation with impacts on salmon production. Bull. Am.
Meteorol. Soc. 78, 1069–1080 (1997).

23. Di Lorenzo, E. et al. North pacific gyre oscillation links ocean climate and
ecosystem change. Geophys. Res. Lett. 35, 8 (2008).

24. Amaya, D. J., Miller, A. J., Xie, S.-P. & Kosaka, Y. Physical drivers of the
summer 2019 north pacific marine heatwave. Nat. Commun. 11, 1–9 (2020).

25. Chen, Z., Shi, J., Liu, Q., Chen, H. & Li, C. A persistent and intense marine
heatwave in the northeast pacific during 2019–2020. Geophys. Res. Lett. 48,
e2021GL093239 (2021).

26. Gupta, A. S. et al. Drivers and impacts of the most extreme marine heatwave
events. Sci. Rep. 10, 1–15 (2020).

27. Stott, P. A. et al. Attribution of extreme weather and climate-related events.
Wiley Interdisciplinary Rev.: Clim. Change 7, 23–41 (2016).

28. Kay, J. E. et al. The community earth system model (CESM) large ensemble
project: a community resource for studying climate change in the presence of
internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

29. Deser, C. et al. Isolating the evolving contributions of anthropogenic aerosols
and greenhouse gases: a new cesm1 large ensemble community resource. J.
Clim. 33, 7835–7858 (2020).

30. Maher, N. et al. The max Planck institute grand ensemble: enabling the
exploration of climate system variability. J. Adv. Modeling Earth Syst. 11,
2050–2069 (2019).

31. Deser, C., Knutti, R., Solomon, S. & Phillips, A. S. Communication of the role
of natural variability in future North American climate. Nat. Clim. Change 2,
775–779 (2012).

32. Deser, C. et al. Insights from earth system model initial-condition large
ensembles and future prospects. Nat. Clim. Change 10, 277–286 (2020).

33. Kirchmeier-Young, M. C. & Zhang, X. Human influence has intensified
extreme precipitation in North America. Proc. Natl Acad. Sci. 117,
13308–13313 (2020).

34. Gillett, N. P. et al. The detection and attribution model intercomparison
project (damip v1. 0) contribution to cmip6. Geoscientific Model Dev. 9,
3685–3697 (2016).

35. Eyring, V. et al. Overview of the coupled model intercomparison project phase
6 (cmip6) experimental design and organization. Geoscientific Model Dev. 9,
1937–1958 (2016).

36. Jacobson, M. Z. Global direct radiative forcing due to multicomponent
anthropogenic and natural aerosols. J. Geophys. Res.: Atmos. 106, 1551–1568
(2001).

37. Barkhordarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C. & Mechoso, C. R.
A recent systematic increase in vapor pressure deficit over tropical South
America. Sci. Rep. 9, 1–12 (2019).

38. Barkhordarian, A. et al. Simultaneous regional detection of land-use changes
and elevated GHG levels: The case of spring precipitation in tropical South
America. Geophys. Res. Lett. 45, 6262–6271 (2018).

39. Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European
heatwave of 2003. Nature 432, 610–614 (2004).

40. Hannart, A., Pearl, J., Otto, F., Naveau, P. & Ghil, M. Causal counterfactual
theory for the attribution of weather and climate-related events. Bull. Am.
Meteorol. Soc. 97, 99–110 (2016).

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-022-00461-2 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2022) 3:131 | https://doi.org/10.1038/s43247-022-00461-2 | www.nature.com/commsenv 11

https://downloads.psl.noaa.gov/Datasets/noaa.oisst.v2.highres
https://downloads.psl.noaa.gov/Datasets/noaa.oisst.v2.highres
https://esgf-index1.ceda.ac.uk/projects/esgf-ceda/
https://cds.climate.copernicus.eu
https://www.eumetsat.int
https://www.earthsystemgrid.org/dataset
www.nature.com/commsenv
www.nature.com/commsenv


41. Hannart, A. & Naveau, P. Probabilities of causation of climate changes. J.
Clim. 31, 5507–5524 (2018).

42. Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface
temperature. J. Clim. 20, 5473–5496 (2007).

43. Loikith, P. C., Detzer, J., Mechoso, C. R., Lee, H. & Barkhordarian, A. The
influence of recurrent modes of climate variability on the occurrence of
monthly temperature extremes over South America. J. Geophys. Res.: Atmos.
122, 10–297 (2017).

44. Loikith, P. C. et al. A climatology of daily synoptic circulation patterns and
associated surface meteorology over southern South America. Clim. Dyn. 53,
4019–4035 (2019).

45. Allen, M. Liability for climate change. Nature 421, 891–892 (2003).
46. Stone, D. A. & Allen, M. R. The end-to-end attribution problem: from

emissions to impacts. Clim. Change 71, 303–318 (2005).
47. Pearl, J. et al. Causal inference in statistics: an overview. Stat. Surveys 3,

96–146 (2009).
48. Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting

heat waves in the 21st century. Science 305, 994–997 (2004).
49. Hersbach, H. et al. The era5 global reanalysis. Quarterly J. Royal Meteorol. Soc.

146, 1999–2049 (2020).
50. Swain, D. L. et al. The extraordinary California drought of 2013/2014:

character, context, and the role of climate change. Bull. Am. Meteorol. Soc. 95,
S3 (2014).

51. Swain, D. L., Horton, D. E., Singh, D. & Diffenbaugh, N. S. Trends in
atmospheric patterns conducive to seasonal precipitation and temperature
extremes in california. Sci. Adv. 2, e1501344 (2016).

52. Posselt, R., Mueller, R., Stöckli, R. & Trentmann, J. Spatial and temporal
homogeneity of solar surface irradiance across satellite generations. Remote
Sensing 3, 1029–1046 (2011).

53. Cheung, W. W. et al. Projecting global marine biodiversity impacts under
climate change scenarios. Fish Fisheries 10, 235–251 (2009).

54. Cheung, W. W. et al. Shrinking of fishes exacerbates impacts of global ocean
changes on marine ecosystems. Nat. Clim. Change 3, 254–258 (2013).

55. Barkhordarian, A., von Storch, H., Zorita, E. & Gómez-Navarro, J. An attempt
to deconstruct recent climate change in the baltic sea basin. J. Geophys. Res.:
Atmos. 121, 13207–13217 (2016).

56. Gent, P. R. et al. The community climate system model version 4. J. Clim. 24,
4973–4991 (2011).

57. Marshall, J. et al. The ocean’s role in the transient response of climate to
abrupt greenhouse gas forcing. Clim. Dyn. 44, 2287–2299 (2015).

58. Aas, W. et al. Global and regional trends of atmospheric sulfur. Sci. Rep. 9,
1–11 (2019).

59. Wilcox, L. J. et al. Accelerated increases in global and Asian summer monsoon
precipitation from future aerosol reductions. Atmos. Chem. Phys. 20,
11955–11977 (2020).

60. Bonfils, C. & Santer, B. D. Investigating the possibility of a human component
in various pacific decadal oscillation indices. Clim. Dyn. 37, 1457–1468 (2011).

61. Gan, B. et al. On the response of the Aleutian low to greenhouse warming. J.
Clim. 30, 3907–3925 (2017).

62. Geng, T., Yang, Y. & Wu, L. On the mechanisms of pacific decadal oscillation
modulation in a warming climate. J. Clim. 32, 1443–1459 (2019).

63. Boo, K.-O. et al. Influence of aerosols in multidecadal SST variability
simulations over the north pacific. J. Geophys. Res.: Atmos. 120, 517–531
(2015).

64. Yeh, S.-W. et al. Changes in the variability of the north pacific sea surface
temperature caused by direct sulfate aerosol forcing in china in a coupled
general circulation model. J. Geophys. Res.: Atmos. 118, 1261–1270 (2013).

65. Smith, D. M. et al. Role of volcanic and anthropogenic aerosols in the
recent global surface warming slowdown. Nat. Clim. Change 6, 936–940
(2016).

66. Dow, W. J., Maycock, A. C., Lofverstrom, M. & Smith, C. J. The effect of
anthropogenic aerosols on the Aleutian low. J. Clim. 34, 1725–1741 (2021).

67. Barkhordarian, A., von Storch, H., Zorita, E., Loikith, P. C. & Mechoso, C. R.
Observed warming over northern South America has an anthropogenic origin.
Clim. Dyn. 51, 1901–1914 (2018).

68. Rayner, N. et al. Global analyses of sea surface temperature, sea ice, and night
marine air temperature since the late nineteenth century. J. Geophys. Res.:
Atmos. 108, D14 (2003).

69. Van Vuuren, D. P. et al. The representative concentration pathways: an
overview. Clim. Change 109, 5–31 (2011).

70. Barkhordarian, A. et al. Anthropogenic forcing is a plausible explanation for
the observed surface specific humidity trends over the Mediterranean area.
Geophys. Res. Lett. 39, 19 (2012).

71. Schlegel, R. W., Oliver, E. C., Wernberg, T. & Smit, A. J. Nearshore and
offshore co-occurrence of marine heatwaves and cold-spells. Progr.
Oceanography 151, 189–205 (2017).

72. Schlegel, R. W. & Smit, A. J. Heatwaver: a central algorithm for the detection
of heatwaves and cold-spells. J. Open Source Softw. 3, 821 (2018).

73. Polson, D. & Hegerl, G. Strengthening contrast between precipitation in
tropical wet and dry regions. Geophys. Res. Lett. 44, 365–373 (2017).

74. Storch, H. V. A remark on Chervin-Schneider’s algorithm to test significance
of climate experiments with gcm’s. J. Atmos. Sci. 39, 187–189 (1982).

75. Hasselmann, K. Optimal fingerprints for the detection of time-dependent
climate change. J. Clim. 6, 1957–1971 (1993).

76. Hasselmann, K. Multi-pattern fingerprint method for detection and
attribution of climate change. Clim. Dyn. 13, 601–611 (1997).

77. Allen, M. R. & Stott, P. A. Estimating signal amplitudes in optimal
fingerprinting, part i: Theory. Clim. Dyn. 21, 477–491 (2003).

Acknowledgements
This study is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy-EXC 2037 ’CLICCS-Climate, Climatic
Change, and Society’—Project Number: 390683824, contribution to the Center for Earth
System Research and Sustainability (CEN) of University of Hamburg.

Author contributions
A.B. designed the study, conducted the analysis, and wrote the manuscript. D.M.N. and
J.B. advised on the approach followed and the interpretation of results. All authors
reviewed the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s43247-022-00461-2.

Correspondence and requests for materials should be addressed to Armineh
Barkhordarian.

Peer review information Communications Earth & Environment thanks Kay McMonigal
and the other, anonymous, reviewer(s) for their contribution to the peer review of this
work. Primary Handling Editors: Clara Orbe, Heike Langenberg.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-022-00461-2

12 COMMUNICATIONS EARTH & ENVIRONMENT |           (2022) 3:131 | https://doi.org/10.1038/s43247-022-00461-2 | www.nature.com/commsenv

https://doi.org/10.1038/s43247-022-00461-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsenv

	Recent marine heatwaves in the North Pacific warming pool can be attributed to rising atmospheric levels of greenhouse gases
	Results
	Marine heatwaves characteristics
	Marine heatwaves attribution (extreme event attribution)
	Discovering an outstanding long-term warming pool
	Detection of systematic changes in the Pacific warming pool
	Evolution of forced SST trends
	Univariate trend detection and bivariate trend attribution
	Conclusions

	Methods
	Observations
	Large ensembles
	CMIP6-DAMIP
	Defining marine heatwaves
	Extreme event attribution
	Calculating uncertainties on PN
	Estimating natural (internal) variability
	1: Time-invariant internal variability
	2: Time-evolving (historical) internal variability
	3: Natural (internal + external) variability
	Long-term trend detection and attribution

	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




