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An error correction strategy for image 
reconstruction by DNA sequencing 
microscopy

Alexander Kloosterman, Igor Baars & Björn Högberg     

By pairing adjacent molecules in situ and then mapping these pairs, DNA 
microscopy could substantially reduce the workload in spatial omics 
methods by directly inferring geometry from sequencing data alone. 
However, experimental artifacts can lead to errors in the adjacency data, 
which distort the spatial reconstruction. Here we describe a method to 
correct two such errors: spurious crosslinks formed between any two 
nodes, and fused nodes that are formed out of multiple molecules. We build 
on the principle that spatially close molecules should be connected and 
show that these errors violate this principle, allowing for their detection 
and correction. Our method corrects errors in simulated data, even in the 
presence of up to 20% errors, and proves to be more efficient at removing 
errors from experimental data than a read count filter. Integrating this 
method in DNA microscopy will substantially improve the accuracy of 
spatial reconstructions with lower data loss.

With the improvements in sequencing technology, techniques to 
investigate biological samples have become increasingly refined, 
progressing from sequencing in bulk, to single-cell RNA1 and spa-
tial transcriptomics2,3. The latter technique allows one to obtain the 
organization of cells in tissue, leading to deeper insights in biology and 
improving the detection of diseases4,5. However, current techniques 
for spatial transcriptomics rely on fluorescence microscopy, which is 
limited in throughput, especially for large amounts of targets3.

DNA microscopy is an emerging spatial transcriptomic technique 
that aims to find the spatial organization of DNA or RNA using sequenc-
ing alone, bypassing the use of optical microscopy. The common theme 
in all DNA microscopy methods is to use a polymerase chain reaction 
(PCR) and sequencing to find pairs of adjacent molecules and use that 
pairing information to find their relative locations6–10 (Fig. 1). In a typical 
workflow (Fig. 1a), molecules are barcoded and amplified locally in the 
tissue of interest, creating polymerase colonies (polonies)11 (Fig. 1b). 
Where polonies overlap, amplicons fuse by design and form concate-
mers (Fig. 1c), which, when sequenced, reveal which two polonies are 
adjacent. All the adjacency data are represented in a graph, where each 
node represents one polony, and each edge a sequenced concatemer. 
From this graph, the original locations can be estimated6,7,9,10 (Fig. 1d). 

Importantly, the information of these adjacency pairs is obtained with 
sequencing information only, meaning that (1) the method can capture 
both the sequence and location of transcripts simultaneously, and 
many targets can be captured simultaneously, (2) it does not require 
processing or stitching of image data, only analysis of sequencing data, 
and (3) it is not inherently limited to two-dimensional (2D) reconstruc-
tions, but can be used to reconstruct 3D samples as well.

However, experimental conditions can give rise to erroneous sig-
nals that create artifacts in the adjacency graph and disrupt the spatial 
reconstruction. We consider two such errors. The first of these is that of 
spurious crosslinks, formed between any pair of nodes regardless of posi-
tion. These can be formed by incomplete PCR during post-experimental 
library preparation when products are no longer spatially confined, in a 
reaction similar to barcode-swapping and index-hopping events12. The 
second type of error is a fused node. When two polonies contain the same 
barcode or very similar barcodes that are mistakenly fused by sequencing 
error correction, they are represented in the adjacency graph as a single 
node, which can lead to distortions in the reconstruction.

In this Article we propose two methods to remove these errors, 
collectively called MinIPath (‘Minimum Indirect Path’ analysis). These 
methods are based on graph analysis on the adjacency graph alone.  
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number was used as a parameter in the Poisson distribution to obtain 
connections and their edge weights:

w (i, j) = Poiss(a × exp(
−||xi − xj||

2

σ2 )) (3)

where ω(i, j) represents the edge weight between two nodes i and j, a repre-
sents the amplitude and σ the spread. In experimental terms, the amplitude 
can be affected by the inherent reactivity of the polonies and sequencing 
depth, both of which determine how many products are seen. If the ampli-
tude is high, multiple concatemers are formed and/or sequenced for each 
polony pair, resulting in larger edge weights in the resulting graph. The 
spread is analogous to Ldiff and determines the distance at which two polo-
nies might still react. Experimentally, it will be determined by the diffusion, 
and therefore by the properties of the hydrogel and size of the products.

As a baseline, we generated adjacency data using a wide range of 
amplitudes and spreads (Fig. 2b) and reconstructed the polony loca-
tions using the previously described spectral maximum likelihood 
embedding (sMLE) method7. We reconstructed all adjacency datasets 
where at least 80% of all nodes were connected in a single group, and 
evaluated these reconstructions using two metrics: the Procrustes 
disparity as a global metric, and the number of overlapping neighbors 
out of the 15 nearest as a local metric9.

The different parameters used in the simulation had a great influ-
ence on the reconstruction quality (Fig. 2c). Globally accurate recon-
structions were obtained for many of the simulations. Only when a very 
low spread (σ = 10) or a combination of high spread and amplitude was 
used (σ = 200, a = 100) did the reconstructions become less accurate 
based on the global metric. Local accuracy depended primarily on 
the spread: if it was small (σ ≤ 50), local accuracy was high even when 
global accuracy was low (k-nearest neighbors (KNN) ≥ 0.75; Fig. 2d), but 
when it started to approach the sample size, local accuracy decreased  
(Fig. 2f,g). Higher amplitudes also led to better local reconstructions, 
and the combination of low spread and high amplitude led to the most 
accurate reconstructions both globally and locally (Fig. 2e).

We then developed algorithms to detect and correct spurious 
crosslinks and fused nodes (Fig. 3). As mentioned above, spurious 
crosslinks randomly connect any two nodes of different types, regard-
less of the position of their corresponding polonies in the original 
sample (Fig. 3a). Similarly, node fusion results in nodes that inherit 
the connections of two randomly selected nodes, again regardless of 
the position of their corresponding polonies in the sample (Fig. 3b).

For spurious crosslinks, we reasoned that polonies are usually 
surrounded by many other polonies to which a connection is pos-
sible. This implies that when two nodes are connected in a graph, it 
should be straightforward to find a short, indirect path in the graph to 
connect these two nodes, without using the edge itself (Fig. 3c, left).  

Spurious crosslinks are detected by finding a short indirect path connect-
ing two directly connected nodes, which we show is harder to find if two 
nodes are far away and erroneously connected. Fused nodes are detected 
by looking at the connected nodes of any node. When these can easily be 
separated into two indirectly connected groups, the node is probably a 
fused node and can be split. We show the effect of both types of error on 
the reconstruction quality using simulated diffusion-based data as input, 
and that these can be corrected by our method. In addition, we analyze 
a previously described DNA microscopy dataset7 and show that we can 
obtain accurate reconstructions by removing spurious crosslinks more 
efficiently than with a read count filter. In summary, this method provides 
an efficient way to filter artifacts from adjacency-based data, which can 
improve the overall quality of the resulting spatial reconstruction.

Results
Correcting errors in simulated data using graph organization
Although the principle of imaging space by sequencing can be realized 
in various experimental set-ups, we focus here on a set-up introduced 
previously7 that has yielded experimental results. In this arrangement, 
the sample is encapsulated in a hydrogel, meaning that polony formation 
is governed by diffusion. Two types of seed strand are present in the sam-
ple, to prevent the self-interactions of polonies, which could consume 
large amounts of sequencing data without providing information on 
neighbors. Furthermore, each formed concatemer contains a unique 
barcode, allowing one to count the number of interactions between 
two polonies. All the neighborhood interactions are represented in a 
neighborhood graph, where the weight of the edges equals the number of 
observed products between two polonies. As two types of seed strand are 
used, the neighborhood graph is a weighted, undirected, bipartite graph.

We first sought to simulate this experimental set-up. Starting from 
Fick’s law for diffusion for a single polony, one can derive the relationship 
between the reaction rate ω between two polonies and their distance7:

ω (i, j) ∝ t−
d
2 × exp(

−||xi − xj||
2

L2diff
) (1)

Ldiff = √8dDt (2)

where ω(i, j) is the reaction rate between two polonies i and j, each of 
a different type, D is the diffusion constant, t is the time since polony 
creation, d is the number of dimensions, and xi and xj are the locations 
of polonies i and j, respectively. Ldiff describes the characteristic diffu-
sion length of the distribution.

As polony input, we randomly distributed nodes of two types 
within a 2D shape (Fig. 2a; total dimensions 200 × 450 pixels; shape 
area ∼40,000 pixels; ∼4,000 nodes). The diffusion model was used to 
estimate the number of reactions between each pair of nodes, and this 

RNA in biological sample

RNA 1

RNA 2
RNA 3

In situ amplification

RNA 1

RNA 2

RNA 3

Fusion of amplicons

!!

!!

!!

!!
RNA 1

RNA 2

RNA 3

!!

Network formation and 
spatial reconstruction

12

2

a b c d

Fig. 1 | DNA microscopy reveals spatial locations by finding adjacent pairs of 
transcripts. a, RNA is present in a biological sample of interest. b, RNA molecules 
are barcoded and amplified locally, forming polymerase colonies (polonies). 
c, Where polonies overlap, their amplicons can be engineered to fuse together, 

forming concatemers. d, Sequencing concatemers reveals the adjacency of all 
polonies, which can be displayed in a graph. The number of concatemers formed 
between two polonies is the edge weight. From this graph, the relative spatial 
coordinates of each molecule can then be obtained.
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By contrast, spurious crosslinks are formed between polonies regard-
less of their distance. The further they are apart, the less likely it will be 
that a short, indirect path between the two nodes can be found (Fig. 3c, 
right). Using edge weights further amplifies the difference, as longer 
distance between nodes results in lower edge weights (equation (3)). 
To exploit this difference, for each edge, we find all indirect paths of 
length three (the minimum in a bipartite graph), calculate the product 
of the edge weights of each path and sum these together, to calculate 
what we will refer to as the indirect path value of that edge. We then use 
this to distinguish between normally connected nodes and spuriously 
connected nodes, removing the edge if it is below a certain cutoff.

For fused nodes, we built on the same reasoning that polonies 
are typically surrounded by other polonies to which a connection is 
possible. The nodes connected to any single, unaltered node should 
therefore also be connected to each other, with short, indirect paths, 
and form a single well-connected subgraph (using indirect paths of 
length two, the minimum in a bipartite graph; Fig. 3d, top). For the 
connected nodes of fused nodes, however, this is not necessarily the 
case. If the two polonies that are represented by a single fused node 
were sufficiently far apart in the sample, the connected nodes of the 
fused node should form two well-connected subgraphs, with many 
connections within each subgraph, but few connections between them  
(Fig. 3d, bottom). The original groups should therefore be obtainable 
with spectral graph partitioning13, an algorithm that seeks to obtain 
graph partitions by minimizing the number of edges removed between 
them, while maximizing the number of edges within each partition. The 
ratio between these is called the normalized cut (ncut)14. The connected 
nodes of unaltered nodes can of course also be partitioned in two, but 
this requires the removal of many more edges, resulting in a higher 
normalized cut. The normalized cut can therefore serve to distinguish 
between fused and unaltered nodes. When it is below a given cutoff, it is 
replaced by two nodes, each inheriting the connections to the nodes in 
either of the graph partitions (Methods section Algorithm description).

To examine whether these algorithms proved effective, we first 
either added spurious crosslinks (1–20% of total edge weights) or 
fused nodes (1–20% of all nodes) in the simulated data. Adding in these 

errors distorted the reconstructions (for example, Fig. 4a). The global 
reconstruction quality was affected more than the local reconstruction 
quality, which can be understood as a small number of errors that twist 
the reconstruction without affecting the nearby neighbors of each 
point. We found that using a large spread when simulating connections 
made the resulting reconstructions more robust to errors, while the 
amplitude used in the simulation had little effect (Extended Data Fig. 1). 
When using a large spread, adding in spurious crosslinks is more likely 
to connect two nodes that are already connected, or fusing two nodes 
whose connected nodes broadly overlap, explaining the increased 
robustness to errors. Furthermore, because fusing nodes introduces 
nodes with twice as many connections, we verified that the resulting 
long-tailed distribution of node connectivity itself was appropriately 
normalized by the reconstruction pipeline and did not influence the 
reconstruction. To this end, we randomly introduced an increased 
reactivity bias to randomly selected nodes (1–20%) and found that 
this did not affect the reconstruction quality (Extended Data Fig. 1).

We applied our algorithm to the simulated data to calculate all 
indirect path values and normalized cuts, obtaining distributions of 
each for each simulated case (for example, Fig. 4b,e). On average, the 
spurious crosslinks connected nodes at larger distances from each 
other than normal connections, although there was some overlap 
(154.43 ± 90.43 for spurious crosslinks compared to 111.36 ± 74.91 for 
normal edges; average taken across all simulations). Still, the indirect 
path values were lower for spurious crosslinks compared to normal con-
nections, with the exact values depending on the amplitude and spread 
used in the simulation, as well as the number of other errors (Extended 
Data Fig. 2). Similarly, the normalized cut values were lower for fused 
nodes (0.47 ± 0.33 for fused nodes compared to 0.71 ± 0.17 for normal 
nodes; average taken across all simulations). Again, distance played 
an important role here to detect each of the errors, as the crosslinks 
formed at longer distances had lower indirect path values, and fused 
nodes whose constituents were originally at a large distance could be 
partitioned with lower normalized cuts (Extended Data Fig. 2).

We then applied a range of cutoffs by taking the lower quantiles of 
all indirect path values or normalized cuts. Edges below their cutoffs 
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Fig. 2 | Reconstructions quality depends on Gaussian parameters 
that determine adjacency. a, Node locations used as input, on a grid of 
200 × 450 pixels. b, Edges are formed between neighboring nodes. The spread 
determines the range at which edges are formed, and the amplitude determines 

the edge weight. c, The reconstruction quality depends on the amplitude and 
spread. d–g, Example reconstructions with different spreads and amplitudes: 
good local, poor global quality (d), good local, good global quality (e), poor local, 
good global quality (f) and poor local, poor global quality (g).
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were removed, and nodes with normalized cuts below their cutoff 
were split. Although not all errors could be removed, the correction 
algorithms preferentially corrected the spurious crosslinks and fused 
nodes over original edges and unaltered nodes on average across all 
simulations (Fig. 4g–i). The ratio of correctly identified errors (true 
positive) to original data identified as errors (false positive) depended 
primarily on the spread, that is, errors were more easily identified when 
only local reactions were formed (Extended Data Fig. 3). Notably, these 
reconstructions were also the ones that were most affected by the 
introduced errors in the first place (Extended Data Fig. 1). In addition, 
applying the algorithm without the presence of errors did not affect 
the reconstructions, except when an exceptionally high cutoff (quan-
tile of 0.50) was used, suggesting that the error correction algorithm 
can safely be used on unaltered data, even at slightly too high cutoffs, 
without affecting reconstruction quality.

Applying the correction algorithm improved the reconstruc-
tion quality of any reconstruction that was affected by the errors 

(Extended Data Figs. 4–7). Zooming in on simulations that were ini-
tially accurate but strongly affected by the errors (20 ≤ spread ≤ 100, 
amplitude ≥ 1.0), the average Procrustes disparity increased from 
0.02 ± 0.03 to 0.63 ± 0.10 and to 0.52 ± 0.12, when spurious crosslinks 
or fused nodes were added, respectively. However, the average quality 
improved by applying the correction algorithm (Fig. 4k–n), and for 
each case where the introduced errors affected the reconstruction, a 
cutoff could be found that restored it (Extended Data Figs. 4–7). For 
most cases, this quantile cutoff was equal to the fraction of introduced 
errors, although when a higher cutoff was used, the reconstruction 
quality did not decrease. Using the expected fraction of errors in the 
data as a quantile cutoff therefore seems an appropriate guideline.

When fused nodes were corrected, we also evaluated the node 
splitting accuracy, that is, whether the nodes after splitting were 
connected to the same nodes as before the nodes were fused (Meth-
ods, Simulated data processing). We found that the resulting groups 
matched accurately to the original (average Jaccard index: 0.73 ± 0.17), 
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Fig. 3 | Spurious crosslinks and fused nodes can be detected by indirect path 
analysis. a, Spurious crosslinks, which connect two nodes of different types, 
regardless of distance. b, Fused nodes, in which two nodes are fused into one 
node, which inherits both of their edges. c, Spurious crosslink removal: obtain 
indirect paths of length three. For normal, local connections, one can find many 
short indirect paths connecting the same two nodes. However, when two nodes 
are spuriously connected and are sufficiently far apart, fewer short indirect paths 

will be found between them. d, Fused node splitting: separate connected nodes 
into two groups: normal nodes and fused nodes. A normal node is connected 
to several other nodes, which form a well-connected subgraph using short, 
indirect paths. Partitioning this subgraph removes many edges. However, the 
nodes connected to a fused node form two well-connected subgraphs, with only 
a few connections between them. Partitioning this graph therefore requires the 
removal of fewer edges.
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and most accurately when the spread in the simulation was low 
(Extended Data Fig. 8). Node splitting only proved ineffective when 
spread and amplitude were low. In these cases, nodes were typically 
connected to only a few other nodes, which themselves were not indi-
rectly connected to each other. The resulting indirectly connected 
graph was therefore often disconnected into multiple components, 
similarly to when a node is fused, making it impossible to identify 
whether the graph is easily partitioned due to sparse data or due to a 
fused node (Extended Data Fig. 8).

In summary, the proposed method removes spurious crosslinks 
and corrects fused nodes across a wide range of simulated data, even 
in the presence of up to 20% spurious crosslinks of 20% fused nodes.

Correcting disruptive crosslinks in experimental data
To see how our method would perform on experimental data, we 
analyzed a previously published DNA microscopy dataset for which 
a reference image was available7. In this experimental set-up, specific 

types of RNA transcript (ACTB for ‘beacons’, and gfp, rfp and gapdh as 
‘targets’) were used as seeds for the two types of polony in the bipartite 
graph. Each product connecting two polonies could be recognized by 
a unique barcode called a unique event identifier (UEI), the number 
of which was used as the edge weight between the respective nodes.

Using the same pipeline as described in the previous work7, we 
extracted 1.26 × 105 polonies with 6.72 × 105 edges and 9.55 × 105 unique 
UEIs from the raw sequencing data. When using all data to recon-
struct the largest connected group, the resulting reconstructions 
frequently collapsed into a ‘star-like’ pattern (Extended Data Fig. 9).  
Only one out of ten reconstructions produced a layout that could 
be overlaid on the microscopy image with a poor match (Fig. 5b).  
To remove possible artifacts, Weinstein et al.7 applied a read count fil-
ter that removed all products without sufficient reads. Although this 
strategy did improve the reconstruction quality, a read count filter 
of four was required to obtain an accurate reconstruction (Fig. 5c,e).  
Given the large number of products produced during a DNA 
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Fig. 4 | Indirect path analysis rescues reconstructions by removing spurious 
crosslinks and correcting fused nodes. a,d, Example distorted reconstructions 
at amplitude 10, and width 50 (a) and 20 (d), with 20% errors. b,e, Indirect paths 
and normalized cuts distributions of the pairing data used to generate the 
reconstructions in a (b) and d (e). The arrow indicates the cutoff used.  

c,f, Reconstructions after correction, corresponding to a and d. g–j, Average 
fraction of true positive (g,i) and false positive (h,j) across all simulated datasets. 
k–n, Average local (k,m) and global (l,n) reconstruction qualities before and  
after corrections across simulated datasets that were affected by the errors  
(with amplitude of 1, 10 or 100 and width of 20, 50 or 100).
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microscopy reaction, many of them had low read counts (Extended 
Data Fig. 10), and, as a result, only 70.6% (6.39 × 105/9.03 × 105) of all 
UEIs remained for reconstruction.

By contrast, applying a minimum indirect path cutoff of 1 greatly 
improved the reconstruction quality, while only removing 3.6% of all 
UEIs (3.2 × 104/9.03 × 105; Fig. 5d). The reconstruction quality further 
improved with an indirect path cutoff of 2 (removing 4.8% of all UEIs; 
Fig. 5f). Applying an even higher cutoff did not clearly further improve 
the reconstruction. Using an indirect path cutoff therefore removed 
disruptive edges more efficiently than a read count filter, allowing more 
data to be used for the resulting reconstruction.

We also attempted to split possible fused nodes in this dataset. The 
subgraphs formed from the nodes connected to any particular node 
often formed more than two connected components (8.9 × 104/1.1 × 105; 
82.4%), similar to the simulated datasets with low amplitude and 
spread, meaning it could not be used for accurate partitioning. 
Indeed, when describing the experimental data in terms of amplitude 
and spread, we found it had low amplitude and average spread. The 
dimensions of the sample of an accurate reconstruction (Fig. 5f) were  
∼9 × 8 Ldiff

2 equivalents, that is, 11–13 times as long as the average dis-
tance of two connected nodes (0.68± 0.59 Ldiff

2 equivalents), suggesting 
an average to low spread. Of all 1.94 × 107 polony pairs that were within 
the average pairing distance, only 6.72 × 105 edges (3.5%) were obtained 

from the sequencing data, similar to a low amplitude in the simulation. 
Possible fused nodes could therefore not be identified.

Overall, applying a minimum indirect path filter efficiently 
removed disruptive crosslinks from the experimental data, losing 
only a small percentage of all connections. Because the fidelity of the 
reconstruction scales with the amount of available data, the proposed 
algorithm could provide a useful filter to obtain more accurate recon-
structions from sparse data.

Discussion
We note a few observations, shortcomings and directions for future 
investigations. First, MinIPath did not exclusively or completely remove 
spurious crosslinks from simulated datasets, as the indirect path values 
for both partially overlapped, regardless of spread or amplitude. An 
adaptation of the algorithm taking longer indirect paths of five or seven 
steps may provide a better distinction between the erroneous and 
non-erroneous edges. The same principle could be applied to improve 
the performance of the node splitting algorithm on sparse data, to still 
allow one to find groups of indirectly connected nodes when fewer 
connections are present. However, such adaptations do come at an 
increased computational cost. Calculating the indirect paths of length 
k has an expected runtime performance of O (dk × |E|), where d is the 
average degree, and |E| is the number of edges in the connection graph. 
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the total number of UEIs remaining for reconstruction after the applied filter. 
White scale bars:100 µm. Striped scale bars: 1 Ldiff. a, Reference microscopy 
image. b, Reconstruction created from uncorrected and unfiltered data.  

c,e, Reconstructions after read count filters of 3 (c) and 4 (e). d,f, Reconstructions 
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permission from: a–f, adapted from ref. 7, Elsevier.
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Using longer indirect paths in the fused node algorithm will also result 
in more connections between the two groups of connected nodes, 
which might increase the number of false negatives. Such an adaptation 
would therefore have to be carefully characterized.

Second, it is possible that for edges connecting nodes in sparse 
areas of the samples (such as at the edge), lower indirect path values 
are calculated. To correct for these inaccuracies, the indirect path 
values would have to be corrected and normalized using the degree of 
each node. Such adaptations may be required for samples with a larger 
variation in the node density across the sample.

Finally, we have applied our error correction algorithm here on 
DNA microscopy data, but we note that the same principle could be 
applied on any dataset where adjacency is the primary source of data, 
such as Hi-C data15. Several methods have been described to obtain the 
3D organization from pairing data between genomic regions16, and 
it remains unclear, to our knowledge, how artifacts affect these. For 
this purpose, the method could be adapted to work on non-bipartite 
graphs. How errors affect these reconstructions and whether this cor-
rection algorithm can improve them remains a topic for future studies.

Methods
Algorithm description
As input, the algorithms take undirected, bipartite, weighted graphs, 
here called G:

G = (U, V, E, w) (4)

E ⊆ U×V (5)

w (x, y) = {
d ∈ ℕ

0

if (x, y) ∈ E

if (x, y) ∉ E
(6)

U and V are the independent sets of nodes defining the bipartition of the 
graph, E is the set of edges, and w is a function assigning an edge weight 
d to each connected pair of nodes (d is not necessarily a constant, but 
varies per node pair).

Spurious crosslinks are identified by counting the number of short 
indirect paths between two nodes connected by an edge. We calculate 
the indirect path value at three steps (wi3) by taking the product of the 
edge weights of each of the three edges that form one indirect path 
between the two nodes x and y, then adding these products together 
for all indirect paths connecting the nodes:

wi3 (x, y) = ∑
(a,b)|(a∈V;a≠y;b∈U;b≠x)

w (x, a) ×w(a, b) ×w(b, y) (7)

For fused node correction, let Sa denote the immediate neigh-
bors of some node a. Although these nodes do not have edges among 
themselves (because they belong to the same bipartition), they can be 
indirectly connected at two steps. For convenience, we form the graph 
Ga from the nodes Sa, the edges Ea and the edge weights wi2:

Ga = (Sa, Ea, wi2) (8)

where the edges Ea ⊆ S2a are formed between the nodes in Sa, and the 
edge weights are given for each (x, y) ∈ S2a:

wi2 (x, y) =
⎧⎪
⎨⎪
⎩

∑
b∈U;b≠a

w(b, x) ×w (b, y) ifa ∈ U

∑
b∈V;b≠a

w(x, b) ×w( y, b) ifa ∈ V
(9)

Naturally, if wi2(x, y) = 0, x and y do not have an edge. Note that, in 
contrast to G, Ga is not a bipartite graph. Also, the edges to the original 
node a are not used to find the edges in wi2; that is, indirect rather than 
direct paths are used.

To obtain the partition of Ga, we first check whether Ga is natu-
rally disconnected into multiple components. If it consists of exactly 
two disconnected components, those are used as the partitions of Ga, 
with a normalized cut value of 0.0. If more than two components are 
found, the node is marked as unevaluable (due to sparse data). Oth-
erwise, we apply spectral graph partitioning13 to partition Ga into two 
components, Sa1 and Sa2. The partition is evaluated by calculating the 
normalized cut14. The cut for this specific partition is first calculated by 
taking the sum of the edge weights removed between sets Sa1 and Sa2 by  
the partitioning:

cut (Sa1, Sa2) = ∑
(u, v)|u∈Sa1 ; v∈Sa2

wi2(u, v) (10)

and the normalized cut is calculated by dividing the cut by the sum of 
the edge weights in each partition14:

ncut (Sa1, Sa2) =
cut(Sa1, Sa2)

∑(u, t)|u∈Sa1 ; t∈Sa wi2(u, t)
+ cut(Sa1, Sa2)
∑(u, t)|u∈Sa2 ; t∈Sa wi2(u, t)

(11)

When the normalized cut is below the cutoff, node a is removed, and 
two new nodes are created in G that each inherit the edges of node a to 
either the nodes in Sa1 or Sa2.

Algorithm implementation
Two methods were implemented in Python to calculate weighted  
indirect paths. The first method starts from the asymmetric adjacency 
matrix A (i, j) = w(i, j) , then calculating the three-step adjacency  
matrix A3 (i, j) = A × AT × A, then, for each node pair with an edge,  
subtracting the paths that use their direct edge, while setting other 
node pairs to 0:

Ai3 (i, j) = {
A3 (i, j) −w (i, j) × (∑k w (i, k)2 +∑k w ( j, k)2 −wij) , A(i, j) > 0

0, A(i, j) = 0
(12)

Calculating A3 becomes computationally challenging for large 
datasets, partly because it calculates all paths of length three, not  
just those between nodes that were originally connected. We therefore 
implemented the calculation of only the indirect paths of length  
three between nodes connected in the original dataset, using  
sparse matrices. This method first calculates A2 (i, j) = A × AT , which 
contains all two-step paths between all nodes of one partition (for 
example, U). It then iterates over every edge to find all indirect paths 
of length three.

Pseudocode. For node a in V: 
 � For every node b connected to a (i.e., A(ib, ia) > 0):

   �   common nodes = set(nodes connected to b in two 
steps) U

                        set(nodes connected to a)

            �            (that is, where(A2(ib,:) > 0) U 
where(A(:, ia) > 0))

      For node c in common node indices:

    �    Ai3(ic, ia) += (A2(ib, ic) – A(ib, ia) * A(ic, ia)) 
* A(ib, ia)

Here ix denotes the index of node x. The second method is imple-
mented in Python with Numba17 acceleration to allow for the use of 
multiple threads.
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For node splitting, the graph Ga was extracted and partitioned 
using a spectral graph partitioning tool from the scikit-learn pack-
age18. Nodes were not considered for splitting if they had fewer than 
four connections, or if GS consisted of more than two components. 
Normalized cuts were calculated first for all nodes, then nodes were 
selected for splitting according to the applied cutoff. If two nodes with 
an edge were both split, the edge was removed.

Simulated data processing
Polony locations were reconstructed using the sMLE method described 
previously7. A slightly adapted version of the pipeline was used to process 
large amounts of files more easily. In contrast to experimental data, simu-
lated data were not subjected to the iterative minimum UEI filter before 
reconstruction. Analysis was done with custom scripts in Python v3.9.12, 
using the packages numba v.0.53.1 (ref. 17), numpy v1.22.4 (ref. 19), pandas 
v.1.4.4 (ref. 20), scikit-learn v1.1.3 (ref. 18) and scipy v1.9.3 (ref. 21), and visu-
alized with seaborn v.0.11.2 (ref. 22). Reconstructions from graphs where 
the largest connected component was smaller than 80% of all nodes were 
not considered for further analysis. Global reconstruction quality was 
assessed using the Procrustes disparity, and local reconstruction qual-
ity was assessed by the overlap of the k-nearest neighbors for each node 
in the original and reconstruction positions, as suggested previously9.

To evaluate the node splitting accuracy, we paired each set of 
nodes Sa1 and Sa2 to their closest match among the two sets of nodes 
in Sb and Sc (i.e. the nodes connected to the original nodes b and c that 
made up the fused node), and calculated the overlap:

Overlap =
∑n∈{1, 2} max ( San∩Sb

San
, San∩Sc

San
)

2 (13)

Experimental data processing
Raw sequencing data were downloaded from the Sequencing Read 
Archive (project no. PRJNA487001, sample 3), and processed as 
described previously, without a minimum read count. After then apply-
ing either a read count filter or an indirect path filter, the remaining 
nodes were filtered as described earlier7, first by iteratively removing 
nodes with fewer than two associated products to remove possible 
uncorrected sequencing errors, then by selecting the largest connected 
component. Properties displayed in Fig. 5h,i are derived from the graphs 
after all filters were applied.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this Article.

Data availability
The input for the simulations and the data generated by the simula-
tions are available in the Zenodo repository at https://doi.org/10.5281/
zenodo.10256692 ref. 23. The previously published raw experimen-
tal data7 are available at the Sequencing Read Archive (project no. 
PRJNA487001, sample 3). Source data are provided with this paper.

Code availability
The code used for the simulation, error correction and imaging, as well 
as the adapted reconstruction code, can all be found in the Zenodo 
repository (https://doi.org/10.5281/zenodo.10256692 ref. 23). The code 
for error correction is also available on GitHub at https://github.com/
Alexamk/minipath/.

References
1.	 Paolillo, C., Londin, E. & Fortina, P. Single-cell genomics. Clin. 

Chem. 65, 972–985 (2019).
2.	 Moor, A. E. & Itzkovitz, S. Spatial transcriptomics: paving the 

way for tissue-level systems biology. Curr. Opin. Biotechnol. 46, 
126–133 (2017).

3.	 Moses, L. & Pachter, L. Museum of spatial transcriptomics.  
Nat. Methods 19, 534–546 (2022).

4.	 Levy-Jurgenson, A., Tekpli, X., Kristensen, V. N. & Yakhini, Z. 
Spatial transcriptomics inferred from pathology whole-slide 
images links tumor heterogeneity to survival in breast and lung 
cancer. Sci. Rep. 10, 18802 (2020).

5.	 Yoosuf, N., Navarro, J. F., Salmén, F., Ståhl, P. L. & Daub, C. O. 
Identification and transfer of spatial transcriptomics signatures 
for cancer diagnosis. Breast Cancer Res. 22, 6 (2020).

6.	 Hoffecker, I. T., Yang, Y., Bernardinelli, G., Orponen, P. & Högberg, 
B. A computational framework for DNA sequencing microscopy. 
Proc. Natl Acad. Sci. USA 116, 19282–19287 (2019).

7.	 Weinstein, J. A., Regev, A. & Zhang, F. DNA microscopy: optics-
free spatio-genetic imaging by a stand-alone chemical reaction. 
Cell. 178, 229–241 (2019).

8.	 Boulgakov, A. A., Xiong, E., Bhadra, S., Ellington, A. D. & 
Marcotte, E. M. From space to sequence and back again: 
iterative DNA proximity ligation and its applications to DNA-
based imaging. Preprint at bioRxiv https://www.biorxiv.org/
content/10.1101/470211v2 (2018).

9.	 Fernandez Bonet, D. & Hoffecker, I. T. Image recovery from 
unknown network mechanisms for DNA sequencing-based 
microscopy. Nanoscale 15, 8153–8157 (2023).

10.	 Qian, N. & Weinstein, J. A. Volumetric imaging of an intact 
organism by a distributed molecular network. Preprint at  
bioRxiv https://www.biorxiv.org/content/10.1101/2023.08.11. 
553025v1 (2023).

11.	 Mitra, R. D. & Church, G. M. In situ localized amplification and 
contact replication of many individual DNA molecules. Nucleic 
Acids Res. 27, e34–e39 (1999).

12.	 Griffiths, J. A., Richard, A. C., Bach, K., Lun, A. T. L. & Marioni, J. C. 
Detection and removal of barcode swapping in single-cell RNA-
seq data. Nat. Commun. 9, 2667 (2018).

13.	 von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 17, 
395–416 (2007).

14.	 Shi, J. & Malik, J. Normalized cuts and image segmentation.  
IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000).

15.	 van Berkum, N. L. et al. Hi-C: a method to study the three-
dimensional architecture of genomes. J. Vis. Exp. 2010, 1869  
(2010).

16.	 Oluwadare, O., Highsmith, M. & Cheng, J. An overview of methods 
for reconstructing 3-D chromosome and genome structures from 
Hi-C data. Biol. Proced. Online. 21, 7 (2019).

17.	 Lam, S. K., Pitrou, A. & Seibert, S. Numba: a LLVM-based Python 
JIT compiler. In Proc. Second Workshop on the LLVM Compiler 
Infrastructure in HPC 1–6 (ACM, 2015).

18.	 Pedregosa, F. et al. Scikit-learn: machine learning in Python.  
J. Mach. Learn. Res. 12, 2825–2830 (2011).

19.	 Harris, C. R. et al. Array programming with NumPy. Nature 585, 
357–362 (2020).

20.	 pandas-dev/pandas: Pandas 1.4.4 (The Pandas development 
team); https://doi.org/10.5281/zenodo.7037953

21.	 Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific 
computing in Python. Nat. Methods 17, 261–272 (2020).

22.	 Waskom, M. L. seaborn: statistical data visualization.  
J. Open Source Softw. 6, 3021 (2021).

23.	 Kloosterman, A., Baars, I. & Högberg, B. Code and data 
for ‘An error correction strategy for image reconstruction 
by DNA sequencing microscopy’; https://doi.org/10.5281/
zenodo.10256692

Acknowledgements
We acknowledge support from the Knut and Alice Wallenberg 
Foundation for B.H. (grants nos. KAW 2017.0114 and KAW 2017.0276), 
from the European Research Council (ERC) for B.H. (acronyms: Cell 

http://www.nature.com/natcomputsci
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA487001
https://doi.org/10.5281/zenodo.10256692
https://doi.org/10.5281/zenodo.10256692
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA487001
https://doi.org/10.5281/zenodo.10256692
https://github.com/Alexamk/minipath/
https://github.com/Alexamk/minipath/
https://www.biorxiv.org/content/10.1101/470211v2
https://www.biorxiv.org/content/10.1101/470211v2
https://www.biorxiv.org/content/10.1101/2023.08.11.553025v1
https://www.biorxiv.org/content/10.1101/2023.08.11.553025v1
https://doi.org/10.5281/zenodo.7037953
https://doi.org/10.5281/zenodo.10256692
https://doi.org/10.5281/zenodo.10256692


Nature Computational Science | Volume 4 | February 2024 | 119–127 127

Article https://doi.org/10.1038/s43588-023-00589-x

Track, GA no. 724872 and qScope, GA no. 101097367), from the Swedish 
Research Council for B.H. (grant no. 2019-01474), from the Göran 
Gustafsson foundation for B.H., and from the European Commission 
H2020 MSCA ITN (DNA Robotics GA no. 765703) for B.H. and I.B.

Author contributions
Conceptualization was provided by A.M.K. and B.H., methodology by 
A.M.K., investigations by A.M.K. and I.B., formal analysis by A.M.K., and 
visualization by A.M.K. The original draft was written by A.M.K, and 
review and editing by A.M.K., I.B. and B.H. Funding acquisition was 
performed by B.H.

Funding
Open access funding provided by Karolinska Institute.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s43588-023-00589-x.

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s43588-023-00589-x.

Correspondence and requests for materials should be addressed to 
Björn Högberg.

Peer review information Nature Computational Science thanks the 
anonymous reviewers for their contribution to the peer review of this 
work. Primary Handling Editor: Ananya Rastogi, in collaboration with 
the Nature Computational Science team. Peer reviewer reports are 
available.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard  
to jurisdictional claims in published maps and institutional  
affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/natcomputsci
https://doi.org/10.1038/s43588-023-00589-x
https://doi.org/10.1038/s43588-023-00589-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Computational Science

Article https://doi.org/10.1038/s43588-023-00589-x

Extended Data Fig. 1 | The robustness of reconstructions to introduced 
errors depends on the amplitude, spread and number of errors. Mean 
reconstruction quality when adding spurious crosslinks (A-C), fusing randomly 

selected nodes (D-F), or applying a 2x amplitude bias to randomly selected nodes 
(G-I). Error bars shown represent the standard deviation. Number of samples per 
mean given below each figure.
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Extended Data Fig. 2 | The indirect path value of length 3 depends on 
amplitude, spread, number of errors and distance. Dependence of  
indirect path value on (A) amplitude, (B) spread, and (C) number of errors.  

(D) Dependence of indirect path value on distance shown in a single simulation 
(amplitude of 10, spread of 50, 20% errors). E) Dependence of normalized cuts 
shown in a single simulation (amplitude of 10, spread of 20, 20% errors)
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Extended Data Fig. 3 | True positive versus false positive rate primarily depends on spread. Each point in each scatterplot represents the true positive and false 
positive rate in a single simulation where errors were added and corrected. (A, B) are colored by spread, (C, D) are colored by cutoff.
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Extended Data Fig. 4 | Procrustes disparity of all simulations containing spurious crosslinks. Procrustes disparity is shown after different amounts of spurious 
crosslinks are added and corrected.
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Extended Data Fig. 5 | KNN overlap of all simulations containing spurious crosslinks. KNN overlap value is shown after different amounts of spurious crosslinks are 
added and corrected.
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Extended Data Fig. 6 | Procrustes disparity of all simulations containing fused nodes. Procrustes disparity is shown after different amounts of fused nodes are 
added and corrected.
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Extended Data Fig. 7 | KNN overlap of all simulations containing fused nodes. KNN overlap is shown after different amounts of fused nodes are added and 
corrected.
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Extended Data Fig. 8 | Further details on node splitting accuracy. (A-C) Heatmaps show the mean node splitting accuracy as dependent on (A) spread, (B) fraction of 
errors or (C) the amplitude. (D) Fraction of unfused nodes not considered for splitting in data without errors.
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Extended Data Fig. 9 | Not correcting experimental datasets results in collapsed reconstructions. X and y scale represent the x and y coordinates of the polonies 
after sMLE reconstruction, respectively. A) Full scale. B) Zoomed in.
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Extended Data Fig. 10 | Read count distribution of the analyzed experimental dataset. Read counts of all the unique products connecting two polonies in the 
experimental dataset. A) Full scale. B) Zoomed in on the range 1-50.
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