Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Secondary ion mass spectrometry

Abstract

Secondary ion mass spectrometry (SIMS) is a technique for chemical analysis and imaging of solid materials, with applications in many areas of science and technology. It involves bombarding a sample surface under high vacuum with energetic primary ions. The ejected secondary ions undergo mass-to-charge ratio (m/z) analysis and are detected. The resulting mass spectrum contains detailed surface chemical information with sub-monolayer sensitivity. Different experimental configurations provide chemically resolved depth distribution and 2D or 3D images. SIMS is complementary to other surface analysis techniques, such as X-ray photoelectron spectroscopy; chemical imaging techniques, for example, vibrational microspectroscopy methods such as Fourier transform infrared spectroscopy and Raman spectroscopy; and other mass spectrometry imaging techniques, including desorption electrospray ionization and matrix-assisted laser desorption ionization. Features of SIMS include high spatial resolution, high depth resolution and broad chemical sensitivity to all elements, isotopes and molecules up to several thousand mass units. This Primer describes the operating principles of SIMS and outlines how the instrument geometry and operational parameters enable different modes of operation and information to be obtained. Applications, including materials science, surface science, electronic devices, geosciences and life sciences, are explored, finishing with an outlook for the technique.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic overview of the secondary ion mass spectrometry experiment.
Fig. 2: Example data formats from secondary ion mass spectrometry analysis.
Fig. 3: Representative case studies of application of secondary ion mass spectrometry in characterization of advanced materials.
Fig. 4: Representative case studies of application of secondary ion mass spectrometry in characterization of electronic devices and geoscience.
Fig. 5: Representative case studies of application of secondary ion mass spectrometry in life and biomedical sciences.

Similar content being viewed by others

References

  1. Honig, R. E. Sputtering of surfaces by positive ion beams of low energy. J. Appl. Phys. 29, 549–555 (1958).

    Article  ADS  Google Scholar 

  2. Benninghoven, A., Rudenauer, F. G. & Werner, H. W. Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends (John Wiley & Sons, 1987).

  3. ToF-SIMS: Materials Analysis by Mass Spectrometry (Surface Spectra Ltd and IM Publications LLP, 2013).

  4. van der Heide, P. Secondary Ion Mass Spectrometry: An Introduction to Principles and Practices (Wiley, 2014).

  5. Stevie, F. A. Secondary Ion Mass Spectrometry: Applications for Depth Profiling and Surface Characterization (Momentum Press, 2016).

  6. Mahoney, C. M. Cluster Secondary Ion Mass Spectrometry: Principles and Applications (John Wiley & Sons, 2013).

  7. Michałowski, P. P. et al. Precise localization of contaminants in graphene with secondary ion mass spectrometry. Measurement 187, 110308 (2022).

    Article  Google Scholar 

  8. Mochiji, K., Hashinokuchiy, M., Moritani, K. & Toyoda, N. Matrix-free detection of intact ions from proteins in argon-cluster secondary ion mass spectrometry. Rapid Commun. Mass Spectrom. 23, 648–652 (2009). The application of size-selected gas cluster ion beams to investigate primary ion energy/atom effects on macromolecular secondary ion yield. This study demonstrated the detection of intact proteins with m/z > 10,000.

    Article  ADS  Google Scholar 

  9. Dowsett, D. & Wirtz, T. Co-registered in situ secondary electron and mass spectral imaging on the helium ion microscope demonstrated using lithium titanate and magnesium oxide nanoparticles. Anal. Chem. 89, 8957–8965 (2017).

    Article  Google Scholar 

  10. Pillatsch, L., Östlund, F. & Michler, J. FIBSIMS: a review of secondary ion mass spectrometry for analytical dual beam focussed ion beam instruments. Prog. Cryst. Growth Charact. Mater. 65, 1–19 (2019).

    Article  Google Scholar 

  11. Slodzian, G., Daigne, B., Girard, F., Boust, F. & Hillion, F. Scanning secondary ion analytical microscopy with parallel detection. Biol. Cell 74, 43–50 (1992). This study introduces the instrument design concept behind the NanoSIMS with examples of applications in materials science and life science.

    Article  Google Scholar 

  12. Schueler, B. W. Microscope imaging by time-of-flight secondary ion mass spectrometry. Microsc. Microanal. Microstruct. 3, 119–139 (1992).

    Article  Google Scholar 

  13. Fletcher, J. S. et al. A new dynamic in mass spectral imaging of single biological cells. Anal. Chem. 80, 9058–9064 (2008). This study introduces the J105 SIMS instrument and demonstrates its capability for life science applications.

    Article  Google Scholar 

  14. Benninghoven, A. Chemical analysis of inorganic and organic surfaces and thin films by static time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS). Angew. Chem. Int. Ed. Engl. 33, 1023–1043 (1994).

    Article  Google Scholar 

  15. Pirkl, A. et al. A novel hybrid dual analyzer SIMS instrument for improved surface and 3D-analysis. Microsc. Microanal. 22, 340–341 (2016).

    Article  Google Scholar 

  16. Smith, D. F. et al. High mass accuracy and high mass resolving power FT-ICR secondary ion mass spectrometry for biological tissue imaging. Anal. Bioanal. Chem. 405, 6069–6076 (2013).

    Article  Google Scholar 

  17. Halford, E. et al. Modifications to a commercially available linear mass spectrometer for mass-resolved microscopy with the pixel imaging mass spectrometry (PImMS) camera. Rapid Commun. Mass Spectrom. 28, 1649–1657 (2014).

    Article  ADS  Google Scholar 

  18. Wood, D. et al. Ion microscope imaging mass spectrometry using a Timepix3-based optical camera. J. Am. Soc. Mass Spectrom. 33, 2328–2332 (2022).

    Article  Google Scholar 

  19. Kiss, A., Smith, D. F., Jungmann, J. H. & Heeren, R. M. A. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging. Rapid Commun. Mass Spectrom. 27, 2745–2750 (2013).

    Article  ADS  Google Scholar 

  20. Goodwin, R. J. A. Sample preparation for mass spectrometry imaging: small mistakes can lead to big consequences. J. Proteom. 75, 4893–4911 (2012).

    Article  Google Scholar 

  21. Yoon, S. & Lee, T. G. Biological tissue sample preparation for time-of-flight secondary ion mass spectrometry (ToF–SIMS) imaging. Nano Converg. 5, 24 (2018).

    Article  Google Scholar 

  22. Sjövall, P., Lausmaa, J. & Johansson, B. Mass spectrometric imaging of lipids in brain tissue. Anal. Chem. 76, 4271–4278 (2004).

    Article  Google Scholar 

  23. Fletcher, J. S., Rabbani, S., Henderson, A., Lockyer, N. P. & Vickerman, J. C. Three‐dimensional mass spectral imaging of HeLa‐M cells — sample preparation, data interpretation and visualisation. Rapid Commun. Mass Spectrom. 25, 925–932 (2011).

    Article  Google Scholar 

  24. Cannon, D. M., Pacholski, M. L., Winograd, N. & Ewing, A. G. Molecule specific imaging of freeze-fractured, frozen-hydrated model membrane systems using mass spectrometry. J. Am. Chem. Soc. 122, 603–610 (2000).

    Article  Google Scholar 

  25. Meibom, A. et al. Correlated cryo-SEM and CryoNanoSIMS imaging of biological tissue. BMC Biol. 21, 126 (2023).

    Article  Google Scholar 

  26. Gilkey, J. C. & Staehelin, L. A. Advances in ultrarapid freezing for the preservation of cellular ultrastructure. J. Electron. Microsc. Tech. 3, 177–210 (1986).

    Article  Google Scholar 

  27. Zhang, J. et al. Cryo-OrbiSIMS for 3D molecular imaging of a bacterial biofilm in its native state. Anal. Chem. 92, 9008–9015 (2020).

    Article  Google Scholar 

  28. Kudriavtsev, Y. et al. SIMS depth profiling of ‘frozen’ samples: in search of ultimate depth resolution regime. Surf. Interface Anal. 49, 145–148 (2017).

    Article  Google Scholar 

  29. McDonald, K. L. & Auer, M. High-pressure freezing, cellular tomography, and structural cell biology. Biotechniques 41, 137–143 (2006).

    Article  Google Scholar 

  30. Nilsson, K. D. et al. (CO2)n+, (H2O)n+, and (H2O)n+ (CO2) gas cluster ion beam secondary ion mass spectrometry: analysis of lipid extracts, cells, and Alzheimer’s model mouse brain tissue. Anal. Bioanal. Chem. 413, 4181–4194 (2021).

    Article  Google Scholar 

  31. Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014). This study introduces the multiplexed ion beam methodology for parallel imaging of multiple antibody-tagged proteins in archival human tissue biopsies.

    Article  Google Scholar 

  32. Altelaar, A. F. M. & Piersma, S. R. Cellular imaging using matrix-enhanced and metal-assisted SIMS. Methods Mol. Biol. 656, 197–208 (2010).

    Article  Google Scholar 

  33. Kaya, I. et al. On-tissue chemical derivatization of catecholamines using 4-(N-methyl)pyridinium boronic acid for ToF-SIMS and LDI-ToF mass spectrometry imaging. Anal. Chem. 90, 13580–13590 (2018).

    Article  Google Scholar 

  34. Tian, H., Sheraz, S., Rabbani, N., Vickerman, J. C. & Winograd, N. Multiomics imaging using high-energy water gas cluster ion beam secondary ion mass spectrometry [(H2O)n-GCIB-SIMS] of frozen-hydrated cells and tissue. Anal. Chem. 93, 7808–7814 (2021). This study demonstrates the benefits of water gas cluster ion beams and frozen sample preparation for state-of-the-art bioimaging of cells and tissues with secondary ion mass spectrometry.

    Article  Google Scholar 

  35. Aboura, Y. & Moore, K. L. NanoSIMS analysis of hydrogen and deuterium in metallic alloys: artefacts and best practice. Appl. Surf. Sci. 557, 149736 (2021).

    Article  Google Scholar 

  36. Kita, N. T., Ushikubo, T., Fu, B. & Valley, J. W. High precision SIMS oxygen isotope analysis and the effect of sample topography. Chem. Geol. 264, 43–57 (2009).

    Article  ADS  Google Scholar 

  37. Gillen, C. et al. High resolution crystallographic and chemical characterisation of iodine induced stress corrosion crack tips formed in irradiated and non-irradiated zirconium alloys. J. Nucl. Mater. 519, 166–172 (2019).

    Article  ADS  Google Scholar 

  38. Eswara, S. et al. Correlative microscopy combining transmission electron microscopy and secondary ion mass spectrometry: a general review on the state-of-the-art, recent developments, and prospects. Appl. Phys. Rev. 6, 021312 (2019).

    Article  ADS  Google Scholar 

  39. Wucher, A., Cheng, J. & Winograd, N. Protocols for three-dimensional molecular imaging using mass spectrometry. Anal. Chem. 79, 5529–5539 (2007).

    Article  Google Scholar 

  40. Robinson, M. A., Graham, D. J. & Castner, D. G. ToF-SIMS depth profiling of cells: z-correction, 3D imaging, and sputter rate of individual NIH/3T3 fibroblasts. Anal. Chem. 84, 4880–4885 (2012).

    Article  Google Scholar 

  41. Moore, K. L. et al. The stage of seed development influences iron bioavailability in pea (Pisum sativum L.). Sci. Rep. 8, 6865 (2018).

    Article  ADS  Google Scholar 

  42. Lorey, D. R., Morrison, G. H. & Chandra, S. Dynamic secondary ion mass spectrometry analysis of boron from boron neutron capture therapy drugs in co-cultures: single-cell imaging of two different cell types within the same ion microscopy field of imaging. Anal. Chem. 73, 3947–3953 (2001).

    Article  Google Scholar 

  43. Lechene, C. et al. High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J. Biol. 5, 20 (2006).

    Article  Google Scholar 

  44. Siuzdak, G. Subcellular quantitative imaging of metabolites at the organelle level. Nat. Metab. 5, 1446–1448 (2023).

    Article  Google Scholar 

  45. Jones, C., Gass, M., Preuss, M. & Moore, K. L. Oxide growth and oxygen transport in proton irradiated Zircaloy-4 oxide layers. Corros. Sci. 190, 109655 (2021).

    Article  Google Scholar 

  46. Musat, N., Musat, F., Weber, P. K. & Pett-Ridge, J. Tracking microbial interactions with NanoSIMS. Curr. Opin. Biotechnol. 41, 114–121 (2016).

    Article  Google Scholar 

  47. Keren, L. et al. MIBI-TOF: a multiplexed imaging platform relates cellular phenotypes and tissue structure. Sci. Adv. 5, eaax5881 (2019).

    Article  ADS  Google Scholar 

  48. Delcorte, A. et al. Large cluster ions: soft local probes and tools for organic and bio surfaces. Phys. Chem. Chem. Phys. 22, 17427–17447 (2020).

    Article  Google Scholar 

  49. Garrison, B. J. & Postawa, Z. Computational view of surface based organic mass spectrometry. Mass Spectrom. Rev. 27, 289–315 (2008).

    Article  ADS  Google Scholar 

  50. Gilmore, I. S., Heiles, S. & Pieterse, C. L. Metabolic imaging at the single-cell scale: recent advances in mass spectrometry imaging. Annu. Rev. Anal. Chem. 12, 201–224 (2019).

    Article  Google Scholar 

  51. Mahoney, C. M. (ed.) Cluster Secondary Ion Mass Spectrometry (Wiley, 2013).

  52. Winograd, N. Gas cluster ion beams for secondary ion mass spectrometry. Annu. Rev. Anal. Chem. 11, 29–48 (2018). This study is a review of the applications of gas cluster ion beams in secondary ion mass spectrometry.

    Article  Google Scholar 

  53. Lee, J. L. S. et al. Organic depth profiling of a nanostructured delta layer reference material using large argon cluster ions. Anal. Chem. 82, 98–105 (2010).

    Article  Google Scholar 

  54. Ninomiya, S. et al. Precise and fast secondary ion mass spectrometry depth profiling of polymer materials with large Ar cluster ion beams. Rapid Commun. Mass Spectrom. 23, 1601–1606 (2009). This paper is the first demonstration of macromolecular secondary ion mass spectrometry depth profiling with gas cluster ion beams.

    Article  ADS  Google Scholar 

  55. Jones, B. N., Palitsin, V. & Webb, R. Surface analysis with high energy time-of-flight secondary ion mass spectrometry measured in parallel with PIXE and RBS. Nucl. Instrum. Methods Phys. Res. B 268, 1714–1717 (2010).

    Article  ADS  Google Scholar 

  56. Tadić, T. et al. Development of a TOF SIMS setup at the Zagreb heavy ion microbeam facility. Nucl. Instrum. Methods Phys. Res. B 332, 234–237 (2014).

    Article  ADS  Google Scholar 

  57. Nakata, Y. et al. Matrix‐free high‐resolution imaging mass spectrometry with high‐energy ion projectiles. J. Mass Spectrom. 44, 128–136 (2009).

    Article  ADS  Google Scholar 

  58. Siketić, Z., Bogdanović Radović, I., Barac, M., Brajković, M. & Popović Hadžija, M. Chemical imaging of organic materials by MeV SIMS using a continuous collimated ion beam. Anal. Chem. 95, 3069–3074 (2023).

    Article  Google Scholar 

  59. Carado, A. et al. C60 secondary ion mass spectrometry with a hybrid-quadrupole orthogonal time-of-flight mass spectrometer. Anal. Chem. 80, 7921–7929 (2008).

    Article  Google Scholar 

  60. Passarelli, M. K. et al. The 3D OrbiSIMS — label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power. Nat. Methods 14, 1175–1183 (2017). This paper introduces the capabilities and application of the OrbiSIMS instrument for life science applications.

    Article  Google Scholar 

  61. Van Nuffel, S. & Brunelle, A. TOF-SIMS imaging of biological tissue sections and structural determination using tandem MS. Methods Mol. Biol. 2437, 77–86 (2022).

    Article  Google Scholar 

  62. Fisher, G. L. et al. A new method and mass spectrometer design for TOF-SIMS parallel imaging MS/MS. Anal. Chem. 88, 6433–6440 (2016).

    Article  Google Scholar 

  63. Phan, N. T. N., Munem, M., Ewing, A. G. & Fletcher, J. S. MS/MS analysis and imaging of lipids across Drosophila brain using secondary ion mass spectrometry. Anal. Bioanal. Chem. 409, 3923–3932 (2017).

    Article  Google Scholar 

  64. Edney, M. K. et al. Molecular formula prediction for chemical filtering of 3D OrbiSIMS datasets. Anal. Chem. 94, 4703–4711 (2022).

    Article  Google Scholar 

  65. Kotowska, A. M. et al. Toward comprehensive analysis of the 3D chemistry of Pseudomonas aeruginosa biofilms. Anal. Chem. 95, 18287–18294 (2023).

    Article  Google Scholar 

  66. Bejjani, A. et al. Topography measurements using high mass resolution time-of-flight secondary ion mass spectrometry: application to banknotes. Anal. Chem. 91, 8864–8872 (2019).

    Article  Google Scholar 

  67. Lee, J. L. S., Gilmore, I. S., Seah, M. P. & Fletcher, I. W. Topography and field effects in secondary ion mass spectrometry — part I: conducting samples. J. Am. Soc. Mass Spectrom. 22, 1718–1728 (2011).

    Article  ADS  Google Scholar 

  68. Rangarajan, S. & Tyler, B. J. Topography in secondary ion mass spectroscopy images. J. Vac. Sci. Technol. A Vac. Surf. Films 24, 1730–1736 (2006).

    Article  ADS  Google Scholar 

  69. Akbari, A., Galstyan, A., Peterson, R. E., Arlinghaus, H. F. & Tyler, B. J. Label-free sub-micrometer 3D imaging of ciprofloxacin in native-state biofilms with cryo-time-of-flight secondary ion mass spectrometry. Anal. Bioanal. Chem. 415, 991–999 (2023).

    Article  Google Scholar 

  70. Peterson, R. E. & Tyler, B. J. Surface composition of atmospheric aerosol: individual particle characterization by TOF-SIMS. Appl. Surf. Sci. 203–204, 751–756 (2003).

    Article  ADS  Google Scholar 

  71. Tyler, B. J. et al. Denoising of mass spectrometry images via inverse maximum signal factors analysis. Anal. Chem. 94, 2835–2843 (2022).

    Article  Google Scholar 

  72. Willse, A. & Tyler, B. Poisson and multinomial mixture models for multivariate SIMS image segmentation. Anal. Chem. 74, 6314–6322 (2002).

    Article  Google Scholar 

  73. Hu, H., Yin, R., Brown, H. M. & Laskin, J. Spatial segmentation of mass spectrometry imaging data by combining multivariate clustering and univariate thresholding. Anal. Chem. 93, 3477–3485 (2021).

    Article  Google Scholar 

  74. Milillo, T., Hard, R., Yatzor, B., Miller, M. E. & Gardella, J. Image fusion combining SEM and ToF-SIMS images. Surf. Interface Anal. 47, 371–376 (2015).

    Article  Google Scholar 

  75. Race, A. M. et al. Correlative hyperspectral imaging using a dimensionality-reduction-based image fusion method. Anal. Chem. 92, 10979–10988 (2020).

    Article  Google Scholar 

  76. Tyler, B. J. et al. Development and characterization of a stable adhesive bond between a poly(dimethylsiloxane) catheter material and a bacterial biofilm resistant acrylate polymer coating. Biointerphases 12, 02C412 (2017).

    Article  Google Scholar 

  77. Wucher, A., Cheng, J., Zheng, L. & Winograd, N. Three-dimensional depth profiling of molecular structures. Anal. Bioanal. Chem. 393, 1835–1842 (2009).

    Article  Google Scholar 

  78. Yokoyama, Y., Kawashima, T., Ohkawa, M., Iwai, H. & Aoyagi, S. Extraction of hidden information of ToF-SIMS data using different multivariate analyses. Surf. Interface Anal. 47, 439–446 (2015).

    Article  Google Scholar 

  79. Lee, J. L. S., Gilmore, I. S., Fletcher, I. W. & Seah, M. P. Multivariate image analysis strategies for ToF‐SIMS images with topography. Surf. Interface Anal. 41, 653–665 (2009).

    Article  Google Scholar 

  80. Lee, J. L. S., Gilmore, I. S. & Seah, M. P. Quantification and methodology issues in multivariate analysis of ToF‐SIMS data for mixed organic systems. Surf. Interface Anal. 40, 1–14 (2008).

    Article  Google Scholar 

  81. Graham, D. J., Wagner, M. S. & Castner, D. G. Information from complexity: challenges of TOF-SIMS data interpretation. Appl. Surf. Sci. 252, 6860–6868 (2006).

    Article  ADS  Google Scholar 

  82. Matsuda, K. & Aoyagi, S. Sparse autoencoder-based feature extraction from TOF–SIMS image data of human skin structures. Anal. Bioanal. Chem. 414, 1177–1186 (2022).

    Article  Google Scholar 

  83. Matsuda, K. & Aoyagi, S. Time-of-flight secondary ion mass spectrometry analysis of hair samples using unsupervised artificial neural network. Biointerphases 15, 021013 (2020).

    Article  Google Scholar 

  84. Kawashima, T., Aoki, T., Taniike, Y. & Aoyagi, S. Examination of beauty ingredient distribution in the human skin by time-of-flight secondary ion mass spectrometry. Biointerphases 15, 031013 (2020).

    Article  Google Scholar 

  85. Aoyagi, S. et al. Evaluation of time-of-flight secondary ion mass spectrometry spectra of peptides by random forest with amino acid labels: results from a Versailles Project on advanced materials and standards interlaboratory study. Anal. Chem. 93, 4191–4197 (2021).

    Article  Google Scholar 

  86. Gardner, W. et al. ToF-SIMS and machine learning for single-pixel molecular discrimination of an acrylate polymer microarray. Anal. Chem. 92, 6587–6597 (2020).

    Article  Google Scholar 

  87. Gardner, W., Cutts, S. M., Muir, B. W., Jones, R. T. & Pigram, P. J. Visualizing ToF-SIMS hyperspectral imaging data using color-tagged toroidal self-organizing maps. Anal. Chem. 91, 13855–13865 (2019).

    Article  Google Scholar 

  88. Madiona, R. M. T., Winkler, D. A., Muir, B. W. & Pigram, P. J. Effect of mass segment size on polymer ToF-SIMS multivariate analysis using a universal data matrix. Appl. Surf. Sci. 478, 465–477 (2019).

    Article  ADS  Google Scholar 

  89. Madiona, R. M. T., Winkler, D. A., Muir, B. W. & Pigram, P. J. Optimal machine learning models for robust materials classification using ToF-SIMS data. Appl. Surf. Sci. 487, 773–783 (2019).

    Article  ADS  Google Scholar 

  90. Madiona, R. M. T., Bamford, S. E., Winkler, D. A., Muir, B. W. & Pigram, P. J. Distinguishing chemically similar polyamide materials with ToF-SIMS using self-organizing maps and a universal data matrix. Anal. Chem. 90, 12475–12484 (2018).

    Article  Google Scholar 

  91. Rostam, H. M., Reynolds, P. M., Alexander, M. R., Gadegaard, N. & Ghaemmaghami, A. M. Image based machine learning for identification of macrophage subsets. Sci. Rep. 7, 3521 (2017).

    Article  ADS  Google Scholar 

  92. Baker, M. J. et al. Discrimination of prostate cancer cells and non-malignant cells using secondary ion mass spectrometry. Analyst 133, 175–179 (2008).

    Article  ADS  Google Scholar 

  93. Dimovska Nilsson, K. et al. TOF-SIMS imaging reveals tumor heterogeneity and inflammatory response markers in the microenvironment of basal cell carcinoma. Biointerphases 15, 041012 (2020).

    Article  Google Scholar 

  94. Robinson, M. A., Graham, D. J., Morrish, F., Hockenbery, D. & Gamble, L. J. Lipid analysis of eight human breast cancer cell lines with ToF-SIMS. Biointerphases 11, 02A303 (2016).

    Article  Google Scholar 

  95. Barnes, C. A. et al. Identifying individual cell types in heterogeneous cultures using secondary ion mass spectrometry imaging with C60 etching and multivariate analysis. Anal. Chem. 84, 893–900 (2012).

    Article  Google Scholar 

  96. Shard, A. G. et al. A two‐point calibration method for quantifying organic binary mixtures using secondary ion mass spectrometry in the presence of matrix effects. Surf. Interface Anal. 54, 363–373 (2022).

    Article  Google Scholar 

  97. Shard, A. G. et al. Measuring compositions in organic depth profiling: results from a VAMAS interlaboratory study. J. Phys. Chem. B 119, 10784–10797 (2015).

    Article  Google Scholar 

  98. Shard, A. G., Spencer, S. J., Smith, S. A., Havelund, R. & Gilmore, I. S. The matrix effect in organic secondary ion mass spectrometry. Int. J. Mass Spectrom. 377, 599–609 (2015).

    Article  Google Scholar 

  99. Gardner, W. et al. Two-dimensional and three-dimensional time-of-flight secondary ion mass spectrometry image feature extraction using a spatially aware convolutional autoencoder. Anal. Chem. 94, 7804–7813 (2022).

    Article  Google Scholar 

  100. Aoyagi, S. & Matsuda, K. Quantitative analysis of ToF‐SIMS data of a two organic compound mixture using an autoencoder and simple artificial neural networks. Rapid Commun. Mass Spectrom. 37, e9445 (2023).

    Article  Google Scholar 

  101. Thomas, S. A., Race, A. M., Steven, R. T., Gilmore, I. S. & Bunch, J. Dimensionality reduction of mass spectrometry imaging data using autoencoders. in 2016 IEEE Symp. Series on Computational Intelligence (SSCI) 1–7 (IEEE, 2016).

  102. Tyler, B. J. The accuracy and precision of the advanced Poisson dead‐time correction and its importance for multivariate analysis of high mass resolution ToF‐SIMS data. Surf. Interface Anal. 46, 581–590 (2014).

    Article  Google Scholar 

  103. Lee, J. L. S., Gilmore, I. S. & Seah, M. P. Linearity of the instrumental intensity scale in TOF‐SIMS — a VAMAS interlaboratory study. Surf. Interface Anal. 44, 1–14 (2012).

    Article  Google Scholar 

  104. Keenan, M. R., Smentkowski, V. S., Ohlhausen, J. A. (Tony) & Kotula, P. G. Mitigating dead‐time effects during multivariate analysis of ToF‐SIMS spectral images. Surf. Interface Anal. 40, 97–106 (2008).

    Article  Google Scholar 

  105. Pachuta, S. J. & Vlasak, P. R. Postacquisition mass resolution improvement in time-of-flight secondary ion mass spectrometry. Anal. Chem. 84, 1744–1753 (2012).

    Article  Google Scholar 

  106. Keenan, M. R. & Smentkowski, V. S. Simple statistically based alternatives to MAF for ToF‐SIMS spectral image analysis. Surf. Interface Anal. 43, 1616–1626 (2011).

    Article  Google Scholar 

  107. Tyler, B. J. Multivariate statistical image processing for molecular specific imaging in organic and bio-systems. Appl. Surf. Sci. 252, 6875–6882 (2006).

    Article  ADS  Google Scholar 

  108. Tyler, B., Rayal, G. & Castner, D. Multivariate analysis strategies for processing ToF-SIMS images of biomaterials. Biomaterials 28, 2412–2423 (2007).

    Article  Google Scholar 

  109. Gelb, L. D., Bakhtiari, L. A. & Walker, A. V. Statistically rigorous analysis of imaging SIMS data in the presence of detector saturation. Surf. Interface Anal. 47, 889–895 (2015).

    Article  Google Scholar 

  110. Taylor, M. J., Lukowski, J. K. & Anderton, C. R. Spatially resolved mass spectrometry at the single cell: recent innovations in proteomics and metabolomics. J. Am. Soc. Mass Spectrom. 32, 872–894 (2021). This paper is a review of progress towards the characterization of omic profiles within single cells using different mass spectrometry imaging techniques.

    Article  Google Scholar 

  111. McDonnell, L. A. & Heeren, R. M. A. Imaging mass spectrometry. Mass Spectrom. Rev. 26, 606–643 (2007).

    Article  ADS  Google Scholar 

  112. Li, K., Liu, J., Grovenor, C. R. M. & Moore, K. L. NanoSIMS imaging and analysis in materials science. Annu. Rev. Anal. Chem. 13, 273–292 (2020). This review summarizes how NanoSIMS can be applied to a range of materials science applications specifically focusing on light element mapping, hydrogen analysis and 3D analysis.

    Article  Google Scholar 

  113. Fearn, S. An Introduction to Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Its Application to Materials Science (Morgan & Claypool Publishers, 2015).

  114. Audinot, J.-N. et al. SIMS performed on focused ion beam instruments: in-situ correlative structural and chemical imaging. Microsc. Microanal. 28, 30–31 (2022).

    Article  Google Scholar 

  115. Keller, B. A., Consumi, M., Leone, G. & Magnani, A. 4 Investigation of polymer surfaces by time-of-flight secondary ion mass spectrometry. in Polymer Surface Characterization 125–172 (De Gruyter, 2022).

  116. Weng, L. T. & Chan, C. M. Characterization of polymeric materials. in ToF-SIMS — Materials Analysis by Mass Spectrometry (eds Vickerman, J. C. & Briggs, D.) 503–530 (Surface Spectra Ltd and IM Publications LLP, 2013).

  117. Ravati, S., Poulin, S., Piyakis, K. & Favis, B. D. Phase identification and interfacial transitions in ternary polymer blends by ToF-SIMS. Polymer 55, 6110–6123 (2014).

    Article  Google Scholar 

  118. Fu, Y., Lau, Y.-T. R., Weng, L.-T., Ng, K.-M. & Chan, C.-M. Evidence of enhanced mobility at the free surface of supported polymer films by in situ variable-temperature time-of-flight-secondary ion mass spectrometry. Anal. Chem. 85, 10725–10732 (2013).

    Article  Google Scholar 

  119. Fu, Y., Lau, Y.-T. R., Weng, L.-T., Ng, K.-M. & Chan, C.-M. Transition temperature of poly(methyl methacrylate) determined by time-of-flight secondary ion mass spectrometry and contact angle measurements. J. Colloid Interface Sci. 504, 758–764 (2017).

    Article  ADS  Google Scholar 

  120. Fu, Y., Lau, Y.-T. R., Weng, L.-T., Ng, K.-M. & Chan, C.-M. Detection of surface mobility of poly (2,3,4,5,6-pentafluorostyrene) films by in situ variable-temperature ToF-SIMS and contact angle measurements. J. Colloid Interface Sci. 431, 180–186 (2014).

    Article  ADS  Google Scholar 

  121. Poleunis, C., Cristaudo, V. & Delcorte, A. Temperature dependence of Arn+ cluster backscattering from polymer surfaces: a new method to determine the surface glass transition temperature. J. Am. Soc. Mass Spectrom. 29, 4–7 (2018).

    Article  ADS  Google Scholar 

  122. Chundak, M. et al. Argon gas cluster fragmentation and scattering as a probe of the surface physics of thermoset polymers. Appl. Surf. Sci. 533, 147473 (2020).

    Article  Google Scholar 

  123. Yan, J. et al. Glass transition of the surface monolayer of polystyrene films with different film thicknesses and supporting surfaces. Macromolecules 56, 556–566 (2023).

    Article  ADS  Google Scholar 

  124. Ren, X., Weng, L.-T., Chan, C.-M. & Ng, K.-M. Hollow interior structure of spin-coated polymer thin films revealed by ToF-SIMS three-dimensional imaging. Anal. Chem. 84, 8497–8504 (2012).

    Article  Google Scholar 

  125. Bailey, J. et al. 3D ToF-SIMS imaging of polymer multilayer films using argon cluster sputter depth profiling. ACS Appl. Mater. Interfaces 7, 2654–2659 (2015).

    Article  Google Scholar 

  126. Ren, X., Weng, L.-T., Fu, Y., Ng, K.-M. & Chan, C.-M. Investigating the chain conformations of spin-coated polymer thin films by ToF-SIMS depth profiling. Surf. Interface Anal. 47, 953–960 (2015).

    Article  Google Scholar 

  127. Mei, H., Laws, T. S., Terlier, T., Verduzco, R. & Stein, G. E. Characterization of polymeric surfaces and interfaces using time‐of‐flight secondary ion mass spectrometry. J. Polym. Sci. 60, 1174–1198 (2022).

    Article  Google Scholar 

  128. Prasad, A., Salim, N. V., Mozetič, M., Kailas, L. & Thomas, S. Time‐of‐flight secondary ion mass spectrometric analysis of polymer surfaces: a review. J. Appl. Polym. Sci. 139, 52286 (2022).

    Article  Google Scholar 

  129. Chan, C.-M., Weng, L.-T. & Lau, Y.-T. R. Polymer surface structures determined using ToF-SIMS. Rev. Anal. Chem. 33, 11–33 (2014).

    Article  Google Scholar 

  130. Mahoney, C. M. Cluster secondary ion mass spectrometry of polymers and related materials. Mass Spectrom. Rev. 29, 247–293 (2010).

    Article  ADS  Google Scholar 

  131. Lynch, S. Hydrogen embrittlement phenomena and mechanisms. Corros. Rev. 30, 105–123 (2012).

    Article  Google Scholar 

  132. Zhang, Z., Moore, K. L., McMahon, G., Morana, R. & Preuss, M. On the role of precipitates in hydrogen trapping and hydrogen embrittlement of a nickel-based superalloy. Corros. Sci. 146, 58–69 (2019).

    Article  Google Scholar 

  133. Sobol, O. et al. Real time imaging of deuterium in a duplex stainless steel microstructure by time-of-flight SIMS. Sci. Rep. 6, 19929 (2016).

    Article  ADS  Google Scholar 

  134. Da Rosa, G. et al. Grain-boundary segregation of boron in high-strength steel studied by nano-SIMS and atom probe tomography. Acta Mater. 182, 226–234 (2020).

    Article  ADS  Google Scholar 

  135. Weng, L.-T. Advances in the surface characterization of heterogeneous catalysts using ToF-SIMS. Appl. Catal. A Gen. 474, 203–210 (2014).

    Article  Google Scholar 

  136. Selvakumar, S. et al. Reaction of formaldehyde over birnessite catalyst: a combined XPS and ToF-SIMS study. Appl. Catal. B 223, 192–200 (2018).

    Article  Google Scholar 

  137. Cha, B. J. et al. Reduction of NO by CO catalyzed by Fe-oxide/Al2O3: strong catalyst–support interaction for enhanced catalytic activity. Appl. Surf. Sci. 509, 145300 (2020).

    Article  Google Scholar 

  138. Rochard, G., Giraudon, J.-M., Liotta, L. F., La Parola, V. & Lamonier, J.-F. Au/Co promoted CeO2 catalysts for formaldehyde total oxidation at ambient temperature: role of oxygen vacancies. Catal. Sci. Technol. 9, 3203–3213 (2019).

    Article  Google Scholar 

  139. Kim, I. H. et al. TOF-SIMS analysis using Bi3+ as primary ions on Au nanoparticles supported by SiO2/Si: providing insight into metal–support interactions. ACS Omega 4, 13100–13105 (2019).

    Article  Google Scholar 

  140. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  141. Abidi, I. H. et al. New approach to unveiling individual atomic layers of 2D materials and their heterostructures. Chem. Mater. 30, 1718–1728 (2018).

    Article  Google Scholar 

  142. Michałowski, P. P. et al. Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis with ultralow-energy secondary-ion mass spectrometry. Nat. Nanotechnol. 17, 1192–1197 (2022).

    Article  ADS  Google Scholar 

  143. Wang, X. et al. Direct observation of poly(methyl methacrylate) removal from a graphene surface. Chem. Mater. 29, 2033–2039 (2017).

    Article  ADS  Google Scholar 

  144. Xie, W., Weng, L.-T., Ng, K. M., Chan, C. K. & Chan, C.-M. Clean graphene surface through high temperature annealing. Carbon N. Y. 94, 740–748 (2015).

    Article  Google Scholar 

  145. Tyler, B. J. et al. Removal of organic contamination from graphene with a controllable mass-selected argon gas cluster ion beam. J. Phys. Chem. C 119, 17836–17841 (2015).

    Article  ADS  Google Scholar 

  146. Lupina, G. et al. Residual metallic contamination of transferred chemical vapor deposited graphene. ACS Nano 9, 4776–4785 (2015).

    Article  Google Scholar 

  147. Pollard, A. J. Metrology for graphene and 2D materials. Meas. Sci. Technol. 27, 092001 (2016).

    Article  ADS  Google Scholar 

  148. Chou, H., Ismach, A., Ghosh, R., Ruoff, R. S. & Dolocan, A. Revealing the planar chemistry of two-dimensional heterostructures at the atomic level. Nat. Commun. 6, 7482 (2015).

    Article  ADS  Google Scholar 

  149. Harvey, S. P., Messinger, J., Zhu, K., Luther, J. M. & Berry, J. J. Investigating the effects of chemical gradients on performance and reliability within perovskite solar cells with TOF‐SIMS. Adv. Energy Mater. 10, 1903674 (2020).

    Article  Google Scholar 

  150. Liu, Y., Lorenz, M., Ievlev, A. V. & Ovchinnikova, O. S. Secondary ion mass spectrometry (SIMS) for chemical characterization of metal halide perovskites. Adv. Funct. Mater. 30, 2002201 (2020).

    Article  Google Scholar 

  151. Sidhik, S. et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377, 1425–1430 (2022).

    Article  ADS  Google Scholar 

  152. Chu, Y. et al. Advanced characterizations of solid electrolyte interphases in lithium-ion. Batteries Electrochem. Energy Rev. 3, 187–219 (2020).

    Article  Google Scholar 

  153. Parks, C. SIMS — a key tool in advanced DRAM development. in Secondary Ion Mass Spectrometry: Proceedings of the Tenth International Conference on Secondary Ion Mass Spectrometry (SIMS X) 55–64 (John Wiley & Sons, 1997).

  154. Mody, J. et al. Experimental studies of dose retention and activation in fin field-effect-transistor-based structures. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 28, C1H5–C1H13 (2010).

    Google Scholar 

  155. Vandervorst, W. et al. Dopant/carrier profiling for 3D‐structures. Phys. Status Solidi C 11, 121–129 (2014).

    Article  ADS  Google Scholar 

  156. Spampinato, V. et al. SIMS analysis of thin EUV photoresist films. Anal. Chem. 94, 2408–2415 (2022).

    Article  Google Scholar 

  157. Franquet, A., Spampinato, V., Kayser, S., Vandervorst, W. & van der Heide, P. OrbitrapTM-SIMS analysis of advanced semiconductor inorganic structures. Vacuum 202, 111182 (2022). 

    Article  ADS  Google Scholar 

  158. van der Heide, P. A. W. Critical need and future directions of SIMS depth profiling in CMOS fabrication. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 36, 03F105 (2018). This paper is a review of secondary ion mass spectrometry developments and future requirements in the semiconductor industry.

    Google Scholar 

  159. van der Heide, P., Grieten, E. & Vancoille, E. What does near-line TEM bring to the table for the CMOS manufacturing industry. in Frontiers of Characterization and Metrology for Nanoelectronics: 2019 (eds Secula, E. M. & Seiler, D. G.) 35–37 (NIST, 2019).

  160. Ireland, T. R. Considerations in zircon geochronology by SIMS. Rev. Miner. Geochem. 53, 215–241 (2003).

    Article  Google Scholar 

  161. Schaltegger, U., Schmitt, A. K. & Horstwood, M. S. A. U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: recipes, interpretations, and opportunities. Chem. Geol. 402, 89–110 (2015).

    Article  ADS  Google Scholar 

  162. Li, Q.-L. et al. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature 600, 54–58 (2021).

    Article  ADS  Google Scholar 

  163. Hoppe, P. et al. NanoSIMS studies of small presolar SiC grains: new insights into supernova nucleosynthesis, chemistry, and dust formation. Astrophys. J. 719, 1370–1384 (2010).

    Article  ADS  Google Scholar 

  164. Smithies, R. H. et al. Oxygen isotopes trace the origins of Earth’s earliest continental crust. Nature 592, 70–75 (2021).

    Article  Google Scholar 

  165. Schopf, J. W., Kitajima, K., Spicuzza, M. J., Kudryavtsev, A. B. & Valley, J. W. SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions. Proc. Natl Acad. Sci. USA 115, 53–58 (2018).

    Article  ADS  Google Scholar 

  166. Li, J.-L. et al. Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective. Nat. Commun. 11, 514 (2020).

    Article  ADS  Google Scholar 

  167. Shimizu, K. et al. Two-component mantle melting–mixing model for the generation of mid-ocean ridge basalts: implications for the volatile content of the Pacific upper mantle. Geochim. Cosmochim. Acta 176, 44–80 (2016).

    Article  ADS  Google Scholar 

  168. Buchberger, A. R., DeLaney, K., Johnson, J. & Li, L. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal. Chem. 90, 240–265 (2018).

    Article  Google Scholar 

  169. Doerr, A. Mass spectrometry imaging takes off. Nat. Methods 15, 32–32 (2018).

    Article  ADS  Google Scholar 

  170. Clench, M. R. & Cole, L. M. Perspective: mass spectrometry imaging — the next 5 years. Methods Mol. Biol. 2688, 203–210 (2023).

    Article  Google Scholar 

  171. Dilmetz, B. A. et al. Novel technical developments in mass spectrometry imaging in 2020: a mini review. Anal. Sci. Adv. 2, 225–237 (2021).

    Article  Google Scholar 

  172. Zeng, Q. et al. Recent developments in ionization techniques for single-cell mass spectrometry. Front. Chem. 11, 1293533 (2023).

    Article  ADS  Google Scholar 

  173. Touboul, D., Kollmer, F., Niehuis, E., Brunelle, A. & Laprévote, O. Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source. J. Am. Soc. Mass Spectrom. 16, 1608–1618 (2005).

    Article  Google Scholar 

  174. Weibel, D. et al. A C60 primary ion beam system for time of flight secondary ion mass spectrometry: its development and secondary ion yield characteristics. Anal. Chem. 75, 1754–1764 (2003).

    Article  Google Scholar 

  175. Bich, C. et al. Argon cluster ion source evaluation on lipid standards and rat brain tissue samples. Anal. Chem. 85, 7745–7752 (2013).

    Article  Google Scholar 

  176. Kucher, A., Wucher, A. & Winograd, N. Strong field ionization of β-estradiol in the IR: strategies to optimize molecular postionization in secondary neutral mass spectrometry. J. Phys. Chem. C 118, 25534–25544 (2014).

    Article  Google Scholar 

  177. Boxer, S. G., Kraft, M. L. & Weber, P. K. Advances in imaging secondary ion mass spectrometry for biological samples. Annu. Rev. Biophys. 38, 53–74 (2009).

    Article  Google Scholar 

  178. Jia, F., Zhao, X. & Zhao, Y. Advancements in ToF-SIMS imaging for life sciences. Front. Chem. 11, 1237408 (2023).

    Article  ADS  Google Scholar 

  179. Massonnet, P. & Heeren, R. M. A. A concise tutorial review of TOF-SIMS based molecular and cellular imaging. J. Anal. At. Spectrom. 34, 2217–2228 (2019).

    Article  Google Scholar 

  180. Xu, X. et al. A brief review on mass/optical spectrometry for imaging analysis of biological samples. Appl. Spectrosc. Rev. 54, 57–85 (2019).

    Article  ADS  Google Scholar 

  181. Fletcher, J. S. Latest applications of 3D ToF-SIMS bio-imaging. Biointerphases 10, 018902 (2015).

    Article  Google Scholar 

  182. Yang, J. & Gilmore, I. Application of secondary ion mass spectrometry to biomaterials, proteins and cells: a concise review. Mater. Sci. Technol. 31, 131–136 (2015).

    Article  ADS  Google Scholar 

  183. Yun, S. J. et al. TOFSIMS-P: a web-based platform for analysis of large-scale TOF-SIMS data. Anal. Chem. 83, 9298–9305 (2011).

    Article  Google Scholar 

  184. Munem, M. et al. Chemical imaging of aggressive basal cell carcinoma using time-of-flight secondary ion mass spectrometry. Biointerphases 13, 03B402 (2018).

    Article  Google Scholar 

  185. Angerer, T. B., Magnusson, Y., Landberg, G. & Fletcher, J. S. Lipid heterogeneity resulting from fatty acid processing in the human breast cancer microenvironment identified by GCIB-ToF-SIMS imaging. Anal. Chem. 88, 11946–11954 (2016).

    Article  Google Scholar 

  186. Kaya, I., Sämfors, S., Levin, M., Borén, J. & Fletcher, J. S. Multimodal MALDI imaging mass spectrometry reveals spatially correlated lipid and protein changes in mouse heart with acute myocardial infarction. J. Am. Soc. Mass Spectrom. 31, 2133–2142 (2020).

    Article  Google Scholar 

  187. Sämfors, S., Ståhlman, M., Klevstig, M., Borén, J. & Fletcher, J. S. Localised lipid accumulation detected in infarcted mouse heart tissue using ToF-SIMS. Int. J. Mass Spectrom. 437, 77–86 (2019).

    Article  Google Scholar 

  188. Phan, N. T. N., Fletcher, J. S. & Ewing, A. G. Lipid structural effects of oral administration of methylphenidate in Drosophila brain by secondary ion mass spectrometry imaging. Anal. Chem. 87, 4063–4071 (2015).

    Article  Google Scholar 

  189. Newell, C. L., Vorng, J., MacRae, J. I., Gilmore, I. S. & Gould, A. P. Cryogenic OrbiSIMS localizes semi‐volatile molecules in biological tissues. Angew. Chem. Int. Ed. 59, 18194–18200 (2020).

    Article  Google Scholar 

  190. Decelle, J. et al. Subcellular chemical imaging: new avenues in cell biology. Trends Cell Biol. 30, 173–188 (2020).

    Article  Google Scholar 

  191. Sparvero, L. J. et al. Direct mapping of phospholipid ferroptotic death signals in cells and tissues by gas cluster ion beam secondary ion mass spectrometry (GCIB‐SIMS). Angew. Chem. Int. Ed. 60, 11784–11788 (2021).

    Article  Google Scholar 

  192. Fletcher, J. S., Sämfors, S., Vallin, J., Svanström, A. & Grantham, J. Correlated fluorescence microscopy and multi-ion beam secondary ion mass spectrometry imaging reveals phosphatidylethanolamine increases in the membrane of cancer cells over-expressing the molecular chaperone subunit CCTδ. Anal. Bioanal. Chem. 413, 445–453 (2021).

    Article  Google Scholar 

  193. Pareek, V., Tian, H., Winograd, N. & Benkovic, S. J. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells. Science 368, 283–290 (2020).

    Article  ADS  Google Scholar 

  194. Gyngard, F. & Steinhauser, M. L. Biological explorations with nanoscale secondary ion mass spectrometry. J. Anal. At. Spectrom. 34, 1534–1545 (2019).

    Article  Google Scholar 

  195. Kilburn, M. R. et al. Application of nanoscale secondary ion mass spectrometry to plant cell research. Plant Signal. Behav. 5, 760–762 (2010).

    Article  Google Scholar 

  196. Weng, N., Guagliardo, P., Jiang, H. & Wang, W.-X. NanoSIMS imaging of bioaccumulation and subcellular distribution of manganese during oyster gametogenesis. Environ. Sci. Technol. 55, 8223–8235 (2021).

    Article  ADS  Google Scholar 

  197. Subirana, M. A. et al. Development of mercury analysis by NanoSIMS for the localization of mercury–selenium particles in whale liver. Anal. Chem. 93, 12733–12739 (2021).

    Article  Google Scholar 

  198. Becquart, C. et al. Intracellular absolute quantification of oligonucleotide therapeutics by NanoSIMS. Anal. Chem. 94, 10549–10556 (2022).

    Article  Google Scholar 

  199. Thomen, A. et al. Subcellular mass spectrometry imaging and absolute quantitative analysis across organelles. ACS Nano 14, 4316–4325 (2020).

    Article  Google Scholar 

  200. Aldossari, S., McMahon, G., Lockyer, N. P. & Moore, K. L. Microdistribution and quantification of the boron neutron capture therapy drug BPA in primary cell cultures of human glioblastoma tumour by NanoSIMS. Analyst 144, 6214–6224 (2019).

    Article  ADS  Google Scholar 

  201. Greenwood, D. J. et al. Subcellular antibiotic visualization reveals a dynamic drug reservoir in infected macrophages. Science 364, 1279–1282 (2019).

    Article  ADS  Google Scholar 

  202. He, C. et al. NanoSIMS imaging reveals unexpected heterogeneity in nutrient uptake by brown adipocytes. Biochem. Biophys. Res. Commun. 504, 899–902 (2018).

    Article  Google Scholar 

  203. Legin, A. A. et al. NanoSIMS combined with fluorescence microscopy as a tool for subcellular imaging of isotopically labeled platinum-based anticancer drugs. Chem. Sci. 5, 3135–3143 (2014).

    Article  Google Scholar 

  204. Sheraz, S. et al. Subcellular dynamics studies of iron reveal how tissue‐specific distribution patterns are established in developing wheat grains. N. Phytol. 231, 1644–1657 (2021).

    Article  Google Scholar 

  205. Nuñez, J., Renslow, R., Cliff, J. B. & Anderton, C. R. NanoSIMS for biological applications: current practices and analyses. Biointerphases 13, 03B301 (2018).

    Article  Google Scholar 

  206. Moore, K. L., Lombi, E., Zhao, F.-J. & Grovenor, C. R. M. Elemental imaging at the nanoscale: NanoSIMS and complementary techniques for element localisation in plants. Anal. Bioanal. Chem. 402, 3263–3273 (2012).

    Article  Google Scholar 

  207. Li, Q., Chang, J., Li, L., Lin, X. & Li, Y. Research progress of nano-scale secondary ion mass spectrometry (NanoSIMS) in soil science: evolution, applications, and challenges. Sci. Total Environ. 905, 167257 (2023).

    Article  ADS  Google Scholar 

  208. Behrens, S. et al. Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl. Environ. Microbiol. 74, 3143–3150 (2008).

    Article  ADS  Google Scholar 

  209. Dimovska Nilsson, K. et al. Chemical changes on, and through, the bacterial envelope in Escherichia coli mutants exhibiting impaired plasmid transfer identified using time-of-flight secondary ion mass spectrometry. Anal. Chem. 91, 11355–11361 (2019).

    Article  Google Scholar 

  210. Ding, Y. et al. In situ molecular imaging of the biofilm and its matrix. Anal. Chem. 88, 11244–11252 (2016).

    Article  Google Scholar 

  211. Newsome, L., Lopez Adams, R., Downie, H. F., Moore, K. L. & Lloyd, J. R. NanoSIMS imaging of extracellular electron transport processes during microbial iron(III) reduction. FEMS Microbiol. Ecol. 94, fiy104 (2018).

    Article  Google Scholar 

  212. Miot, J. et al. Fe biomineralization mirrors individual metabolic activity in a nitrate-dependent Fe(II)-oxidizer. Front. Microbiol. 6, 879 (2015).

    Article  Google Scholar 

  213. Woebken, D. et al. Identification of a novel cyanobacterial group as active diazotrophs in a coastal microbial mat using NanoSIMS analysis. ISME J. 6, 1427–1439 (2012).

    Article  Google Scholar 

  214. Wu, Y. et al. Autotrophic growth of bacterial and archaeal ammonia oxidizers in freshwater sediment microcosms incubated at different temperatures. Appl. Environ. Microbiol. 79, 3076–3084 (2013).

    Article  ADS  Google Scholar 

  215. Popczun, N. J., Breuer, L., Wucher, A. & Winograd, N. On the SIMS ionization probability of organic molecules. J. Am. Soc. Mass Spectrom. 28, 1182–1191 (2017). This study highlights the benefits of laser post-ionization for the analysis of organic molecules and explores quantitative aspects of the technique.

    Article  ADS  Google Scholar 

  216. Popczun, N. J., Breuer, L., Wucher, A. & Winograd, N. Ionization probability in molecular secondary ion mass spectrometry: protonation efficiency of sputtered guanine molecules studied by laser postionization. J. Phys. Chem. C 121, 8931–8937 (2017).

    Article  Google Scholar 

  217. Baer, D. R. & Gilmore, I. S. Responding to the growing issue of research reproducibility. J. Vac. Sci. Technol. A Vac. Surf. Films 36, 068502 (2018).

    Article  ADS  Google Scholar 

  218. Gilmore, I. Role of operating conditions in ToF-SIMS. in ToF-SIMS: Materials Analysis by Mass Spectrometry (eds Vickerman, J. C. & Briggs, D.) 335–360 (Surface Spectra Ltd and IM Publications, 2013).

  219. Xu, J., Ostrowski, S., Szakal, C., Ewing, A. G. & Winograd, N. ToF-SIMS imaging with cluster ion beams. Appl. Surf. Sci. 231–232, 159–163 (2004).

    Article  ADS  Google Scholar 

  220. Urquhart, A. J. et al. TOF-SIMS analysis of a 576 micropatterned copolymer array to reveal surface moieties that control wettability. Anal. Chem. 80, 135–142 (2008).

    Article  Google Scholar 

  221. Sheraz Née Rabbani, S., Barber, A., Fletcher, J. S., Lockyer, N. P. & Vickerman, J. C. Enhancing secondary ion yields in time of flight-secondary ion mass spectrometry using water cluster primary beams. Anal. Chem. 85, 5654–5658 (2013).

    Article  Google Scholar 

  222. Conlan, X. A., Lockyer, N. P. & Vickerman, J. C. Is proton cationization promoted by polyatomic primary ion bombardment during time‐of‐flight secondary ion mass spectrometry analysis of frozen aqueous solutions? Rapid Commun. Mass Spectrom. 20, 1327–1334 (2006).

    Article  ADS  Google Scholar 

  223. Sheraz Née Rabbani, S., Berrueta Razo, I., Kohn, T., Lockyer, N. P. & Vickerman, J. C. Enhancing ion yields in time-of-flight-secondary ion mass spectrometry: a comparative study of argon and water cluster primary beams. Anal. Chem. 87, 2367–2374 (2015).

    Article  Google Scholar 

  224. Oechsner, H. & Gerhard, W. A method for surface analysis by sputtered neutrals. Phys. Lett. A 40, 211–212 (1972).

    Article  ADS  Google Scholar 

  225. Lockyer, N. P. Laser post-ionisation for elemental and molecular analysis. in TOF-SIMS: Materials Analysis by Mass Spectrometry (eds Vickerman, J. C. & Briggs, D.) 361–396 (Surface Spectra Ltd and IM Publications, 2013).

  226. Breuer, L., Popczun, N. J., Wucher, A. & Winograd, N. Reducing the matrix effect in molecular secondary ion mass spectrometry by laser post-ionization. J. Phys. Chem. C 121, 19705–19715 (2017).

    Article  Google Scholar 

  227. Heeger, M., Tyler, B. J., Körsgen, M. & Arlinghaus, H. F. Laser postionization of neutral molecules sputtered using bismuth and argon cluster primary ions. Biointerphases 13, 03B412 (2018).

    Article  Google Scholar 

  228. Karras, G. & Lockyer, N. P. Quantitative surface analysis of a binary drug mixture — suppression effects in the detection of sputtered ions and post-ionized neutrals. J. Am. Soc. Mass Spectrom. 25, 832–840 (2014).

    Article  ADS  Google Scholar 

  229. Brison, J., Muramoto, S. & Castner, D. G. ToF-SIMS depth profiling of organic films: a comparison between single-beam and dual-beam analysis. J. Phys. Chem. C 114, 5565–5573 (2010).

    Article  Google Scholar 

  230. Havelund, R., Seah, M. P., Shard, A. G. & Gilmore, I. S. Electron flood gun damage effects in 3D secondary ion mass spectrometry imaging of organics. J. Am. Soc. Mass Spectrom. 25, 1565–1571 (2014).

    Article  ADS  Google Scholar 

  231. Schramm, T. et al. imzML — a common data format for the flexible exchange and processing of mass spectrometry imaging data. J. Proteom. 75, 5106–5110 (2012).

    Article  Google Scholar 

  232. Fletcher, J. S., Kotze, H. L., Armitage, E. G., Lockyer, N. P. & Vickerman, J. C. Evaluating the challenges associated with time-of-fight secondary ion mass spectrometry for metabolomics using pure and mixed metabolites. Metabolomics 9, 535–544 (2013).

    Article  Google Scholar 

  233. Kotowska, A. M. et al. Protein identification by 3D OrbiSIMS to facilitate in situ imaging and depth profiling. Nat. Commun. 11, 5832 (2020). This study applies de novo peptide sequencing to high-resolution gas cluster ion beam-secondary ion mass spectrometry spectra to characterize depth profile proteins in biomaterials and human skin.

    Article  ADS  Google Scholar 

  234. Wirtz, T. et al. Design and performance of a combined secondary ion mass spectrometry-scanning probe microscopy instrument for high sensitivity and high-resolution elemental three-dimensional analysis. Rev. Sci. Instrum. 83, 063702 (2012).

    Article  ADS  Google Scholar 

  235. Fleming, Y. & Wirtz, T. High sensitivity and high resolution element 3D analysis by a combined SIMS–SPM instrument. Beilstein J. Nanotechnol. 6, 1091–1099 (2015).

    Article  Google Scholar 

  236. Moreno, M. A. et al. Combined ToF-SIMS and AFM protocol for accurate 3D chemical analysis and data visualization. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 36, 03F122 (2018). This paper illustrates the analytical potential of the correlative secondary ion mass spectrometry–scanning probe microscopy approach by presenting several applications of 3D imaging in the field of materials science.

    Google Scholar 

  237. Fujiwara, Y. & Saito, N. Time‐of‐flight secondary ion mass spectrometry using a new primary ion beam generated by vacuum electrospray of a protic ionic liquid, propylammonium nitrate. Rapid Commun. Mass Spectrom. 31, 1859–1867 (2017).

    Article  ADS  Google Scholar 

  238. Lagator, M., Berrueta Razo, I., Royle, T. & Lockyer, N. P. Sensitivity enhancement using chemically reactive gas cluster ion beams in secondary ion mass spectrometry (SIMS). Surf. Interface Anal. 54, 349–355 (2022).

    Article  Google Scholar 

  239. Körber, A., Keelor, J. D., Claes, B. S. R., Heeren, R. M. A. & Anthony, I. G. M. Fast mass microscopy: mass spectrometry imaging of a gigapixel image in 34 minutes. Anal. Chem. 94, 14652–14658 (2022).

    Article  Google Scholar 

  240. Hu, H. & Laskin, J. Emerging computational methods in mass spectrometry imaging. Adv. Sci. 9, 2203339 (2022). This study reviews computational approaches for mass spectrometry imaging data analysis and interpretation alongside improved throughput and molecular coverage, focusing on artificial intelligence methods.

    Article  Google Scholar 

  241. Xie, Y. R., Castro, D. C., Bell, S. E., Rubakhin, S. S. & Sweedler, J. V. Single-cell classification using mass spectrometry through interpretable machine learning. Anal. Chem. 92, 9338–9347 (2020).

    Article  Google Scholar 

  242. Chandra, S. Correlative microscopy of freeze–dried cells and studies on intracellular calcium stores with imaging secondary ion mass spectrometry (SIMS). J. Anal. At. Spectrom. 34, 1998–2003 (2019).

    Article  Google Scholar 

  243. Vollnhals, F. et al. Correlative microscopy combining secondary ion mass spectrometry and electron microscopy: comparison of intensity–hue–saturation and Laplacian pyramid methods for image fusion. Anal. Chem. 89, 10702–10710 (2017).

    Article  Google Scholar 

  244. Desbenoit, N., Walch, A., Spengler, B., Brunelle, A. & Römpp, A. Correlative mass spectrometry imaging, applying time‐of‐flight secondary ion mass spectrometry and atmospheric pressure matrix‐assisted laser desorption/ionization to a single tissue section. Rapid Commun. Mass Spectrom. 32, 159–166 (2018).

    Article  ADS  Google Scholar 

  245. Chang, H.-Y. et al. X-ray Photoelectron spectroscopy equipped with gas cluster ion beams for evaluation of the sputtering behavior of various nanomaterials. ACS Appl. Nano Mater. 5, 4260–4268 (2022).

    Article  Google Scholar 

  246. Van Acker, T. et al. Inductively coupled plasma mass spectrometry. Nat. Rev. Methods Primers 3, 52 (2023).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (N.P.L., J.S.F., I.S.G., P.A.W.v.d.H. and K.L.M.); Experimentation (N.P.L., J.S.F., I.S.G., P.A.W.v.d.H., K.L.M. and B.J.T.); Results (N.P.L., S.A. and B.J.T.); Applications (N.P.L., J.S.F., I.S.G., P.A.W.v.d.H., K.L.M. and L.-T.W.); Reproducibility and data deposition (N.P.L., I.S.G. and P.A.W.v.d.H.); Limitations and optimizations (N.P.L. and I.S.G.); Outlook (N.P.L., S.A., J.S.F., I.S.G., P.A.W.v.d.H., K.L.M. and B.J.T., L.-T.W.); overview of the Primer (all authors).

Corresponding author

Correspondence to Nicholas P. Lockyer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Morgan Alexander, Tim Spila, Edwin De Pauw and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Human Metabolome Database: https://hmdb.ca/

International standards: https://www.iso.org/committee/54656/x/catalogue/p/1/u/0/w/0/d/0

Kyoto Encyclopaedia of Genes and Genomes: https://www.genome.jp/kegg/

NBtoolbox: https://depts.washington.edu/nesacbio/mvsa/nbtoolbox

Glossary

Fluence

The time-integrated flux of primary ions incident on the sample.

Heteroscedasticity

A variable is heteroscedastic if the variance is different for different observations.

Multiplexed ion beam imaging

A technique combining secondary ion mass spectrometry with metal-labelled antibodies to image multiple proteins in a single scan at subcellular spatial resolution.

Primary ion beam

Ions that are used to sputter the sample.

Secondary ions

Ions that are derived from the sample material.

Secondary ion yield

The ratio of the number of secondary ions formed to the number of primary ions impacting the sample.

Sputter yield

The ratio of the number of secondary species (ions and neutrals) formed to the number of primary ions impacting the sample.

Tandem mass spectrometry

The study of ions that are subjected to two sequential stages of the mass-to-charge ratio analysis, which may be separated spatially or temporally. An intermediate fragmentation step enhances structural elucidation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lockyer, N.P., Aoyagi, S., Fletcher, J.S. et al. Secondary ion mass spectrometry. Nat Rev Methods Primers 4, 32 (2024). https://doi.org/10.1038/s43586-024-00311-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-024-00311-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing