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Reframing trait trade-offs in marine
microbes
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The oceans sequester a vast amount of carbon thus playing a central role in the global carbon cycle.
Assessing how carbon cycling will be impacted by climate change requires an improved
understanding of microbial dynamics, which are responsible for most carbon transformations in the
oceans. Current numerical models used for predicting future states represent simplified microbial
phenotypes and thus may not produce robust predictions of microbial communities. We propose
reframing approaches for studying microbial trait change to allow for selection on multi-trait
phenotypes. Integrating statistical approaches and trait-basedmodels will allow for the incorporation
of evolution into carbon cycle predictions.

Half of global photosynthesis is performed by single-celled organisms in the
oceans (phytoplankton)1. Phytoplankton form the base of the ocean food
chain, making them central players in both global carbon cycling and ocean
ecosystem function. Assessing how phytoplankton and, more generally,
ocean microbial ecosystems respond to changes in climate and impact
biogeochemical cycling requires integrating the combined effects of
molecular, physiological, ecological, and evolutionary dynamics. These
micro-scale processes must then be scaled up in order to assess the global
scale impact of climatic shifts. Numerical models provide an invaluable
tool for addressing this challenge2. However, the current generation of
models aimed at capturing and predicting global marine microbial
ecology and biogeochemical cycling do not incorporate plastic or evo-
lutionary shifts in trait relationships and, thus, are missing a critical
process.

The timescales of climate change and evolution have the potential to be
similar for phytoplankton, given their short generation time (on the order
of days) and high-standing genetic diversity3–7. In fact, experimental evo-
lution studies have shown that phytoplankton can adapt rapidly to envir-
onmental shifts by changing their trait values. Trait changes can occur either
immediately through reversible (plastic) trait change, even in the absence
of pre-existing genetic variation8,9, or over dozens to hundreds of genera-
tions through heritable change (such as genetic mutations, heritable epi-
genetics, or plasticmodifications). Both traits and the relationships between
them can shift10–12. Thus, it is critical to consider the impact of both short-
term or reversible (usually plastic) and long-term or irreversible
(usually evolutionary) phenotype shifts as we formulate predictions for how
the ocean carbon cycle and ecosystem structure will shift as the cli-
mate warms.

Care must be taken when selecting the appropriate model for pre-
dicting evolved phytoplankton phenotypes and the resulting impact on
biogeochemical cycling. Purely statistical models can synthesize large
amounts of data but can fail outside present-day conditions13. Current state-
of-the-art ocean biogeochemical models (i.e., classic Nutrient-
Phytoplankton-Zooplankton-Detritus models14) have been developed to
provide insight into the current rates of biogeochemical cycling, and how
these ratesmight vary on seasonal and interannual timescales. Thesemodels
are notwell suited for studying the impact of evolution as theydonot resolve
complex phenotypes and thus cannot constrain their evolution. In our view,
trait-basedmodels provide themost promising framework for studyinghow
shifting environmental conditions will impact phytoplankton phenotypes
and rates of biogeochemical cycling. These models parameterize multiple
(N = 1 to hundreds) plankton types and then simulate how these types are
influenced by their environment, interact with other microbes through
competition for resources and grazing, and set rates of biogeochemical
cycling. Below, we describe these models, the benefits of using these models
for addressing the challenge of modeling phytoplankton adaptation, and
current shortcomings.

We propose expanding the current trait-based approach for studying
and modeling microbial (in particular phytoplankton) plastic and evolu-
tionary trait changes by moving beyond static pairwise trait relationships
(i.e., statistical relationships between two traits; Fig. 1). This perspective
outlineshow integrating statisticalmethods and trait-basedmodels canhelp
us represent changes in multi-trait phenotypes in a dynamic ocean. In
particular, we posit that this approach will allow for better integration
between evolution experiments, field observations of multi-trait pheno-
types, andnumericalmodels andprovidemore robust predictions for future
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ecosystem states and rates of carbon cycling. Specifically, these models will
generate new insight into the potential for novel phytoplankton multi-trait
phenotypes to contribute to ecosystem function and nutrient cycling.

Current model assumptions
Marine microbes are often described using a set of functional traits, such as
cell size, nutrient affinities, and metabolic rates15. These traits are, by defi-
nition, numerous and interconnected (here, we refer to this as the integrated
phenotype of an organism). There is a long history of studying how these
traits relate to each other16–22 and the physiological underpinnings of these
relationships (e.g., metabolic scaling theory23). This understanding of trait
relationships has led to the development of numerical trait-based models24.
Such models capture the response of multi-trait phenotypes to shifts in
biotic and abiotic conditions and have been used to study patterns of bio-
diversity, and biogeochemical and ecological dynamics. They can also
provide powerful insight into how phytoplankton will respond to a chan-
ging ocean by modifying trait values25–27. However, there are three primary
assumptions in the current formulation of trait-based models that limit the
ability to use these models for studying evolutionary trait changes.

First, contemporary trait-based frameworks rely on a small number of
pairwise trait relationships. This is linked historically to the approaches used
by researchers to understand organismal responses to their environment15.
Pairwise trait relationships have been used to determine how different traits
are related to one another, to understand their potential interactions and how
this influences the phenotype, and to identify whether there are trade-offs
between traits where improving one trait comes at the expense of another.
Modelers have adopted this framework because it provides a tractable the-
oretical framework for simplifying phytoplankton phenotypes, allowing for
the easy incorporation of multiple phytoplankton groups into models24.

Many trait-based models use size as a master trait to which all other
traits are linked through allometric relationships28–30. For example, a strong
positive relationship between phytoplankton size and maximum nitrogen
uptake rate has been observed (r2 = 0.96, p << 0.01)21,22, as well as a sig-
nificant negative relationship between size and nitrogen affinity19. These
pairwise relationships can then be used to parameterize phytoplankton
types in trait-based models where nutrient uptake and affinity can be cal-
culated for each size group based on a simple power function (aVb)28,30. For
other pairwise trait combinations, the relationships are not as clear, such as
phosphorus half-saturation constant versus cell size19 and biomass-specific

respiration rate versus cell size21. While utilizing pairwise trait relationships
can successfully describe current phenotypes, if selection acts on more
complex relationships, or on the trait relationship itself, the master-trait
approach will be unable to represent these dynamics.

Second, trait-based frameworks often assume that trait relationships
vary in the same way across different taxonomic groups, or between diverse
ecologies for the same group (such as temperate and polar phytoplankton).
Specifically, the pairwise trait relationships, suchas those examplesprovided
above and that form the basis of trait-based models, are derived from
experimental studies using largedatasets that includemany taxa (sometimes
even spanning across phyla or kingdoms)19,22. These trait relationships
reflect selection thathasoccurredovermillennia and canprovidekey insight
into fundamental evolutionary trade-offs at these levels of taxonomic
separation. However, there is increasing evidence that trends of trait var-
iation observed between species (interspecific) deviate significantly from
trends within a species (intraspecific)31–34. Thus, interspecific trait relation-
ships do not always predict individual lineage behaviors on shorter time-
scales (both plastic and adaptive responses16,35). Using these relationships to
predict how individual phytoplankton phenotypes will shift in response to
different temporal scales of environmental change makes the implicit
assumption that selection acts consistently across all taxa/species. In other
words, if an environmental change favors smaller cell sizes, then in a trait-
based model, a diatom will not only get smaller but will functionally look
more and more like a cyanobacterium in terms of all of its traits, not just
cell size.

Finally, trait correlations are static in trait-based models. Trait corre-
lations determine the possible directions along which phenotypes can
“evolve” ultimately limiting which future phenotypes are possible10,36–39. In
fact, experimental studies have shown that the relationships between traits
can evolve within lineages10,34. This suggests that pairwise trait relationships
that emerge when looking across functional groups (i.e., at high taxonomic
levels) are potentially muchmore flexible at lower taxonomic levels (within
species or genera). These challenges raise concerns that models based on
pairwise interspecific relationshipsmay have poor predictive power, both in
capturing shorter-term changes if there are transient shifts in trait rela-
tionships and on longer (decadal to centennial) timescales. Specifically, if
environmental or biologic change selects for novel phenotypes, current
trait-based models will underestimate shifts in ecological and biogeo-
chemical dynamics because they don’t allow correlations to evolve.Here, we

Fig. 1 | Conceptual diagram of conventional
approach and proposed framework. The ideal
method for robustly projecting evolutionary trait
changes is to generate a trait-based model directly
from the complete integrated phenotype, indicated
by the blue arrow. As the complete integrated phe-
notype is not fully observable, the conventional
approach is to empirically observe pairwise rela-
tionships for N traits and use a master trait to con-
nect the traits in a trait-based model. In the figure,
trait A would be used as the master trait. We suggest
a reframed approach that defines a multi-trait
landscape (trait-scape) from the same N traits and
trait measurements. These reduced axes provide a
correlation matrix between the traits that can be
used to generate a trait-based model. Both options
can use the same empirical dataset.
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propose an approach that can be used to address these three limitations and
innovate trait-based models.

Quantifying multi-trait phenotypes
Improving the representation of integrated phenotype evolution in trait-
based models (i.e., addressing the limitations described above) requires
altering both how we collect trait data and how we analyze the data. Spe-
cifically, we need to increase the number of comprehensive datasets that
accurately assess integrated phenotypes across different taxonomic scales.
Such datasets are facilitated by recent technological advances that allow for
increased automation in many trait measurements, smaller sample sizes
(i.e., numbers of individuals sampled), and more diverse sampling
locations16,40. The second challenge is in innovating how we analyze this
multidimensional data in order to assess how multiple traits and trait
relationships may simultaneously shift.

Embracing the complexity of an integrated phenotype is challenging.
However, conventional statistical approaches (e.g., PCA, nMDS) can be
used to simplify the system and determine a set of reduced axes which
capture both trait values and trait interactions. Specifically, statistical
methods can identify the key axes of variation that best define shifts inmulti-
trait phenotypes. This is a logical extension of the classic pairwise rela-
tionships that are currently used but allows for more complex relationships
between multiple traits. We have recently applied this approach to a large
dataset where we quantified 9 traits for 13 diatom strains.We demonstrated
that principle component analyses could be used to generate a “trait-scape”
where multi-trait phenotypes can be projected on a reduced set of axes16.
Moreover, these trait-scapes can provide a framework for assessing shifts in
the integrated phenotype16 and can also be used to understand how phy-
toplankton traits evolve10,41,42. These trait-scapes allowed us to capture shifts
not only in trait valuesbut also relationships between traits to betterdescribe
how the integrated phenotype changes.

Our proposed approach has several similarities to Ecological Niche
Models (ENMs) which have been used for over a century by ecologists to
define ecological niches43,44. There are many different types of models that
fall under the broad category of ENMs, but they all use statistical
approaches to asses suitabilities and/or species distributions across land-
scapes in order to gain insight into ecological dynamics and determine
ecological niches. Similarly, we propose to use statistical approaches to
assess multidimensional data and identify predictive groupings. A key
distinction is that ENMs are focused on linking species abundance data
with environmental factors, mapping suitable regions for species, and
identifying co-occurring groups of species. Here, we propose to use similar
techniques to understand phenotypic trait groupings and the relationship
between these traits within a single species. This insight would then be used
to parameterize mechanistic trait-based models, which can in turn be used
to prognostically simulate growth and food web dynamics and the
resulting ecological co-occurrences (described below).

Akeyadvantage to leveraging statistical approaches for the challengeof
understanding integrated phenotype adaptation is that these approaches
can both facilitate the interpretation of multi-trait data and provide insight
into phenotypic change even in the absence of mechanistic knowledge of
physiology or genetics. For example, it is not necessary to understand the
underlyingmechanisms that cause a pair of traits to be correlated in order to
assess shifts in an integratedphenotype in adataset and incorporate this shift
into trait-based models. Thus, this approach does not require knowing the
genetic basis of trait values or being able to map genotype to phenotype.
While our approach is not reliant on mechanism, using statistical approa-
ches to uncover relationships between traits can then lead to testable
hypotheses as to the underlying physiological or genetic mechanisms
driving these relationships. Ultimately, testing these hypotheses experi-
mentally can result in an improved understanding of genetic and physio-
logical mechanisms by providing observations that are consistent or
inconsistent with current mechanistic knowledge.

When selecting traits to be analyzed, a key concern is that bias can be
introduced by not quantifying the appropriate traits. If one had a complete

mechanistic understanding of microbes, the choice of ‘key traits’ to quantify
for studying a given physiological, ecological, or biogeochemical process
would be simple—unfortunately, our understanding is incomplete. Care
must therefore be taken to ensure that the reduced dimension trait-scape is
robust to the choice of parameters quantified. Argyle et al. 16 tested this by
removing traits individually from the PCA and determining how this
influenced the trait-scape. A key benefit to using a reduced dimension trait-
scape is that it decreases the potential for bias associated with an incomplete
understanding of phenotypes11,45, i.e., associated with selecting a suboptimal
set of traits. As we describe below, using the trait-scape approach also allows
for the assessment of whether the phenotype has been sufficiently sampled
to capture the relevant variation for the specific question at hand (i.e.,
whether a study has adequately captured the phenotypic changes of interest).

First, we assume that, within the complete set of possible traits
describing an integrated phenotype, multiple traits (>1) will relate to dif-
ferent ecological and biogeochemical functions of interest. This is to say that
there is no single trait that is required to assess a particular aspect of the
integrated phenotype. This allows that there might be an ‘ideal’ trait for
describing a particular biogeochemical function of interest but assumes that
the function can alsobedescribedusing another set of traits.Whenwe tested
this on the diatom trait dataset, we showed this was indeed the case16. Thus,
when the goal is to assess an integrated phenotype, one is required only to
select a subset of traits that are sufficient for describing the biogeochemical
set of functions of interest—these traits do not necessarily need to be unique
or even optimal in their ability to describe the functions. Importantly,
quantifying any additional traits that are related to the set of functions
already described by the trait-scape will not alter the trait-scape because it
will not provide any new information45. Given that trait measurements can
be both slow and costly to perform, it is valuable to have an objective
indication of a minimal but informative set of measurements for a given
question.

One can assesswhether a sufficient number of traits have been sampled
by either subsampling the traits and determining if the trait-scape shifts
(such as done by Argyle et al. 16 and described above) or by analyzing the
movement of phenotypes within the constructed trait-scape. If phenotypes
are differentiated within a trait-scape and are constrained in how theymove
within the trait-scape when subjected to new environmental conditions,
then the trait-scape is able to sufficiently capture the integrated phenotype.
However, if the integrated phenotypes appear stable (i.e., do not move
within the trait-scape) but the individual traits comprising the integrated
phenotypes are not stable across environments, then this suggests that the
system was under-sampled (i.e., the experiment did not sample key trait(s)
involved in the environmental response). Thus, the user can design a
“minimal” experiment for a givenquestion and avoid sampling traits that do
not provide additional information.

In summary, multivariate statistical approaches provide a framework
for analyzing multi-trait data and determining ‘key traits’ to quantify. It
allows us to move away from master-trait approaches and can provide
valuable insight into integrated phenotype adaptation even in the absence of
a complete mechanistic understanding.

Innovating biogeochemical and ecological models
We know that evolution will alter the integrated phenotype of phyto-
plankton and that these shifts can involve changes in the ways that traits
relate to one another (i.e., shifts in pairwise trait relationships)10,34,41. Inno-
vating marine ecosystem models to allow for the investigation of microbial
responses to environmental change, in both abiotic and biotic dimensions,
will thus require altering the underlying assumptions in current trait-based
models. Specifically, we must address the three key limitations highlighted
above by: (1) moving away from the reliance on a master trait; (2) under-
standing intraspecific relationships between traits; and (3) allowing the
relationships between traits to shift (and continue shifting) in response to
selective pressure.

We propose that the underpinnings of trait-based models should be
modified to integrate information from multivariate statistical analyses of
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multi-trait datasets. The first step is to generate trait-scapes for a range of
phytoplankton species over a range of growth conditions and, if possible,
from a variety of isolates from different environments under similar growth
conditions. This will provide insight into how key traits relate to each other
within species, and how much variation there is in these relationships
between species. Given that microbes interact with one another, and that
their biogeochemical responses are strongly influenced by community
composition and abundance46, a recommended future direction is for trait
measurements to also consider changes in the biotic environment. We can
then start to understand the first-order trait relationships driving pheno-
typic shifts by analyzing how phenotypes move across a trait-scape as cells
acclimate to shifts in environmental conditions (abiotic and biotic) and
adapt to new environments. Critically, this will allow us to model pheno-
typic shifts in a way that is not restricted to predetermined trait relation-
ships. For example, for certain environmental changes, the classically used
rate-affinity trade-offmaynot be theprimarydriver of integratedphenotype
variation, and so a model in which phytoplankton functional groups are
primarily differentiated along this axis will fail to predict shifts in the inte-
grated phenotype and the potential emergence of novel phenotypes.

Our approach focuses on trait-scapes derived for a single species thus,
the resulting trait relationships are intraspecific.This addresses the challenge
that interspecific relationships may not reflect plastic or evolutionary trait
changeswithin a species, especially over timescalesmuch shorter than those
typically associated with trait divergence between species or functional
groups. These multi-trait relationships derived from single species could be
compared across species to generate generalized relationships, or group-
specific relationships, to be used in models (Fig. 1). For some groups (e.g.,
diatoms), we currently have sufficient data to begin this analysis while for
other groups defining the primary axes of variation (and how key traits
project on these axes) will rely on the generation of additional multi-trait
datasets.

Finally, by removing the assumption of universal pairwise trait rela-
tionships, our approach allows for flexible/evolving trait relationships. This
allowsmodeled evolved phenotypes to emerge as a function of both selective
pressure and the ancestral phenotype—including the underlying trait cor-
relations. Some preliminary modeling work suggests that there are some
hard constraints related to space and energy, which determine the rela-
tionships between certain traits that a cell cannot escape47. However, for
many trait combinations the relationship is determined by the metabolic
strategy employed by the cell to address the environmental stress it faces and
thus can be altered through selection.

Here we propose embracing the full complexity of multi-trait pheno-
types in order to understand the primary axes of variation and the salient
features to include in simplified models, thus capturing first-order ecosys-
tem dynamics. This is the inverse of the conventional way of developing
models—start with the simplest representation and then add complexity.
Importantly, this alternative approach is not necessarily more computa-
tionally expensive because of the reduced dimensionality of the trait data.
Specifically, we are not necessarily advocating for incorporating additional
traits into numerical models but rather replacing the existing static trait
relationshipswith amore dynamic representation of integrated phenotypes.
This may also involve altering the specific traits that are represented in
models to capture orthogonal traits that better describe observed variation
amongst individual phenotypes. While this will increase the computational
cost of themodel due to additional calculations, the cost increase will not be
dramatic as the cost primarily scales with the number of new tracers (pools
or state variables) being carried in themodel, which would not significantly
change. Thus, amodel using a trait-based frameworkwith twomajor axes of
trait variation will have a similar computational load as a model using a
single pairwise trait.

Advancing our understanding of biogeochemical
cycling
Ecosystems are comprised of intricate webs of connected organisms which
generate non-linear and often threshold-type behavior. Models provide a

means for understanding these connections and identifying critical tipping
points.While there aremany types ofmodels that can be used to investigate
ecological dynamics at different scales, herewe focus on the specific example
of trait-based models, which are used to link phytoplankton growth and
mortality to biogeochemical cycles. We believe these are the models which
are best suited to incorporate phytoplankton phenotypic plasticity and
evolution into global carbon cycle models and Earth System models. By
improving the representation of phytoplankton phenotypic variability in
trait-basedmodelswewill be able to better capture different ecological states
and thus improve the representation of key behaviours such as thresholds
and non-linear dynamics.

All models require simplifying assumptions in order to construct
tractablemodelling frameworks.However,wehave identified threekey issues
with the current assumptions used in trait-based models. We propose that a
path forward leveragesmultivariate statistical analyses to understand the key
axes of variation for phytoplankton phenotypes. Reframing trait trade-offs to
shift from thinking about pairwise relationships to considering integrated
phenotypes parallels the conceptual shift that has occurred in the global
change community to considermultiple drivers of organismal change7,48–52. It
also reflects the utility of response curves53 and surfaces54,55 in understanding
organismal responses. Several studies have shown that assessing organismal
growth responses to shifts in environmental conditions requires sampling at
the right resolution. For example, data assessing growth responses can pro-
duce different results if the full response curve (e.g., spanning sub-, optimal
and supra-optimal temperatures) is not adequately sampled49,56–58. Similarly,
we argue that assessing phenotypic change only through pairwise relation-
ships can obscuremore complex phenotypic responses due to correlated trait
changes, including compensatory responses.

The approach we outline provides a means for identifying targeted
trait measurements that are particularly informative for understanding
shifts in integrated phenotypes. This will assist in ensuring that new
datasets are maximally effective in helping to define and constrain
integrated phenotypes and their plasticity—a first step necessary for
incorporation of these dynamics into trait-based models. While we have
focused here on physiological traits, it is possible that a similar approach
could be used with molecular (e.g., transcriptomic) data to simplify the
complexity of gene regulation patterns into a tractable set of reduced
axes42, which would allow for the integration of genetic information into
large-scale models such as trait-based phytoplankton models. Finally, we
anticipate that the framework will also generate new hypotheses related
to trait shifts and biogeochemical sensitivity that can be further tested in
the lab or field.

This proposed approach of combining a statistical interpretation of
phenotypic data with trait-based models effectively merges two dichot-
omous approaches for predicting future ecological and biogeochemical
changes. Recent years have seen large gains in the application of statistical
methods andmachine learning techniques to oceanographic data including
for the use of ecological predictions13,59,60. These approaches are powerful
tools for synthesizing large amounts of information and uncovering
underlying structures in observations. However, using present-day corre-
lations to predict future changes can be problematic13. We believe that
leveraging statistical approaches to elucidate multi-trait phenotypic varia-
tion and incorporating those statistical relationships into mechanistic
models canprovide apromisingpath forward for improvingourprojections
of future ecosystem states. In addition, this approach allows us to better link
traitmeasurements, ‘omics datasets12, and numericalmodels. As new sets of
integrated measurements are collected61, these statistical relationships can
be improved and used to revise our models.

Data availability
No new data were presented in this perspective.
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