Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Photocatalytic water splitting

Subjects

Abstract

With the goal of achieving large-scale H2 production from renewable resources, water splitting into H2 and O2 using semiconductor photocatalysts (sometimes called artificial photosynthesis) has been studied for five decades. Unfortunately, the lack of rigour and reproducibility in the data collection and analysis of experimental results has hindered progress in the field. This Primer provides a comprehensive overview of proper characterization and evaluation of photocatalysts for overall water splitting. In particular, the Primer covers various pitfalls in photocatalysis research, best practices for reproducibility and reliable methods for conducting rigorous experiments. The recommendations are intended to reduce false positives in the literature and to promote progress towards a practical technology for producing H2 from water by using sunlight.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic energy diagrams of water-splitting photocatalysts.
Fig. 2: Key technological milestones in overall water splitting by heterogeneous photocatalysts.
Fig. 3: Strategies for developing oxide-based photocatalysts for visible-light water splitting.
Fig. 4: Reaction set-ups for photocatalytic water splitting.
Fig. 5: Mechanistic study of the light intensity dependence of a SrTiO3:Rh/BiVO4 tandem photocatalyst.

Similar content being viewed by others

References

  1. Bolton, J. R., Strickler, S. J. & Connolly, J. S. Limiting and realizable efficiencies of solar photolysis of water. Nature 316, 495–500 (1985). To our knowledge, this is the first paper to quantify the theoretical efficiency limits of solar water splitting.

    Article  ADS  Google Scholar 

  2. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). This pioneering work discusses photo-assisted electrolysis of water.

    Article  ADS  Google Scholar 

  3. Schrauzer, G. N. & Guth, T. D. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. 99, 7189–7193 (1977).

    Article  Google Scholar 

  4. Domen, K., Naito, S., Soma, M., Onishi, T. & Tamaru, K. Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39800000543 (1980).

    Article  Google Scholar 

  5. Lehn, J. M., Sauvage, J. P. & Ziessel, R. Photochemical water splitting continuous generation of hydrogen and oxygen by irradiation of aqueous suspensions of metal loaded strontium titanate. Nouv. J. Chim. 4, 623–627 (1980).

    Google Scholar 

  6. Sato, S. & White, J. M. Photodecomposition of water over Pt/TiO2 catalysts. Chem. Phys. Lett. 72, 83–86 (1980).

    Article  ADS  Google Scholar 

  7. Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

    Article  Google Scholar 

  8. Wang, Q. & Domen, K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020).

    Article  Google Scholar 

  9. Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020). This contribution achieves a milestone in photocatalytic water splitting with a quantum yield of almost unity.

    Article  ADS  Google Scholar 

  10. Scaife, D. E. Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol. Energy 25, 41–54 (1980).

    Article  ADS  Google Scholar 

  11. Gueymard, C. SMARTS2, A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment (Florida Solar Energy Center/Univ. of Central Florida, 1995).

  12. James, B. D., Baum, G. N., Perez, J. & Baum, K. N. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production (Directed Technologies, 2009).

  13. Abe, R. Development of a new system for photocatalytic water splitting into H2 and O2 under visible light irradiation. Bull. Chem. Soc. Jpn. 84, 1000–1030 (2011).

    Article  Google Scholar 

  14. Maeda, K. Z-Scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 3, 1486–1503 (2013).

    Article  Google Scholar 

  15. Wang, Y. et al. Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chem. Rev. 118, 5201–5241 (2018).

    Article  Google Scholar 

  16. Wang, H. et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234–5244 (2014).

    Article  Google Scholar 

  17. Moniz, S. J. A., Shevlin, S. A., Martin, D. J., Guo, Z.-X. & Tang, J. Visible-light driven heterojunction photocatalysts for water splitting—a critical review. Energy Environ. Sci. 8, 731–759 (2015).

    Article  Google Scholar 

  18. Xu, Q., Zhang, L., Cheng, B., Fan, J. & Yu, J. S-Scheme heterojunction photocatalyst. Chem 6, 1543–1559 (2020).

    Article  Google Scholar 

  19. Maeda, K. & Domen, K. Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655–2661 (2010).

    Article  Google Scholar 

  20. Maeda, K. Photocatalytic water splitting using semiconductor particles: history and recent developments. J. Photochem. Photobiol. C. 12, 237–268 (2011).

    Article  Google Scholar 

  21. Hisatomi, T., Kubota, J. & Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014).

    Article  Google Scholar 

  22. Konta, R., Ishii, T., Kato, H. & Kudo, A. Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J. Phys. Chem. B 108, 8992–8995 (2004).

    Article  Google Scholar 

  23. Asai, R. et al. A visible light responsive rhodium and antimony-codoped SrTiO3 powdered photocatalyst loaded with an IrO2 cocatalyst for solar water splitting. Chem. Commun. 50, 2543–2546 (2014).

    Article  Google Scholar 

  24. Nakada, A. et al. Solar-driven Z-scheme water splitting using tantalum/nitrogen co-doped rutile titania nanorod as an oxygen evolution photocatalyst. J. Mater. Chem. A 5, 11710–11719 (2017).

    Article  Google Scholar 

  25. Nishioka, S. et al. Enhanced water splitting through two-step photoexcitation by sunlight using tantalum/nitrogen-codoped rutile titania as a water oxidation photocatalyst. Sustain. Energy Fuels 3, 2337–2346 (2019).

    Article  Google Scholar 

  26. Miyoshi, A. et al. Nitrogen/fluorine-codoped rutile titania as a stable oxygen-evolution photocatalyst for solar-driven Z-scheme water splitting. Sustain. Energy Fuels 2, 2025–2035 (2018).

    Article  Google Scholar 

  27. Maeda, K. & Domen, K. New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C 111, 7851–7861 (2007).

    Article  Google Scholar 

  28. Kageyama, H. et al. Expanding frontiers in materials chemistry and physics with multiple anions. Nat. Commun. 9, 772 (2018).

    Article  ADS  Google Scholar 

  29. Maeda, K. et al. Recent progress on mixed-anion materials for energy applications. Bull. Chem. Soc. Jpn 95, 26–37 (2022).

    Article  Google Scholar 

  30. Miyoshi, A. & Maeda, K. Recent progress in mixed‐anion materials for solar fuel production. Sol. RRL 5, 521 (2020).

    Google Scholar 

  31. Maeda, K. (Oxy)Nitrides with d0-electronic configuration as photocatalysts and photoanodes that operate under a wide range of visible light for overall water splitting. Phys. Chem. Chem. Phys. 15, 10537–10548 (2013).

    Article  Google Scholar 

  32. Maeda, K. et al. Photocatalyst releasing hydrogen from water. Nature 440, 295 (2006).

    Article  ADS  Google Scholar 

  33. Maeda, K., Lu, D. & Domen, K. Direct water splitting into hydrogen and oxygen under visible light by using modified TaON photocatalysts with d0 electronic configuration. Chem. Eur. J. 19, 4986–4991 (2013).

    Article  Google Scholar 

  34. Wang, Q. et al. Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nat. Mater. 18, 827–832 (2019).

    Article  ADS  Google Scholar 

  35. Oshima, T. et al. An artificial Z-scheme constructed from dye-sensitized metal oxide nanosheets for visible light-driven overall water splitting. J. Am. Chem. Soc. 142, 8412–8420 (2020).

    Article  Google Scholar 

  36. Tanaka, A., Teramura, K., Hosokawa, S., Kominami, H. & Tanaka, T. Visible light-induced water splitting in an aqueous suspension of a plasmonic Au/TiO2 photocatalyst with metal co-catalysts. Chem. Sci. 8, 2574–2580 (2017).

    Article  Google Scholar 

  37. Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). To our knowledge, this work is the first report of visible-light H2/O2 evolution using an organic semiconductor.

    Article  ADS  Google Scholar 

  38. Zhang, G., Lan, Z. A., Lin, L., Lin, S. & Wang, X. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 7, 3062–3066 (2016).

    Article  Google Scholar 

  39. Nishioka, S., Shibata, K., Miseki, Y., Sayama, K. & Maeda, K. Visible-light-driven nonsacrificial hydrogen evolution by modified carbon nitride photocatalysts. Chin. J. Catal. 43, 2316–2320 (2022).

    Article  Google Scholar 

  40. Zhao, G., Huang, X., Fina, F., Zhang, G. & Irvine, J. T. S. Facile structure design based on C3N4 for mediator-free Z-scheme water splitting under visible light. Catal. Sci. Technol. 5, 3416–3422 (2015).

    Article  Google Scholar 

  41. Martin, D. J., Reardon, P. J., Moniz, S. J. & Tang, J. Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. J. Am. Chem. Soc. 136, 12568–12571 (2014).

    Article  Google Scholar 

  42. Fabian, D. M. et al. Particle suspension reactors and materials for solar-driven water splitting. Energy Environ. Sci. 8, 2825–2850 (2015).

    Article  Google Scholar 

  43. Pinaud, B. A. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013).

    Article  Google Scholar 

  44. Zhao, Z. et al. Electronic structure basis for enhanced overall water splitting photocatalysis with aluminum doped SrTiO3 in natural sunlight. Energy Environ. Sci. 12, 1385–1395 (2019). This work explains how aliovalent dopants remove lifetime killers in SrTiO3.

    Article  Google Scholar 

  45. Osterloh, F. E. Photocatalysis versus photosynthesis: a sensitivity analysis of devices for solar energy conversion and chemical transformations. ACS Energy Lett. 2, 445–453 (2017). This perspective explains how the thermodynamics of the photocatalytic reaction dictate the photocatalyst design.

    Article  Google Scholar 

  46. Ohno, T., Bai, L., Hisatomi, T., Maeda, K. & Domen, K. Photocatalytic water splitting using modified GaN:ZnO solid solution under visible light: long-time operation and regeneration of activity. J. Am. Chem. Soc. 134, 8254–8259 (2012).

    Article  Google Scholar 

  47. Goto, Y. et al. A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation. Joule 2, 509–520 (2018).

    Article  Google Scholar 

  48. Schröder, M. et al. Hydrogen evolution reaction in a large-scale reactor using a carbon nitride photocatalyst under natural sunlight irradiation. Energy Technol. 3, 1014–1017 (2015).

    Article  Google Scholar 

  49. Hisatomi, T., Maeda, K., Takanabe, K., Kubota, J. & Domen, K. Aspects of the water splitting mechanism on (Ga1-xZnx)(N1-xOx) photocatalyst modified with Rh2-yCryO3 cocatalyst. J. Phys. Chem. C 113, 21458–21466 (2009).

    Article  Google Scholar 

  50. Nishioka, S. et al. A zinc-based oxysulfide photocatalyst SrZn2S2O capable of reducing and oxidizing water. Dalton Trans. 48, 15778–15781 (2019).

    Article  Google Scholar 

  51. Maeda, K. et al. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 127, 8286–8287 (2005). To our knowledge, this work is the first report of reproducible water splitting into H2 and O2 under visible light.

    Article  Google Scholar 

  52. Schröder, V., Emonts, B., Janßen, H. & Schulze, H. P. Explosion limits of hydrogen/oxygen mixtures at initial pressures up to 200 bar. Chem. Eng. Technol. 27, 847–851 (2004).

    Article  Google Scholar 

  53. Zhou, P., Yu, J. & Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 26, 4920–4935 (2014).

    Article  Google Scholar 

  54. Schneider, J. & Bahnemann, D. W. Undesired role of sacrificial reagents in photocatalysis. J. Phys. Chem. Lett. 4, 3479–3483 (2013).

    Article  Google Scholar 

  55. Wang, J., Zhao, J. & Osterloh, F. E. Photochemical charge transfer observed in nanoscale hydrogen evolving photocatalysts using surface photovoltage spectroscopy. Energy Environ. Sci. 8, 2970–2976 (2015).

    Article  Google Scholar 

  56. Wang, J. & Osterloh, F. E. Limiting factors for photochemical charge separation in BiVO4/Co3O4, a highly active photocatalyst for water oxidation in sunlight. J. Mater. Chem. A 2, 9405–9411 (2014).

    Article  Google Scholar 

  57. Tabata, S., Ohnishi, H., Yagasaki, M., Ippommatsu, M. & Domen, K. Light-intensity dependence in photocatalytic decomposition of water over K4Nb6O17 catalyst. Catal. Lett. 28, 417–422 (1994).

    Article  Google Scholar 

  58. Ikeda, S. et al. Mechano-catalysis — a novel method for overall water splitting. Phys. Chem. Chem. Phys. 1, 4485–4491 (1999).

    Article  Google Scholar 

  59. Kato, H. & Kudo, A. Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A = Li, Na, and K). J. Phys. Chem. B 105, 4285–4292 (2001).

    Article  Google Scholar 

  60. Schwarze, M. et al. Quantification of photocatalytic hydrogen evolution. Phys. Chem. Chem. Phys. 15, 3466–3472 (2013).

    Article  Google Scholar 

  61. Serpone, N. Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. J. Photochem. Photobiol. A 104, 1–12 (1997).

    Article  Google Scholar 

  62. Maeda, K. et al. Efficient overall water splitting under visible-light irradiation on (Ga1-xZnx)(N1-xOx) dispersed with Rh–Cr mixed-oxide nanoparticles: effect of reaction conditions on photocatalytic activity. J. Phys. Chem. B 110, 13107–13112 (2006).

    Article  Google Scholar 

  63. Abe, R., Sayama, K. & Sugihara, H. Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3/I. J. Phys. Chem. B 109, 16052–16061 (2005).

    Article  Google Scholar 

  64. Wang, Q. et al. Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure. J. Am. Chem. Soc. 139, 1675–1683 (2017).

    Article  Google Scholar 

  65. Hisatomi, T., Minegishi, T. & Domen, K. Kinetic assessment and numerical modeling of photocatalytic water splitting toward efficient solar hydrogen production. Bull. Chem. Soc. Jpn. 85, 647–655 (2012).

    Article  Google Scholar 

  66. Herrmann, J.-M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53, 115–129 (1999).

    Article  Google Scholar 

  67. Maeda, K. et al. Photocatalytic hydrogen evolution from hexaniobate nanoscrolls and calcium niobate nanosheets sensitized by ruthenium(II) bipyridyl complexes. J. Phys. Chem. C. 113, 7962–7969 (2009).

    Article  Google Scholar 

  68. Doménech, J. & Prieto, A. Stability of ZnO particles in aqueous suspensions under UV illumination. J. Phys. Chem. 90, 1123–1126 (1986).

    Article  Google Scholar 

  69. Oshima, T., Lu, D., Ishitani, O. & Maeda, K. Intercalation of highly dispersed metal nanoclusters into a layered metal oxide for photocatalytic overall water splitting. Angew. Chem. Int. Ed. 54, 2698–2702 (2015).

    Article  Google Scholar 

  70. Oshima, T., Yokoi, T., Eguchi, M. & Maeda, K. Synthesis and photocatalytic activity of K2CaNaNb3O10, a new Ruddlesden–Popper phase layered perovskite. Dalton Trans. 46, 10594–10601 (2017).

    Article  Google Scholar 

  71. Maeda, K. et al. Characterization of Rh–Cr mixed-oxide nanoparticles dispersed on (Ga1-xZnx)(N1-xOx) as a cocatalyst for visible-light-driven overall water splitting. J. Phys. Chem. B 110, 13753–13758 (2006).

    Article  Google Scholar 

  72. Kronik, L. & Shapira, Y. Surface photovoltage spectroscopy of semiconductor structures: at the crossroads of physics, chemistry and electrical engineering. Surf. Interface Anal. 31, 954–965 (2001).

    Article  Google Scholar 

  73. Melo, M. A. Jr et al. Surface photovoltage measurements on a particle tandem photocatalyst for overall water splitting. Nano Lett. 18, 805–810 (2018).

    Article  ADS  Google Scholar 

  74. Cheng, Y. et al. Effect of charge selective contacts on the quasi Fermi level splitting of CuGa3Se5 thin film photocathodes for hydrogen evolution and methylviologen reduction. EES Catal 1, 74–83 (2023).

    Article  Google Scholar 

  75. Ma, L., Liu, M., Jing, D. & Guo, L. Photocatalytic hydrogen production over CdS: effects of reaction atmosphere studied by in situ Raman spectroscopy. J. Mater. Chem. A 3, 5701–5707 (2015).

    Article  Google Scholar 

  76. Mu, C. et al. In situ characterization techniques applied in photocatalysis: a review. Adv. Mater. Interfaces 10, 2201842 (2022).

    Article  Google Scholar 

  77. Nakato, Y., Ueda, T., Egi, Y. & Tsubomura, H. Decomposition potentials of crystalline silicon as related to the photocurrent stability of p–n junction silicon semiconductor electrodes. J. Electrochem. Soc. 134, 353–358 (1987).

    Article  ADS  Google Scholar 

  78. Maeda, K., Abe, R. & Domen, K. Role and function of ruthenium species as promoters with TaON-based photocatalysts for oxygen evolution in two-step water splitting under visible light. J. Phys. Chem. C 115, 3057–3064 (2011).

    Article  Google Scholar 

  79. Xu, P., Milstein, T. J. & Mallouk, T. E. Flat-band potentials of molecularly thin metal oxide nanosheets. ACS Appl. Mater. Interfaces 8, 11539–11547 (2016).

    Article  Google Scholar 

  80. Han, R., Melo, M. A., Zhao, Z., Wu, Z. & Osterloh, F. E. Light intensity dependence of photochemical charge separation in the BiVO4/Ru–SrTiO3:Rh direct contact tandem photocatalyst for overall water splitting. J. Phys. Chem. C. 124, 9724–9733 (2020).

    Article  Google Scholar 

  81. Jia, Q., Iwase, A. & Kudo, A. BiVO4–Ru/SrTiO3:Rh composite Z-scheme photocatalyst for solar water splitting. Chem. Sci. 5, 1513–1519 (2014).

    Article  Google Scholar 

  82. Sasaki, Y., Nemoto, H., Saito, K. & Kudo, A. Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J. Phys. Chem. C 113, 17536–17542 (2009).

    Article  Google Scholar 

  83. Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 598, 304–307 (2021).

    Article  ADS  Google Scholar 

  84. Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016). This work achieves >1% STH conversion efficiency through photocatalytic water splitting.

    Article  ADS  Google Scholar 

  85. Ji, S. M. et al. Photocatalytic hydrogen production from natural seawater. J. Photochem. Photobiol. A 189, 141–144 (2007).

    Article  Google Scholar 

  86. Maeda, K., Masuda, H. & Domen, K. Effect of electrolyte addition on activity of (Ga1−xZnx)(N1−xOx) photocatalyst for overall water splitting under visible light. Catal. Today 147, 173–178 (2009).

    Article  Google Scholar 

  87. Sayama, K. Production of high-value-added chemicals on oxide semiconductor photoanodes under visible light for solar chemical-conversion processes. ACS Energy Lett. 3, 1093–1101 (2018).

    Article  Google Scholar 

  88. Guan, X. et al. Efficient unassisted overall photocatalytic seawater splitting on GaN-based nanowire arrays. J. Phys. Chem. C. 122, 13797–13802 (2018).

    Article  Google Scholar 

  89. Maeda, K. & Domen, K. Development of novel photocatalyst and cocatalyst materials for water splitting under visible light. Bull. Chem. Soc. Jpn. 89, 627–648 (2016).

    Article  Google Scholar 

  90. Maeda, K. Metal-complex/semiconductor hybrid photocatalysts and photoelectrodes for CO2 reduction driven by visible light. Adv. Mater. 31, e1808205 (2019).

    Article  Google Scholar 

  91. Nakada, A., Kumagai, H., Robert, M., Ishitani, O. & Maeda, K. Molecule/semiconductor hybrid materials for visible-light CO2 reduction: design principles and interfacial engineering. Acc. Chem. Res. 2, 458–470 (2021).

    Google Scholar 

  92. Nakada, A. et al. Effects of interfacial electron transfer in metal complex–semiconductor hybrid photocatalysts on Z-scheme CO2 reduction under visible light. ACS Catal. 8, 9744–9754 (2018).

    Article  Google Scholar 

  93. Bak, T., Li, W., Nowotny, J., Atanacio, A. J. & Davis, J. Photocatalytic properties of TiO2: evidence of the key role of surface active sites in water oxidation. J. Phys. Chem. A 119, 9465–9473 (2015).

    Article  Google Scholar 

  94. Nowotny, J. et al. Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion. Chem. Soc. Rev. 44, 8424–8442 (2015).

    Article  Google Scholar 

  95. Nishioka, S. et al. Homogeneous electron doping into nonstoichiometric strontium titanate improves its photocatalytic activity for hydrogen and oxygen evolution. ACS Catal. 8, 7190–7200 (2018).

    Article  Google Scholar 

  96. Vequizo, J. J. M. et al. Crucial impact of reduction on the photocarrier dynamics of SrTiO3 powders studied by transient absorption spectroscopy. J. Mater. Chem. A 7, 26139–26146 (2019).

    Article  Google Scholar 

  97. Ohtani, B. & Takashima, M. Happy photocatalysts and unhappy photocatalysts: electron trap-distribution analysis for metal oxide-sample identification. Catal. Sci. Technol. 12, 354–359 (2022).

    Article  Google Scholar 

  98. Ellis, A. B., Kaiser, S. W., Bolts, J. M. & Wrighton, M. S. Study of n-type semiconducting cadmium chalcogenide-based photoelectrochemical cells employing polychalcogenide electrolytes. J. Am. Chem. Soc. 99, 2839–2848 (1977).

    Article  Google Scholar 

  99. Ishikawa, A. et al. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ 650 nm). J. Am. Chem. Soc. 124, 13547–13553 (2002).

    Article  Google Scholar 

  100. Lyu, H. et al. An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination. Chem. Sci. 10, 3196–3201 (2019).

    Article  Google Scholar 

  101. Nandal, V. et al. Unveiling charge dynamics of visible light absorbing oxysulfide for efficient overall water splitting. Nat. Commun. 12, 7055 (2021).

    Article  ADS  Google Scholar 

  102. Li, H. et al. One-step excitation overall water splitting over a modified Mg-doped BaTaO2N photocatalyst. ACS Catal. 12, 10179–10185 (2022).

    Article  Google Scholar 

  103. Kato, H., Sasaki, Y., Shirakura, N. & Kudo, A. Synthesis of highly active rhodium-doped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting. J. Mater. Chem. A 1, 12327–12333 (2013).

    Article  Google Scholar 

  104. Nishioka, S. et al. Surface-modified, dye-sensitized niobate nanosheets enabling an efficient solar-driven Z-scheme for overall water splitting. Sci. Adv. 8, eadc9115 (2022).

    Article  Google Scholar 

  105. Abe, R., Sayama, K., Domen, K. & Arakawa, H. A new type of water splitting system composed of two dierent TiO2 photocatalysts (anatase, rutile) and a IO3/I shuttle redox mediator. Chem. Phys. Lett. 344, 339–344 (2001).

    Article  ADS  Google Scholar 

  106. Abe, R., Sayama, K. & Arakawa, H. Significant effect of iodide addition on water splitting into H2 and O2 over Pt-loaded TiO2 photocatalyst: suppression of backward reaction. Chem. Phys. Lett. 371, 360–364 (2003).

    Article  ADS  Google Scholar 

  107. Kim, W., Tachikawa, T., Majima, T. & Choi, W. Photocatalysis of dye-sensitized TiO2 nanoparticles with thin overcoat of Al2O3: enhanced activity for H2 production and dechlorination of CCl4. J. Phys. Chem. C. 113, 10603–10609 (2009).

    Article  Google Scholar 

  108. Nishioka, S. et al. Excited carrier dynamics in a dye-sensitized niobate nanosheet photocatalyst for visible-light hydrogen evolution. ACS Catal. 11, 659–669 (2021).

    Article  Google Scholar 

  109. Saupe, G. B., Mallouk, T. E., Kim, W. & Schmehl, R. H. Visible light photolysis of hydrogen iodide using sensitized layered metal oxide semiconductors: the role of surface chemical modification in controlling back electron transfer reactions. J. Phys. Chem. B 101, 2508–2513 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

S.N. acknowledges support by a Grant-in-Aid for Research Activity Start-up (JP21K20555). F.E.O. acknowledges support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences (Award Number DOE-SC0015329). X.W. acknowledges support from the National Natural Science Foundation of China (22032002 and U1905214). T.E.M. acknowledges support from the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Energy Biosciences, Department of Energy (contract DE-SC0019781). K.M. acknowledges financial support by a Grant-in-Aid for Scientific Research (B) (JP22H01862), a Grant-in-Aid for Transformative Research Areas (A) “Supra-ceramics” (JP22H05148) and a Core-to-Core Program (JPJSCCA20200004) (JSPS).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (S.N., F.E.O., X.W., T.E.M. and K.M.); Experimentation (S.N., F.E.O., X.W., T.E.M. and K.M.); Results (S.N., F.E.O., X.W., T.E.M. and K.M.); Applications (S.N., F.E.O., X.W., T.E.M. and K.M.); Reproducibility and data deposition (S.N., F.E.O., X.W., T.E.M. and K.M.); Limitations and optimizations (S.N., F.E.O., X.W., T.E.M. and K.M.); Outlook (S.N., F.E.O., X.W., T.E.M. and K.M.); Overview of the Primer (S.N., F.E.O., X.W., T.E.M. and K.M.).

Corresponding author

Correspondence to Kazuhiko Maeda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Yingtang Zhou, Ling Piao, Kamalakannan Kailasam and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Back reactions

Reactions that can lower the efficiency of photocatalytic water splitting (for example, H2 + ½O2 → H2O).

Black H2

H2 that is produced from bituminous coal via steam reforming, which produces high quantities of CO2.

Conduction band (CB) minimum

The energy region in a semiconductor that corresponds to empty antibonding orbitals and that conducts electrons when present from excitation.

Foreign element

An impurity added to semiconductors to control their characteristics (for example, a metal cation that can contribute d electrons, or an anion that is less electronegative than oxygen).

Grey H2

H2 that is produced from natural gas or methane via steam reforming, which produces lower quantities of CO2.

Merry-go-round system

Samples placed equidistant from the light source are rotated around the light source, and each sample is illuminated with light of the same intensity.

Sacrificial reagents

Fast electron donors or acceptors that may be irreversibly decomposed after reaction and that modify the energetics and rate of the photocatalytic reaction.

Standard hydrogen electrode

(SHE). The hydrogen electrode when the activities of hydrogen gas and proton are both 1.

Valence band (VB) maximum

The energy region in a semiconductor that corresponds to filled bonding orbitals and that conducts holes when present from excitation.

Z-Scheme

A two-step photochemical reaction taking place in plants to utilize lower energy photons and generate sufficient potential to drive photosynthetic reactions, The electron transfer pathway resembles the letter Z.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishioka, S., Osterloh, F.E., Wang, X. et al. Photocatalytic water splitting. Nat Rev Methods Primers 3, 42 (2023). https://doi.org/10.1038/s43586-023-00226-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00226-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing