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By pairing adjacent molecules in situ and then mapping these pairs, DNA
microscopy could substantially reduce the workload in spatial omics
methods by directly inferring geometry from sequencing data alone.

However, experimental artifacts canlead to errorsinthe adjacency data,
which distort the spatial reconstruction. Here we describe amethod to
correcttwo such errors: spurious crosslinks formed between any two
nodes, and fused nodes that are formed out of multiple molecules. We build
on the principle that spatially close molecules should be connected and
show that these errors violate this principle, allowing for their detection
and correction. Our method corrects errors in simulated data, evenin the
presence of up to 20% errors, and proves to be more efficient at removing
errors from experimental data than aread count filter. Integrating this
method in DNA microscopy will substantially improve the accuracy of
spatial reconstructions with lower dataloss.

With the improvements in sequencing technology, techniques to
investigate biological samples have become increasingly refined,
progressing from sequencing in bulk, to single-cell RNA' and spa-
tial transcriptomics®. The latter technique allows one to obtain the
organization of cellsin tissue, leading to deeper insightsin biology and
improving the detection of diseases*’. However, current techniques
for spatial transcriptomics rely on fluorescence microscopy, which is
limited in throughput, especially for large amounts of targets’.

DNA microscopy is an emerging spatial transcriptomic technique
thataimsto find the spatial organization of DNA or RNA using sequenc-
ing alone, bypassing the use of optical microscopy. The commontheme
in all DNA microscopy methods is to use a polymerase chain reaction
(PCR) and sequencing to find pairs of adjacent molecules and use that
pairinginformation to find their relative locations®° (Fig. 1). Ina typical
workflow (Fig. 1a), molecules are barcoded and amplified locallyin the
tissue of interest, creating polymerase colonies (polonies)” (Fig. 1b).
Where polonies overlap, amplicons fuse by design and form concate-
mers (Fig. 1c), which, when sequenced, reveal which two polonies are
adjacent. Allthe adjacency dataarerepresentedinagraph, where each
noderepresents one polony, and each edge asequenced concatemer.
Fromthisgraph, the original locations can be estimated®’*'° (Fig. 1d).

Importantly, theinformation of these adjacency pairs is obtained with
sequencinginformationonly, meaningthat (1) the method can capture
both the sequence and location of transcripts simultaneously, and
many targets can be captured simultaneously, (2) it does not require
processing or stitching of image data, only analysis of sequencing data,
and (3) itis notinherently limited to two-dimensional (2D) reconstruc-
tions, but can be used to reconstruct 3D samples as well.

However, experimental conditions can give rise to erroneous sig-
nals that create artifacts in the adjacency graph and disrupt the spatial
reconstruction. We consider two such errors. The first of these is that of
spurious crosslinks, formed between any pair of nodes regardless of posi-
tion. These can be formed by incomplete PCR during post-experimental
library preparation when products are no longer spatially confined, ina
reaction similar to barcode-swapping and index-hopping events'. The
secondtype of errorisafused node. Whentwo polonies contain the same
barcode or very similar barcodes that are mistakenly fused by sequencing
error correction, they arerepresentedin the adjacency graphasasingle
node, which can lead to distortions in the reconstruction.

In this Article we propose two methods to remove these errors,
collectively called MinIPath (‘Minimum Indirect Path” analysis). These
methods are based on graph analysis on the adjacency graph alone.
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Fig.1| DNA microscopy reveals spatial locations by finding adjacent pairs of
transcripts. a, RNAis presentin a biological sample of interest. b, RNA molecules
are barcoded and amplified locally, forming polymerase colonies (polonies).

¢, Where polonies overlap, theiramplicons can be engineered to fuse together,
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forming concatemers. d, Sequencing concatemers reveals the adjacency of all
polonies, which can be displayed in agraph. The number of concatemers formed
between two polonies is the edge weight. From this graph, the relative spatial
coordinates of each molecule can then be obtained.

Spurious crosslinks are detected by findingashortindirect path connect-
ingtwodirectly connected nodes, whichwe showis harder to findif two
nodes are far away and erroneously connected. Fused nodes are detected
by looking at the connected nodes of any node. When these can easily be
separated into two indirectly connected groups, the nodeis probably a
fused node and can be split. We show the effect of both types of error on
thereconstruction quality using simulated diffusion-based dataasinput,
and that these can be corrected by our method. In addition, we analyze
apreviously described DNA microscopy dataset’ and show that we can
obtainaccurate reconstructions by removing spurious crosslinks more
efficiently than with aread countfilter. Insummary, thismethod provides
anefficient way tofilter artifacts from adjacency-based data, which can
improve the overall quality of the resulting spatial reconstruction.

Results
Correcting errors in simulated data using graph organization
Although the principle of imaging space by sequencing can be realized
in various experimental set-ups, we focus here on a set-up introduced
previously’ that has yielded experimental results. In this arrangement,
thesampleisencapsulatedinahydrogel, meaningthat polony formation
isgoverned by diffusion. Two types of seed strand are presentin the sam-
ple, to prevent the self-interactions of polonies, which could consume
large amounts of sequencing data without providing information on
neighbors. Furthermore, each formed concatemer contains a unique
barcode, allowing one to count the number of interactions between
two polonies. All the neighborhood interactions are represented in a
neighborhood graph, where the weight of the edges equals the number of
observed products between two polonies. Astwo types of seed strand are
used, the neighborhood graphis aweighted, undirected, bipartite graph.
Wefirst sought to simulate this experimental set-up. Starting from
Fick’slaw for diffusion for asingle polony, one can derive the relationship
between the reaction rate w between two polonies and their distance”:
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where w(i,j) is the reaction rate between two polonies i andj, each of
adifferent type, D is the diffusion constant, ¢ is the time since polony
creation, dis the number of dimensions, and x;and x;are the locations
of poloniesiandj, respectively. L describes the characteristic diffu-
sion length of the distribution.

As polony input, we randomly distributed nodes of two types
within a 2D shape (Fig. 2a; total dimensions 200 x 450 pixels; shape
area~40,000 pixels; ~4,000 nodes). The diffusion model was used to
estimate the number of reactions between each pair of nodes, and this

number was used as a parameter in the Poisson distribution to obtain
connections and their edge weights:

.. . —|x; —"j|2
w (i, j) = Poiss | a x exp —5 (3)

where w(i,j) represents the edge weight between twonodesiandj, arepre-
sentstheamplitude and athe spread. Inexperimental terms, the amplitude
canbe affected by theinherent reactivity of the polonies and sequencing
depth, both of which determine how many products are seen. If the ampli-
tudeis high, multiple concatemers are formed and/or sequenced foreach
polony pair, resulting in larger edge weights in the resulting graph. The
spreadisanalogousto L rand determines the distance at which two polo-
nies mightstillreact. Experimentally, it will be determined by the diffusion,
and therefore by the properties of the hydrogel and size of the products.

As abaseline, we generated adjacency data using a wide range of
amplitudes and spreads (Fig. 2b) and reconstructed the polony loca-
tions using the previously described spectral maximum likelihood
embedding (SMLE) method’. We reconstructed all adjacency datasets
where at least 80% of all nodes were connected in a single group, and
evaluated these reconstructions using two metrics: the Procrustes
disparity as aglobal metric, and the number of overlapping neighbors
outofthel5nearest as alocal metric’.

Thedifferent parameters used in the simulation had agreat influ-
ence on the reconstruction quality (Fig. 2c). Globally accurate recon-
structions were obtained for many of the simulations. Only when a very
lowspread (0 =10) oracombination of high spread and amplitude was
used (0=200, a=100) did the reconstructions become less accurate
based on the global metric. Local accuracy depended primarily on
the spread: if it was small (6 < 50), local accuracy was high even when
global accuracy was low (k-nearest neighbors (KNN) > 0.75; Fig. 2d), but
whenitstarted to approach the samplesize, local accuracy decreased
(Fig. 2f,g). Higher amplitudes also led to better local reconstructions,
and the combination of low spread and high amplitude led to the most
accurate reconstructions both globally and locally (Fig. 2e).

We then developed algorithms to detect and correct spurious
crosslinks and fused nodes (Fig. 3). As mentioned above, spurious
crosslinks randomly connect any two nodes of different types, regard-
less of the position of their corresponding polonies in the original
sample (Fig. 3a). Similarly, node fusion results in nodes that inherit
the connections of two randomly selected nodes, again regardless of
the position of their corresponding polonies in the sample (Fig. 3b).

For spurious crosslinks, we reasoned that polonies are usually
surrounded by many other polonies to which a connection is pos-
sible. This implies that when two nodes are connected in a graph, it
should be straightforward to find ashort, indirect pathin the graph to
connect these two nodes, without using the edge itself (Fig. 3c, left).
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Fig.2|Reconstructions quality depends on Gaussian parameters

that determine adjacency. a, Node locations used as input, on a grid of

200 x 450 pixels. b, Edges are formed between neighboring nodes. The spread
determines the range at which edges are formed, and the amplitude determines
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the edge weight. ¢, The reconstruction quality depends on the amplitude and
spread. d-g, Example reconstructions with different spreads and amplitudes:
good local, poor global quality (d), good local, good global quality (e), poor local,
good global quality (f) and poor local, poor global quality (g).

By contrast, spurious crosslinks are formed between polonies regard-
less of their distance. The further they are apart, the less likely it will be
thatashort, indirect path between the two nodes canbe found (Fig. 3c,
right). Using edge weights further amplifies the difference, as longer
distance between nodes results in lower edge weights (equation (3)).
To exploit this difference, for each edge, we find all indirect paths of
length three (the minimumin abipartite graph), calculate the product
of the edge weights of each path and sum these together, to calculate
what we will refer to as theindirect path value of that edge. We then use
this to distinguish between normally connected nodes and spuriously
connected nodes, removing the edge if it is below a certain cutoff.
For fused nodes, we built on the same reasoning that polonies
are typically surrounded by other polonies to which a connection is
possible. The nodes connected to any single, unaltered node should
therefore also be connected to each other, with short, indirect paths,
and form a single well-connected subgraph (using indirect paths of
length two, the minimum in a bipartite graph; Fig. 3d, top). For the
connected nodes of fused nodes, however, this is not necessarily the
case. If the two polonies that are represented by a single fused node
were sufficiently far apart in the sample, the connected nodes of the
fused node should form two well-connected subgraphs, with many
connections withineach subgraph, but few connections betweenthem
(Fig.3d, bottom). The original groups should therefore be obtainable
with spectral graph partitioning®, an algorithm that seeks to obtain
graph partitions by minimizing the number of edges removed between
them, while maximizing the number of edges within each partition. The
ratiobetween theseis called the normalized cut (ncut)™. The connected
nodes of unaltered nodes can of course also be partitionedin two, but
this requires the removal of many more edges, resulting in a higher
normalized cut. The normalized cut can therefore serve to distinguish
between fused and unaltered nodes. Whenitis below agiven cutoff, itis
replaced by two nodes, eachinheriting the connections to the nodesin
either of the graph partitions (Methods section Algorithm description).
To examine whether these algorithms proved effective, we first
either added spurious crosslinks (1-20% of total edge weights) or
fused nodes (1-20% of all nodes) in the simulated data. Adding inthese

errorsdistorted the reconstructions (for example, Fig. 4a). The global
reconstruction quality was affected more thanthe local reconstruction
quality, which canbe understood as asmall number of errors that twist
the reconstruction without affecting the nearby neighbors of each
point. We found that using alarge spread when simulating connections
made the resulting reconstructions more robust to errors, while the
amplitude used inthe simulation had little effect (Extended DataFig.1).
When usingalarge spread, addingin spurious crosslinks is more likely
to connecttwo nodes that are already connected, or fusing two nodes
whose connected nodes broadly overlap, explaining the increased
robustness to errors. Furthermore, because fusing nodes introduces
nodes with twice as many connections, we verified that the resulting
long-tailed distribution of node connectivity itself was appropriately
normalized by the reconstruction pipeline and did not influence the
reconstruction. To this end, we randomly introduced an increased
reactivity bias to randomly selected nodes (1-20%) and found that
this did not affect the reconstruction quality (Extended Data Fig. 1).

We applied our algorithm to the simulated data to calculate all
indirect path values and normalized cuts, obtaining distributions of
each for each simulated case (for example, Fig. 4b,e). On average, the
spurious crosslinks connected nodes at larger distances from each
other than normal connections, although there was some overlap
(154.43 £ 90.43 for spurious crosslinks compared to 111.36 + 74.91 for
normal edges; average taken across all simulations). Still, the indirect
pathvalues were lower for spurious crosslinks compared to normal con-
nections, with the exact values depending on the amplitude and spread
usedinthe simulation, as well as thenumber of other errors (Extended
DataFig. 2). Similarly, the normalized cut values were lower for fused
nodes (0.47 + 0.33 for fused nodes compared to 0.71 + 0.17 for normal
nodes; average taken across all simulations). Again, distance played
animportant role here to detect each of the errors, as the crosslinks
formed at longer distances had lower indirect path values, and fused
nodes whose constituents were originally at alarge distance could be
partitioned with lower normalized cuts (Extended Data Fig. 2).

We then applied arange of cutoffs by taking the lower quantiles of
allindirect path values or normalized cuts. Edges below their cutoffs
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Fig.3|Spurious crosslinks and fused nodes can be detected by indirect path
analysis. a, Spurious crosslinks, which connect two nodes of different types,
regardless of distance. b, Fused nodes, in which two nodes are fused into one
node, whichinherits both of their edges. ¢, Spurious crosslink removal: obtain
indirect paths of length three. For normal, local connections, one can find many
shortindirect paths connecting the same two nodes. However, when two nodes
are spuriously connected and are sufficiently far apart, fewer short indirect paths

willbe found between them. d, Fused node splitting: separate connected nodes
into two groups: normal nodes and fused nodes. A normal node is connected
toseveral other nodes, which form a well-connected subgraph using short,
indirect paths. Partitioning this subgraph removes many edges. However, the
nodes connected to a fused node form two well-connected subgraphs, with only
afew connections between them. Partitioning this graph therefore requires the
removal of fewer edges.

were removed, and nodes with normalized cuts below their cutoff
were split. Although not all errors could be removed, the correction
algorithms preferentially corrected the spurious crosslinks and fused
nodes over original edges and unaltered nodes on average across all
simulations (Fig. 4g-i). The ratio of correctly identified errors (true
positive) to original dataidentified as errors (false positive) depended
primarily onthe spread, thatis, errors were more easily identified when
onlylocalreactions were formed (Extended Data Fig. 3). Notably, these
reconstructions were also the ones that were most affected by the
introduced errorsinthe first place (Extended DataFig.1). Inaddition,
applying the algorithm without the presence of errors did not affect
thereconstructions, except when an exceptionally high cutoff (quan-
tile of 0.50) was used, suggesting that the error correction algorithm
cansafely be used on unaltered data, even at slightly too high cutoffs,
without affecting reconstruction quality.

Applying the correction algorithm improved the reconstruc-
tion quality of any reconstruction that was affected by the errors

(Extended Data Figs. 4-7). Zooming in on simulations that were ini-
tially accurate but strongly affected by the errors (20 < spread <100,
amplitude >1.0), the average Procrustes disparity increased from
0.02+0.03t00.63 £ 0.10and to 0.52 + 0.12, when spurious crosslinks
or fused nodes were added, respectively. However, the average quality
improved by applying the correction algorithm (Fig. 4k-n), and for
each case where the introduced errors affected the reconstruction, a
cutoff could be found that restored it (Extended Data Figs. 4-7). For
most cases, this quantile cutoff was equal to the fraction ofintroduced
errors, although when a higher cutoff was used, the reconstruction
quality did not decrease. Using the expected fraction of errors in the
dataasa quantile cutoff therefore seems an appropriate guideline.
When fused nodes were corrected, we also evaluated the node
splitting accuracy, that is, whether the nodes after splitting were
connected to the same nodes as before the nodes were fused (Meth-
ods, Simulated data processing). We found that the resulting groups
matched accurately to the original (averageJaccardindex: 0.73 + 0.17),
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and most accurately when the spread in the simulation was low
(Extended Data Fig. 8). Node splitting only proved ineffective when
spread and amplitude were low. In these cases, nodes were typically
connected to only afew other nodes, which themselves were not indi-
rectly connected to each other. The resulting indirectly connected
graph was therefore often disconnected into multiple components,
similarly to when a node is fused, making it impossible to identify
whether the graphis easily partitioned due to sparse data or dueto a
fused node (Extended Data Fig. 8).

In summary, the proposed method removes spurious crosslinks
and corrects fused nodes across a wide range of simulated data, even
inthe presence of up to 20% spurious crosslinks of 20% fused nodes.

Correcting disruptive crosslinks in experimental data

To see how our method would perform on experimental data, we
analyzed a previously published DNA microscopy dataset for which
areference image was available’. In this experimental set-up, specific

types of RNA transcript (ACTB for ‘beacons’, and gfp, rfp and gapdh as
‘targets’) were used as seeds for the two types of polony in the bipartite
graph. Each product connecting two polonies could be recognized by
aunique barcode called a unique event identifier (UEI), the number
of which was used as the edge weight between the respective nodes.
Using the same pipeline as described in the previous work’, we
extracted1.26 x 10° polonies with 6.72 x 10° edges and 9.55 x 10° unique
UEIs from the raw sequencing data. When using all data to recon-
struct the largest connected group, the resulting reconstructions
frequently collapsed into a ‘star-like’ pattern (Extended Data Fig. 9).
Only one out of ten reconstructions produced a layout that could
be overlaid on the microscopy image with a poor match (Fig. 5b).
Toremove possible artifacts, Weinstein et al.” applied a read count fil-
ter that removed all products without sufficient reads. Although this
strategy did improve the reconstruction quality, a read count filter
of four wasrequired to obtainan accurate reconstruction (Fig. 5c,e).
Given the large number of products produced during a DNA
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microscopy reaction, many of them had low read counts (Extended
Data Fig. 10), and, as a result, only 70.6% (6.39 x 10°/9.03 x 10°) of all
UEIs remained for reconstruction.

By contrast, applying aminimum indirect path cutoff of 1greatly
improved the reconstruction quality, while only removing 3.6% of all
UEIs (3.2 x10%/9.03 x 10%; Fig. 5d). The reconstruction quality further
improved with an indirect path cutoff of 2 (removing 4.8% of all UEIs;
Fig.5f). Applying aneven higher cutoff did not clearly furtherimprove
the reconstruction. Using an indirect path cutoff therefore removed
disruptive edges more efficiently thanaread count filter, allowing more
datatobe used for the resulting reconstruction.

We also attempted to split possible fused nodesin this dataset. The
subgraphs formed from the nodes connected to any particular node
often formed more than two connected components (8.9 x 10%/1.1 x 10%;
82.4%), similar to the simulated datasets with low amplitude and
spread, meaning it could not be used for accurate partitioning.
Indeed, when describing the experimental datain terms of amplitude
and spread, we found it had low amplitude and average spread. The
dimensions of the sample of an accurate reconstruction (Fig. 5f) were
~9 x 8 Ly equivalents, that is, 11-13 times as long as the average dis-
tance of two connected nodes (0.68+ 0.59 Ly equivalents), suggesting
anaverage to low spread. Of all 1.94 x 107 polony pairs that were within
theaverage pairing distance, only 6.72 x 10° edges (3.5%) were obtained

from the sequencing data, similar to alow amplitude in the simulation.
Possible fused nodes could therefore not be identified.

Overall, applying a minimum indirect path filter efficiently
removed disruptive crosslinks from the experimental data, losing
only asmall percentage of all connections. Because the fidelity of the
reconstruction scales with the amount of available data, the proposed
algorithm could provide a useful filter to obtain more accurate recon-
structions from sparse data.

Discussion

We note a few observations, shortcomings and directions for future
investigations. First, MinIPath did not exclusively or completely remove
spurious crosslinks from simulated datasets, as the indirect path values
for both partially overlapped, regardless of spread or amplitude. An
adaptation of the algorithm taking longer indirect paths of five or seven
steps may provide a better distinction between the erroneous and
non-erroneous edges. The same principle could be applied toimprove
the performance of the node splitting algorithm on sparse data, to still
allow one to find groups of indirectly connected nodes when fewer
connections are present. However, such adaptations do come at an
increased computational cost. Calculating the indirect paths of length
k has an expected runtime performance of O (d* x |E|), where dis the
average degree, and |E|is the number of edges inthe connection graph.
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Usinglonger indirect pathsin the fused node algorithm will also result
in more connections between the two groups of connected nodes,
whichmightincrease the number of false negatives. Such an adaptation
would therefore have to be carefully characterized.

Second, it is possible that for edges connecting nodes in sparse
areas of the samples (such as at the edge), lower indirect path values
are calculated. To correct for these inaccuracies, the indirect path
values would have to be corrected and normalized using the degree of
eachnode.Suchadaptations may be required for sampleswith alarger
variation in the node density across the sample.

Finally, we have applied our error correction algorithm here on
DNA microscopy data, but we note that the same principle could be
applied onany dataset where adjacency is the primary source of data,
such as Hi-C data”. Several methods have been described to obtain the
3D organization from pairing data between genomic regions'®, and
it remains unclear, to our knowledge, how artifacts affect these. For
this purpose, the method could be adapted to work on non-bipartite
graphs. How errors affect these reconstructions and whether this cor-
rection algorithm canimprove them remains a topic for future studies.

Methods

Algorithm description

Asinput, the algorithms take undirected, bipartite, weighted graphs,
here called G:

G=(U,V,E w “4)
ECc UxV )

deN if(x,y))eE ©
weN=1, if ())& E

Uand Varetheindependent sets of nodes defining the bipartition of the
graph, Eisthe set of edges, and wis afunction assigning an edge weight
dto each connected pair of nodes (dis not necessarily a constant, but
varies per node pair).

Spurious crosslinks are identified by counting the number of short
indirect paths between two nodes connected by an edge. We calculate
theindirect path value at three steps (w;;) by taking the product of the
edge weights of each of the three edges that form one indirect path
between the two nodes x and y, then adding these products together
for allindirect paths connecting the nodes:

Wi (X, y) = w(x, a) x w(a, b) x w(b, y) 7)
(a,b)\(aeV; ay; beU; b#x)

For fused node correction, let S, denote the immediate neigh-
bors of some node a. Although these nodes do not have edges among
themselves (because they belong to the same bipartition), they can be
indirectly connected at two steps. For convenience, we form the graph
G,fromthenodesS,, the edges £,and the edge weights w,,:

Gy = (Sa» Eq, W) (8)

where the edges E, c $2 are formed between the nodes in S,, and the
edge weights are given for each (x, y) € $2:

Y wh, x)xw(b,y)ifaeU
beU; b#a
wp (X, y) = . ()]
> wx, b)yxw(y, b)ifaeV
beV;b#a

Naturally, if w,(x, y) = 0,xand ydo not have an edge. Note that, in
contrastto G, G,isnotabipartite graph. Also, the edges to the original
node aarenot usedto find theedgesin w,,; thatis, indirect rather than
direct paths are used.

To obtain the partition of G,, we first check whether G, is natu-
rally disconnected into multiple components. If it consists of exactly
two disconnected components, those are used as the partitions of G,,
with a normalized cut value of 0.0. If more than two components are
found, the node is marked as unevaluable (due to sparse data). Oth-
erwise, we apply spectral graph partitioning® to partition G, into two
components, S, and S,,. The partition is evaluated by calculating the
normalized cut™. The cut for this specific partition is first calculated by
taking the sum ofthe edge weights removed between sets S, and S, by
the partitioning:

cut (Sal’ Saz) = Z (10)

(U, V)|UESq1; VES g

wp(u, v)

and the normalized cut s calculated by dividing the cut by the sum of
the edge weights in each partition':

CUt(Sal’ Sal)
Z(u, D|uESy; teS, wp(u, )

CUt(Sal’ Saz)

neut (Sai, Saz) = D
2,

an

Z(u, 0|UES ;5 tES,

When the normalized cut is below the cutoff, node a is removed, and
twonew nodes are created in Gthat eachinherit the edges of nodeato
either thenodesinS, orS,,.

Algorithm implementation

Two methods were implemented in Python to calculate weighted
indirect paths. The first method starts from the asymmetric adjacency
matrix A(i,j) = w(i,j), then calculating the three-step adjacency
matrix A;(i,j)) =Ax A" x A, then, for each node pair with an edge,
subtracting the paths that use their direct edge, while setting other
node pairs to O:

As (i J) — w i, j) x (zkw(i, K+, w( k) - w,j) AG,j) > 0
0, AGj)=0

Az (i) =

12)

Calculating A; becomes computationally challenging for large
datasets, partly because it calculates all paths of length three, not
justthose between nodes that were originally connected. We therefore
implemented the calculation of only the indirect paths of length
three between nodes connected in the original dataset, using
sparse matrices. This method first calculates A, (i, j)) = A x AT, which
contains all two-step paths between all nodes of one partition (for
example, U). It then iterates over every edge to find all indirect paths
oflength three.

Pseudocode. For node a in V:

For every node b connected to a (i.e., A(i,, i,) > 0):

common nodes = set (nodes connected to b in two

steps) U
set (nodes connected to a)

(that is,
where (A(:,

where (A, (i,, :) > 0) U
i) > 0))

For node ¢ in common node indices:

A, (i, i) +=
* A(i,, i.)

(A (1, 1) - A(L,, 1) * A(d,, 1.))

Here i, denotes theindex of node x. The second method isimple-
mented in Python with Numba' acceleration to allow for the use of
multiple threads.
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For node splitting, the graph G, was extracted and partitioned
using a spectral graph partitioning tool from the scikit-learn pack-
age'®. Nodes were not considered for splitting if they had fewer than
four connections, or if G consisted of more than two components.
Normalized cuts were calculated first for all nodes, then nodes were
selected for splitting according to the applied cutoff. If two nodes with
anedge were both split, the edge was removed.

Simulated data processing
Polonylocations were reconstructed using the sSMLE method described
previously’. Aslightly adapted version of the pipeline was used to process
large amounts of files more easily. In contrast to experimental data, simu-
lated data were not subjected to the iterative minimum UEl filter before
reconstruction. Analysis was done with customscriptsin Pythonv3.9.12,
using the packages numbav.0.53.1(ref.17), numpy v1.22.4 (ref.19), pandas
v.1.4.4 (ref. 20), scikit-learn v1.1.3 (ref. 18) and scipy v1.9.3 (ref. 21), and visu-
alized withseabornv.0.11.2 (ref. 22). Reconstructions from graphs where
thelargest connected component was smaller than 80% of allnodes were
not considered for further analysis. Global reconstruction quality was
assessed using the Procrustes disparity, and local reconstruction qual-
ity was assessed by the overlap of the k-nearest neighbors for eachnode
in the original and reconstruction positions, as suggested previously’.
To evaluate the node splitting accuracy, we paired each set of
nodes S, and S,, to their closest match among the two sets of nodes
inS,andS, (i.e. the nodes connected to the original nodes b and c that
made up the fused node), and calculated the overlap:

SanNSp  SanNS¢
Z"€{1~2}max( San  San )

3 13)

Overlap =

Experimental data processing

Raw sequencing data were downloaded from the Sequencing Read
Archive (project no. PRJINA487001, sample 3), and processed as
described previously, without aminimumread count. After then apply-
ing either a read count filter or an indirect path filter, the remaining
nodes were filtered as described earlier’, first by iteratively removing
nodes with fewer than two associated products to remove possible
uncorrected sequencingerrors, thenby selecting the largest connected
component.Properties displayedin Fig. 5h,iare derived from the graphs
after all filters were applied.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this Article.

Data availability

The input for the simulations and the data generated by the simula-
tions areavailableinthe Zenodo repository at https://doi.org/10.5281/
zenodo.10256692 ref. 23. The previously published raw experimen-
tal data’ are available at the Sequencing Read Archive (project no.
PRJNA487001, sample 3). Source data are provided with this paper.

Code availability

The code used for the simulation, error correction and imaging, as well
as the adapted reconstruction code, can all be found in the Zenodo
repository (https://doi.org/10.5281/zenod0.10256692 ref. 23). The code
for error correction is also available on GitHub at https://github.com/
Alexamk/minipath/.
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Extended Data Fig.1| The robustness of reconstructions to introduced
errors depends on the amplitude, spread and number of errors. Mean
reconstruction quality when adding spurious crosslinks (A-C), fusing randomly

selected nodes (D-F), or applying a2x amplitude bias to randomly selected nodes
(G-I). Error bars shown represent the standard deviation. Number of samples per
mean given below each figure.
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Extended Data Fig. 8 | Further details on node splitting accuracy. (A-C) Heatmaps show the mean node splitting accuracy as dependent on (A) spread, (B) fraction of
errors or (C) the amplitude. (D) Fraction of unfused nodes not considered for splitting in data without errors.
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Extended Data Fig. 9 | Not correcting experimental datasets results in collapsed reconstructions. X and y scale represent the x and y coordinates of the polonies
after sMLE reconstruction, respectively. A) Full scale. B) Zoomed in.
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Extended Data Fig.10 | Read count distribution of the analyzed experimental dataset. Read counts of all the unique products connecting two poloniesin the
experimental dataset. A) Full scale. B) Zoomed in on the range 1-50.
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