
ARTICLE

Probabilistic projections of increased heat stress
driven by climate change
Lucas R. Vargas Zeppetello1,2✉, Adrian E. Raftery3 & David S. Battisti2

The Heat Index is a metric that quantifies heat exposure in human beings. Here, using

probabilistic emission projections, we show that changes in the Heat Index driven by

anthropogenic CO2 emissions will increase global exposure to dangerous environments in the

coming decades. Even if the Paris Agreement goal of limiting global warming to 2 °C is met,

the exposure to dangerous Heat Index levels will likely increase by 50–100% across much of

the tropics and increase by a factor of 3–10 in many regions throughout the midlatitudes.

Without emissions reductions more aggressive than those considered possible by our sta-

tistical projection, it is likely that by 2100, many people living in tropical regions will be

exposed to dangerously high Heat Index values during most days of each typical year, and

that the kinds of deadly heat waves that have been rarities in the midlatitudes will become

annual occurrences.
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The deadly heat wave that struck Cascadia in the summer of
2021 was just the latest in a series of similar events that
have impacted major cities in the past decade. The impacts

of very high temperatures on public health and agricultural sys-
tems are highly consequential; the impacts of climate change on
heat waves stand to present even more daunting challenges.
Extreme heat contributes to chronic illnesses and is associated
with regular losses of outdoor labor time1, and an “adaptability
limit” to extremely high temperatures has the potential to
threaten the habitability of large swaths of Earth’s land surface if
greenhouse gas emissions are not curtailed2.

How will global warming impact people’s exposure to these
very high temperatures? While several studies have estimated the
projected increase in heat exposure due to climate change3–5,
probabilistic projections have not been published, partly because
estimates of climate change impacts usually depend on determi-
nistic climate models run with only a handful of greenhouse gas
emissions scenarios. In this paper, we use probabilistic projections
of anthropogenic CO2 concentrations and a novel scaling
approach that connects these global projections to local changes in
temperature and relative humidity to better quantify the change in
exposure to dangerously high temperatures due to climate change.

Heat Index is a metric for quantifying heat stress on human
beings that takes into account the effects of temperature and
relative humidity on heat stress and condenses the information
into a single number, expressed as a temperature. A Heat Index
above 103°F is classified by the United States’ National Weather
Service as “dangerous” because of the likely onset of heat cramps
and heat exhaustion. A Heat Index above 124°F is classified as
“extremely dangerous” and can lead to heat stroke, a condition
with a high mortality-case ratio that can lead to death within a
matter of hours6. Given the interest in temperature extremes
driven by climate change7–9 and new research showing that
warming has already caused some populations to experience heat
stress that approaches the limit of survivability10, this paper will
quantify the extent to which different regions across Earth’s land
surface will experience “dangerous” and “extremely dangerous”
environments as defined by Heat Index thresholds.

Results
Projections of heat stress. To quantify the degree to which cli-
mate change will increase human heat stress, we first need
probabilistic projections of global mean temperature change

driven by anthropogenic CO2 emissions. Figure 1a shows the
probability density functions of atmospheric CO2 concentrations
in the years 2050 and 2100. These were produced using a joint
Bayesian model of change in population, Gross Domestic Pro-
duct, and carbon intensity by country11,12.

While other greenhouse gases contribute to climate change on
decadal to centennial timescales, atmospheric CO2 concentrations
are highly correlated with global mean temperature change across
a variety of climate change scenarios (see Table S1). We use linear
best-fit regression to calculate the relationship between global
mean temperature change and atmospheric CO2 concentrations
in each of the 23 climate models that participated in the Coupled
Model Intercomparison Project Phase 6 (CMIP6). The prob-
ability distribution of this linear relationship, which we refer to as
the transient global climate sensitivity, is shown in Fig. 1b. The
uncertainty in transient climate sensitivity is similar to that
reported in other studies13 and reflects the different model
physics and parameterizations that lead to various amounts of
global warming across climate models forced by the same amount
of anthropogenic emissions.

Anthropogenic emissions have already warmed the planet
by roughly 1.0 °C as of 2000–2020 relative to 1850–1900
baseline14,15. Using the probability density functions in Fig. 1a,
b along with the 1 °C warming already observed, we generate the
probability density functions of global mean temperature change
in 2050 and 2100, all relative to the 1850–1900 baseline used by
the IPCC16, shown in Fig. 1c. For 2050, the [5, 50, 95] percentile
changes in global mean temperature are [1.5, 1.8, 2.3] °C while for
2100 these percentiles are [2.1, 3.0, 4.3] °C. These projections
indicate that there is only a 0.1% chance of limiting global average
temperature change to the Paris Climate Agreement aspirational
goal of 1.5 °C by 2100. Note that the full statistical model does not
explicitly take into account the possibility of more aggressive
policy actions such as negative emissions technologies and also
does not consider overshoot strategies to achieve particular global
warming targets.

To connect these probabilistic projections for the global mean
temperature change to changes in local Heat Index, we calculate
the ratio of local changes in temperature to global mean
temperature change for each calendar month for each of the
climate models and then averaged the results across the 23
climate models that we analyzed. This pattern scaling approach
allows our probabilistic projections of global mean temperature
change shown in Fig. 1c to be applied anywhere in space. The
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Fig. 1 Projections of CO2 emissions and global mean temperature change through 2100. a shows probabilistic projections of atmospheric CO2

concentrations in 2050 and 2100. b shows a probability distribution of transient global climate sensitivity written in terms of °C warming per 100 ppm of
atmospheric CO2 change. c shows the convolutions of the probability distributions in a, b, which yields a probability distribution of global mean
temperature change (relative to the 1850–1900 baseline) in 2050 and 2100.
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local mean temperature change for each month at each place in
space is the product of the global mean temperature change in the
scaling ratio ST shown in Fig. S1. The same procedure is applied
to render the local change in relative humidity in each calendar
month (see the scaling patterns SRH in Fig. S2). In Fig. 2, we show
the regional changes in local temperature associated with the
median global average temperature change (3.0 °C) projected for
the end of this century. Changes over land regions are typically
5 °C, with greater increases in the Arctic.

To understand how the Heat Index changes with global
warming, we first calculate the daily maximum Heat Index from
1979 to 1999 using daily observations of maximum temperature
and monthly average observations of specific humidity (see
Supplementary Methods). We then use six different scenarios of
global mean temperature change that correspond to the [5,50,95]
percentiles in 2050 and 2100 calculated from the PDF shown in
Fig. 1c and the scaling patterns for temperature and relative
humidity (Figs. S1 and S2) to calculate the change in the
climatological mean temperature and relative humidity at each

place in space for each calendar month in each of the six
scenarios. This method of relating global to local mean
temperature change takes advantage of a well-known pattern of
temperature change seen across several generations of climate
model ensembles17 and the (negative) correlation between global
temperature and terrestrial relative humidity change18.

We applied the relevant local changes in climatological
temperature and relative humidity to the observed daily
temperature and relative humidity (1979–1998) for each of the
six climate change scenarios we considered, and then used these
records as inputs to calculate the Heat Index according to the
Rothfusz equation19. This procedure takes into account uncer-
tainty in both projected CO2 emissions and climate sensitivity,
but not the small uncertainty associated with regional uncertainty
in global climate change projections (see “Methods” and Figs.
S3–S5). Figures 3 and 4 show the average days per year where
dangerous and extremely dangerous Heat Index thresholds are
exceeded under six climate change scenarios, as well as in the
observational record from 1979 to 1998 (see “Methods”).

Fig. 2 Local temperature change across months. Mean temperature change in each calendar month from the 50th percentile 2100 warming scenario
(global mean temperature change of 3.0 °C).
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Over the period 1979–1998, the dangerous Heat Index
threshold was exceeded on roughly 5% of the days in each year
in the tropics and subtropics (between 30°S and 30°N), and for
10–15% of the days in each year in subtropical Africa, the Indian
subcontinent, and the Arabian peninsula (Fig. 3a). In the
midlatitudes, the dangerous Heat Index threshold was exceeded
less often; in many places, these exceedances represented extreme
events that occurred less than once per year in the 20-year record

we examined. Exceedances of the extremely dangerous Heat
Index threshold were rare across the globe in the 1979–1998
record (see Fig. 4a). The most frequent exceedances of the
extremely dangerous Heat Index threshold were concentrated in
the coastal regions of the Arabian peninsula and Northern India
and occurred between once and three times per year in the
historical record.
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Fig. 3 Projections of dangerous Heat Index values. a shows the average number of days per year when the dangerous Heat Index threshold was exceeded
in the historical record (1979–1998). b–g show the same quantity under the various climate change scenarios noted in each panel.
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Fig. 4 Projections of extremely dangerous Heat Index values. Same as Fig. 3a–g but for exceedances of the extremely dangerous Heat Index threshold.
Red contours in all panels outline regions where the extremely dangerous Heat Index threshold is exceeded more than once per year on average.
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The global warming scenarios present troubling projections of
increasing heat stress driven by anthropogenic emissions. In the
tropics and subtropics, where the dangerous Heat Index threshold
was typically exceeded on less than 15% of the days in each year
between 1979 and 1998, we project that, by 2050, many people
living in these regions will likely experience dangerous Heat Index
values on between one-quarter and one-half of all the days in
each year (Fig. 3c). By 2100, the median projection is that most
regions in the tropics and subtropics will exceed the dangerous
Heat Index threshold on most of the days in each year (Fig. 3f).
Many regions in the midlatitudes will experience dangerous Heat
Index values on between 15 and 90 days each year—in some
places, this represents an order of magnitude increase in the
frequency of exposure to dangerous heat stress from the
1979–1998 period.

The Heat Index rarely exceeds the extremely dangerous
threshold in the current climate (Fig. 4a). In the median
projection for 2100 (Fig. 4f) extremely dangerous heat stress will
be a regular feature of the climate in sub-Saharan Africa, parts of
the Arabian peninsula, and much of the Indian subcontinent. The
extremely dangerous Heat Index threshold is likely to be exceeded
on more than 15 days in each year by the end of the century in
these regions, this will likely require massive adaptation measures
for a large number of people. In our 95th percentile projection,
which corresponds to high emissions and high climate sensitivity
(see Fig. 4g), the Heat Index will exceed extremely dangerous
levels on between 15 and 25% of all days in each year in some
tropical and subtropical regions.

Chicago—a case study. As an example from the midlatitudes, we
turn to Chicago; a major urban center whose history illustrates
the dangers of extremely high temperatures. An extreme drought
swept the United States during the summer of 1988, causing
billions of dollars in damages to the agriculture sector across the
United States20. During the drought, Dr. James Hansen gave
congressional testimony that human-induced increases in
greenhouse gases could increase the probability of extreme events
such as summer heat waves. These events marked a turning point
in the public understanding of climate change.

During the 1988 heat wave, the Heat Index in Chicago was 5°F
higher than average over the 1979–1989 period, but the 103°F
“dangerous” threshold was never exceeded. Seven years later, in
1995, a heat wave devastated Chicago and caused nearly 800
excess deaths21. This event consisted of 4 consecutive days (July
12–15) when the Heat Index exceeded 100°F. Such an event (4
consecutive days of maximum Heat Index >100°F) occurred only
twice in the 1979–1998 record, both times in 1995, but the other
1995 event had a lower average intensity and occurred later in the
summer.

By randomly sampling 1000 scenarios of global mean
temperature changes from the distribution shown in Fig. 1c
and using the local scaling patterns for Chicago’s place in space,
we quantify the average change to Chicago’s daily Heat Index
record by 2100. To do this, we augmented the 1979–1998 record
of temperature and relative humidity in the same manner as was
done in Figs. 3 and 4 (see “Methods”).

The 1979–1998 record shows that a daily Heat Index of 100°F
was not exceeded in 11 out of 20 years. The same 20-year record
modified by the median projections of temperature and relative
humidity changes for the end of this century has at least one
exceedance of this threshold each year. Further, heat waves like
the kind that Chicago experienced in 1995 are projected to
become a regular occurrence by the end of the century in our
median projection: two 4-day periods with daily maximum Heat
Index >100°F were found in the 20-year historical record

(1979–1998); our median projection shows 32 such events in a
20-year period at the end of this century. This 16-fold increase in
the number of potentially dangerous heat waves points to the
kind of societal adaptation required to combat these phenomena
in the midlatitudes. This order of magnitude increase in the
number of heat waves in a 20-year record is reflected in our
median projection of the number of days per year where the
dangerous Heat Index threshold is exceeded. In the 1979–1998
record, the dangerous threshold (103°F) was exceeded four times
(all in 1995), while an average of 11 exceedances of this threshold
each year is likely by 2100.

Conclusions
We have developed probabilistic projections of the average
number of days per year that the Heat Index will exceed “dan-
gerous” and “extremely dangerous” levels. The temperature
projections on which they are based take into account probabil-
istic projections of country-scale global CO2 emissions and the
probability density function of global transient climate sensitivity.
They show that global mean temperature change will likely
approach 2 °C by 2050, with a median projection 1.8 °C, assuming
that recent system dynamics do not change dramatically.

It is likely that, without major emissions reductions, large
portions of the global tropics and subtropics would experience
Heat Index levels higher than considered “dangerous” for a
majority of the year by the end of the century. Without adapta-
tion measures, this would greatly increase the incidence of heat-
related illnesses and reduce outdoor working capacity in many
regions where subsistence farming is important22. Regions where
the extremely dangerous Heat Index threshold is almost never
exceeded today will experience between one and fifteen days
when the extremely dangerous Heat Index threshold is exceeded
each year. We project that, by the end of the twenty-first century,
these regions will include large portions of India and sub-Saharan
Africa. According to the UN demographic projections for 2100,
these regions are projected to include about 5.3 billion people by
2100, or about half the world’s population at that time. Note that
these results are conditional on historical trends in Kaya para-
meters and do not explicitly take into account possible carbon
cycle feedbacks.

In the midlatitudes where “dangerous” Heat Index exceedances
are far less frequent than in the tropics, our case study of the
Chicago heat wave of 1995 indicates how heat waves of similar
intensity to those that have killed hundreds in major cities will go
from outliers to relatively common occurrences. The health
consequences of regular very high temperatures, particularly for
the elderly, poor, and outdoor workers, would be profound and
require a basic reorientation to the risks of extreme heat even in
the midlatitudes.

Methods
Probabilistic carbon dioxide emissions projections. We produced probabilistic
projections of CO2 emissions to the end of the century using a joint Bayesian
hierarchical model (BHM) of population change, GDP, and carbon intensity11,12.
This is based on a country-specific version of the Kaya identity, which expresses
carbon emissions as a product of population, GDP, and carbon intensity for each
country in each year. Carbon intensity is defined as carbon emissions per unit of
GDP, and GDP is expressed in terms of Purchasing Power Parity (PPP). The BHM
is estimated using annual data from 1960 to 2015 on population, GDP, and carbon
emissions for each country. Because of data limitations, some countries had to be
omitted. The 152 countries used account for over 98% of both the world’s popu-
lation and GDP.

The Bayesian hierarchical model was simulated forward to 2100 many times to
obtain a large number of conditionally independent trajectories of future carbon
emissions to 2100 from all countries considered. For each trajectory, the emissions
from all these countries were added together to get a trajectory of future global
emissions in each year to 2100. This yields a probability distribution of future
global emissions in each year. Validation experiments have indicated the resulting
predictive distributions to be well calibrated11. Following the Global Carbon
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Budget analysis,23 we use 1 ppm= 7.8 Gt CO2 as a conversion factor between the
emissions projections and the atmospheric concentration change which takes into
account the airborne fraction of carbon dioxide emissions and assumes no change
in this value as atmospheric CO2 increases. We also use 412 ppm as our baseline
value for 202024.

Estimating transient climate sensitivity. We calculated the global mean tem-
perature for each year from 2015 to 2100 using output from 23 models that
participated in the Coupled Model Intercomparison Project Phase 6 (CMIP6) and
were forced by four different emissions scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0,
and SSP5-8.5). Table S1 shows the variance of annual average global mean tem-
perature explained by the atmospheric CO2 concentrations. On average across
models, the atmospheric CO2 concentrations in each of the SSP scenarios explain
93% of the variance in global mean temperature change. The relative linearity
found in the projections for the next century allows us to simplify climate sensi-
tivity as the slope of the best-fit linear regression line between atmospheric CO2

concentration and global mean temperature change. We calculated this slope for
each model in Table S1 and used a kernel density estimator to generate the
probability density function shown in Fig. 1b.

Global and local climate change. To connect global mean temperature changes to
local changes in mean temperature and relative humidity, we used output from the
SSP5-8.5 scenario and calculated the ratio of local changes between 2081–2100 and
the past 20 years of the historical period (1996–2015) in temperature and relative
humidity to the global mean temperature change for each calendar month and for
each of models and then averaged the results over the 23 climate models we
analyzed. We refer to these ratios as “scaling patterns” for temperature ST and
relative humidity SRH, and they are shown for each month in Figs. S1 and S2. While
the mean warming pattern is known to be relatively consistent across climate
models17 and the relationship between relative humidity changes over land and
global mean temperature change has been detailed from observations18, there is
still uncertainty in these pattern effects that is not captured by our analysis. We
discuss this source of uncertainty in our projections after describing how we use
these scaling patterns to project the Heat Index in various climate scenarios.

Historical and future Heat Index. Figures 3a and 4a show the average number of
days per year in which the local Heat Index exceeded “dangerous” and “extremely
dangerous” thresholds for the period 1979-1998. Analysis of the HadISD record
shows that the “dangerous” Heat Index threshold of 103°F corresponds to Wet
Bulb temperatures between 27–29 °C and the “extremely dangerous” Heat Index
threshold of 124°F corresponds to roughly 33–35 °C (though the extreme nature of
these events makes a robust comparison difficult10). As inputs to the Heat Index
equation developed by Rothfusz19, we used daily values of maximum temperature
from the Climate Prediction Center and monthly averaged values of specific
humidity from ERA5. We then calculated daily relative humidity (the second input
into the Rothfusz equation for Heat Index) by using the daily maximum tem-
perature and the monthly averaged specific humidity. As a check on whether the
use of monthly averaged (rather than daily) specific humidity leads to meaningful
errors in the Heat Index, for several major sites across climate zones we calculated
the Heat Index using the method described above with that calculated using daily
temperature and specific humidity. The variance values in the daily Heat Index
using the daily values of specific humidity were within 10% of those found using
monthly average values of specific humidity. This is not surprising because var-
iations in saturation-specific humidity driven by near-surface air temperature have
a much larger impact on daily relative humidity than do daily variations in specific
humidity25,26. However, future work should consider specific humidity variations
and an external forcing on extreme events given the importance of so-called
“humid heat waves” in the global tropics.

To project future changes in the distribution of Heat Index due to the projected
changes in temperature and relative humidity due to anthropogenic warming, we
first calculate the projected global mean temperature change corresponding to the
year we wish to examine (Fig. 1c) and then subtract 0.6 °C to account for the fact
that this amount of warming had occurred prior to the 1979–1998 period. We then
multiply the global mean temperature change by the corresponding scaling
patterns ST and SRH in Figs. S1 and S2 to determine the monthly mean changes in
temperature and relative humidity expected at each place in space across the land
surface. We then take these monthly changes in temperature and relative humidity
at each place and add them to the daily record of maximum temperature and
average relative humidity for the period 1979–1998 to obtain a daily 20-year record
of Heat Index that corresponds to each particular climate scenario.

In effect, we assume a future 20-year period experiences the same daily weather
as for the period 1979–1998, acting on top of a warmer and (in most regions) drier
mean climate. We therefore circumvent the large biases in the natural variability
simulated by climate models. These new 20-year Heat Index records are used to
calculate the average number of days for which the Heat Index is projected to
exceed the dangerous and extremely dangerous thresholds, shown in Figs. 3 and 4.
For the Chicago case study, we sampled 1000 values of global mean temperature
change from Fig. 1c and produced 1000 corresponding 20-year records using the
pattern scaling values for Chicago’s place in space. The results quoted in that

section are averages across these 1000 20-year records. Note that we are assuming
that the particular pattern of variability of 1979–1998 is representative of future
variability under the warming scenario.

Uncertainty in the scaling patterns. To quantify the uncertainty in our Heat
Index estimates due to differences in the scaling patterns across climate models,
Fig. S3 shows the standard deviation of the local differences in the temperature
scaling patterns ST across the 23 climate models. The pattern scaling values in Fig.
S1 are fairly consistent over land across CMIP6 models: values shown in Fig. S3 are
<25% of those in Fig. S1, indicating that the ensemble mean patterns in Fig. S1
account for about 90% of the variance in local mean temperature change across
models. Uncertainty in ST (relative to the multi-model-mean) tends to be greatest
in places where vegetation dynamics make up a large portion of inter-model
spread27. Similarly, Fig. S4 shows the standard deviation in the relative humidity
pattern scaling values SRH across the 23 climate models. The model uncertainties in
relative humidity changes tend to be largest in regions with the greatest ensemble
mean changes in relative humidity, particularly over the Amazon rain forest and in
the Sahel (two regions where vegetation dynamics are likely crucial to determining
changes to atmospheric humidity).

To quantify the extent to which these model differences in the pattern scaling
values ST and SRH contribute to uncertainty in the average number of days per year
where the dangerous Heat Index threshold is exceeded, we perform two
experiments using the 2100 median projection for global mean temperature
change. In the first (EXP1), we add 1σ(ST) to the temperature pattern scaling values
ST for each calendar month and subtract 1σ(SRH) from the relative humidity scaling
values SRH for each month: higher mean temperatures driving to lower values of
relative humidity has support from observations18 and has been found to be true
regionally across climate models28. In the second experiment (EXP2), we reverse
the sign of both modifications and subtract 1σ(ST) from the temperature scaling
patterns for each calendar month while adding 1σ(SRH) to the relative humidity
scaling patterns. These two modifications have opposing effects on the Heat Index
in both experiments; warmer temperatures act to increase the Heat Index while
lower values of relative humidity tend to decrease it (and vice versa). Figure S5
shows the ratio of the number of days per year in a 20-year record that the
dangerous Heat Index threshold is exceeded in our uncertainty experiments to the
number of dangerous exceedances from Fig. 3f, which uses the multi-model-mean
values of ST and SRH.

Figure S5 shows that uncertainty in the pattern scaling effects has little bearing on
the number of dangerous Heat Index threshold exceedances; most of the global land
surface (particularly the tropics) experiences less than a 5% change in both
experiments. Importantly, the results of these experiments are not homogenous
across space; i.e., a warmer and drier world does not always imply more heat stress.
In the Central U.S., for example, the summertime uncertainty in relative humidity
change is the dominant factor in the uncertainty, and the potential drying effects on
Heat Index outweigh the impacts of higher temperatures, while across southern
Europe, the effect of higher temperatures is predominant. While the relative
humidity projections are particularly uncertain, Fig. S5 shows that the differences
between the two experiments are relatively small compared to the 50–100% increases
in exposure to dangerous Heat Index levels projected for the tropics and subtropics
at the end of the century, and the 3–10-fold increase projected in the midlatitudes.

Data availability
Source information from the figures can be found at https://doi.org/10.5281/
zenodo6857267. Climate model outputs were obtained from the ESGF node (https://esgf.
llnl.gov). Daily temperatures were obtained from the CPC Global Unified Temperature
Dataset (https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html). ERA5 data were
obtained from the ECMWF portal (https://www.ecmwf.int/en/forecasts/datasets/
reanalysis-datasets/era5).
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