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Zea mays genotype influences microbial and viral rhizobiome
community structure
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Plant genotype is recognized to contribute to variations in microbial community structure in the rhizosphere, soil adherent to roots.
However, the extent to which the viral community varies has remained poorly understood and has the potential to contribute to
variation in soil microbial communities. Here we cultivated replicates of two Zea mays genotypes, parviglumis and B73, in a
greenhouse and harvested the rhizobiome (rhizoplane and rhizosphere) to identify the abundance of cells and viruses as well as
rhizobiome microbial and viral community using 16S rRNA gene amplicon sequencing and genome resolved metagenomics. Our
results demonstrated that viruses exceeded microbial abundance in the rhizobiome of parviglumis and B73 with a significant
variation in both the microbial and viral community between the two genotypes. Of the viral contigs identified only 4.5% (n= 7) of
total viral contigs were shared between the two genotypes, demonstrating that plants even at the level of genotype can
significantly alter the surrounding soil viral community. An auxiliary metabolic gene associated with glycoside hydrolase (GH5)
degradation was identified in one viral metagenome-assembled genome (vOTU) identified in the B73 rhizobiome infecting
Propionibacteriaceae (Actinobacteriota) further demonstrating the viral contribution in metabolic potential for carbohydrate
degradation and carbon cycling in the rhizosphere. This variation demonstrates the potential of plant genotype to contribute to
microbial and viral heterogeneity in soil systems and harbors genes capable of contributing to carbon cycling in the rhizosphere.

ISME Communications; https://doi.org/10.1038/s43705-023-00335-4

INTRODUCTION
Plant roots create a carbon and nutrient-rich environment in soils
supporting microbiota in the zone adjacent to the root epidermis,
rhizoplane, and the soil adhering to plant roots, rhizosphere, or
together referred to as the rhizobiome [1]. It is within this region
where a diversity of microbiota including Bacteria, Archaea,
Eukarya and viruses are recognized as members of the rhizobiome
that can impact plant-soil-microbe interactions [2]. The microbial
diversity of this environment has the potential to be impacted by
viral infection where viral mediated cell lysis is recognized to
impact microbial abundance in soils [3]. Viruses are abundant in
soils ranging from 107 to 109 viruses g−1 of soil [4–6] and virus
abundance can often exceed that of microbes [7]. To date a few
studies have investigated virus abundance and predation in the
rhizosphere [8, 9], but the impact of these processes in this
dynamic region in soils remains poorly studied.
Virus infection can result in host cell lysis through a lytic or

lysogenic infection thereby reducing host cell abundance. The
lysis of these microbes results in the release of cell lysate which
serves as an easily accessible carbon and nutrient source
supporting the growth of other microbial members [10]. Hence,
viral infections of microbial host cells can influence the metabolic
functions of the microbial community. This may occur due to shifts

in taxonomic composition and change in metabolic potential
caused by differential viral predation or through the acquisition of
auxiliary metabolic genes (AMGs) [11–15] resulting from viral
infection. AMGs are viral genes acquired from their host, not
required in viral replication but allow viruses to directly
manipulate host metabolism [16]. Some well-known examples of
AMGs acquired by viruses have been inferred to play a role in
carbon [15], sulfur [17], and nitrogen [18] cycling. Together, these
changes in relative abundance of microbial composition and
introduction of functional genes like AMGs can alter the metabolic
potential of microbial community by metabolically reprogram-
ming their hosts, and/or expression of AMGs [9, 15, 19, 20]. While,
the abundance of viruses in the rhizosphere has been reported
before [8, 9, 21], the implication of viral impacts on the host
abundance and metabolic potential remains understudied. Given
the absence of universal marker genes across viruses, metage-
nomic studies are required to shed light on the role of viruses in
the rhizobiome and, how viruses impact the abundance of the
host cells, and their potential to reprogram host metabolism [22].
In the carbon-rich region surrounding the plant root, the

rhizobiome community structure varies between plant species
[23] and genotypes [24], owing to the influence of the plant,
including variation in root exudate profiles [25]. The variation in
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root exudate profile secreted by host genotype and the resulting
substrate-driven or bottom-up shifts in the microbial community
structure are based on differential production of root exudates
and community utilization [26, 27]. In addition to substrate driven
controls on rhizobiome structure, viruses are recognized to infect
microorganisms in the rhizosphere [8, 9]. Viruses require
metabolically active hosts for replication and thus the patterns
of viral communities are linked to active host cells [28–31]. While
physiochemical heterogeneity in soils can alter viral abundance
where it is recognized that soil moisture and pH can influence viral
community structure [32–34], variation in plant roots also has the
potential to contribute to viral community structure. In soils
viruses impact host abundance and metabolic potential by
infecting metabolically active organisms driving carbon-cycling
[15, 35], and play a role in biogeochemical processes in the
rhizosphere [9, 36]. The region surrounding the root is one where
microorganisms are recognized to be metabolically active owing
to the production of carbon-rich plant root exudates.
Here we test the hypothesis that both the microbial and viral

rhizobiome community varies between two plant genotypes of
one of the world’s most important cereal crops, Z. mays, with
recognized genetic diversity [37], Z. mays genotypes, Z. mays ssp.
parviglumis (teosinte), wild congener, and Z. mays genotype B73
(hybrid of domesticated maize). Seeds of each genotype were
sterilized, germinated under axenic conditions, and transplanted
into a homogenized soil matrix and cultivated to an early
vegetative (V4-V8) growth stage in a greenhouse under controlled
conditions. Plants were harvested for phenotyping and rhizo-
biome samples were collected to enumerate cells and viruses as
well as identify microbial community members in biological
replicates using 16S rRNA gene amplicon sequencing and genome
resolved metagenomics from DNA shotgun metagenome
sequence data. Variation within the microbial and viral (DNA
viruses) communities between Z. mays genotypes was statistically
determined. The virus linked microbial hosts in the rhizobiome of
the two genotypes rendered differences in host abundance.
Assembled and annotated viral contigs were screened for
functional genes defined as AMGs and included the potential to
degrade carbohydrates. Together these data were assembled to
determine variance and describe the microbial and viral
rhizobiome community assemblage between the two selected Z.
mays genotypes, parviglumis and B73.

MATERIALS AND METHODS
Seed source, germination, and Z. mays growth
Seeds of Z. mays parviglumis and B73 were obtained from the University of
Nebraska, Lincoln in-house collection [38]. Twenty-four parviglumis and
B73 seeds were sterilized and germinated under axenic conditions in
sterilized petri-plates. From among the 24 seedlings, 12 seedlings were
transplanted into 1.8 L pots containing homogenized sieved prairie soil
mixed with autoclaved agricultural-field sandy-soil (60:40; mass/mass;
Supplementary Information) [39]. Plants were cultivated in a greenhouse
with an average 13-hour day length for 22 days at 31 °C with relative
humidity between 60.2 and 97.6% consistent with the climate of the
growing season in the Great Plains. Every three days plants were watered
and fertilized with 25mL of 25% Hoagland’s solution [40]. Six biological
replicates of each genotype at the same growth stage (V4-V8) were
selected for harvesting. Growth stage was determined by the number of
visible leaf collars.

Rhizobiome harvesting and sample collection
Plant roots and rhizobiome were harvested by gently cutting the pot to
minimize soil and root disruption and carefully separated from bulk soil as
previously described [38]. The roots were submerged in a known volume
of sterile, nucleic acid and enzyme-free 1X phosphate buffered saline (PBS)
and sonicated (Branson 450D, 30% amplitude, 0.3 s duty cycle) for one
minute, three times at 30 s intervals [41, 42] to harvest the rhizoplane
(microbiota attached to roots) as well as the rhizosphere (soil associated

with roots) and the final mass of the rhizobiome was determined. The
rhizobiome suspension was centrifuged (800 X g). A known volume of the
supernatant was filtered through 0.45 µm PVDF and 0.2 µm PVDF
membrane and fixed with formaldehyde (0.5 v/v final concentration) for
cell and virus enumeration [43, 44]. The remaining suspension was
centrifuged (3000 × g for 10 min) and rhizobiome pellet was collected by
another round of centrifugation at 10,000 × g for 20 min. Rather than
discarding the supernatant, we proceeded with the collection of cells (and
viruses) to ensure collection of small bacteria in the collected rhizobiome.
The supernatant was strained through a 40mm sterile cell strainer
(Fisherbrand™ product #22363547) to remove plant cells and root debris
and was collected on 0.2 µm polycarbonate membranes (product
#GTTP04700) through vacuum filtration (≤ 2.5 bar). The membrane and
pellet were flash frozen in liquid nitrogen and stored at −80 °C and the
final rhizobiome was assembled from nucleic acid extracts. Following
rhizobiome collection root phenotype characteristics were determined
(Supplementary Information).

Nucleic acid extraction, 16S rRNA gene amplicon, and shotgun
metagenomic sequence library preparation
All reagents and materials used in sample processing were treated or
prepared in 0.1% diethylpyrocarbonate or RNase Away and autoclave
sterilized. Nucleic acids were extracted from a known mass of the
rhizosphere pellet (10% w/w of total rhizosphere and rhizoplane) and the
membrane collected cells using a modified Griffith’s method as previously
described [44, 45]. DNA was quantified and purity was checked as
previously described [44]. A quantified mass of DNA extracted from the
pellet and the filter (2.5% of total DNA (ng)) were proportionally pooled to
represent the total rhizobiome community. The DNA quantity was
normalized per gram rhizosphere (Supplementary Information) and two
technical replicates from each biological replicate (12 samples per
genotype) were sent for 16S rRNA gene amplicon sequencing.
The 16S rRNA gene amplicon sequence library was prepared by the

University of Minnesota Genomics Center, Minnesota using V4 and V5
regions of the 16S rRNA gene primers 515F and 806R as described [46, 47].
The samples were paired-end sequenced (2 × 300 bp) using Illumina
MiSeq600 cycle v3 kit to a target sequencing depth of 72,000 reads per
sample. The 16S rRNA gene amplicon sequence data was analyzed using
the DADA2 package to obtain amplicon sequence variants (ASVs) as
described [48] and calculate diversity measures (Supplementary Informa-
tion). The ASVs were filtered for spurious sequences as described and was
analyzed using phyloseq [49].
DNA extracted from three randomly selected biological replicates were

submitted for shotgun metagenomic sequencing. The shotgun metagen-
ome sequence library was prepared using the Nextera XT DNA library kit
(Illumina, California, USA) as previously described [44]. The average final
library size was 300 bp with an insert of 180 bp and a read length
configuration of 150 PE for 40 M PE reads per sample (20 M in each
direction). Sequence data were quality checked (Supplementary Informa-
tion) and clean reads were used to generate de novo co-assemblies using
Megahit [50]. Assembled contigs were binned using MetaBat2 (v2.15) [51],
MaxBin2 (v2.2) [52], and CONCOCT (v1.1) [53] and dereplicated using DAS
Tool (v1.1) [54]. The bins were quality checked using CheckM (v1.1) [55]
and manually curated using Anvi’o (v7.0) [56] as described [44]. The final
complete set of MAGs were taxonomically identified and used to estimate
relative abundance as described (Supplementary Information).
Putative viral contigs were identified using VirSorter2 (v2.1) [57] and

DeepVirFinder [58] followed by manual curation (Supplementary Informa-
tion). A viral database was created to map the final set of viral contigs. A
pairwise comparison with �95% average nucleotide identity (ANI) across
�85% alignment coverage [59, 60] was used to assess genome similarity in
the viral community of parviglumis and B73. All viral contigs greater than or
equal to 1.5 Kbp were used in subsequent analyses. Viral contigs �10 Kbp
are described as a vOTU [61]. A database was created from the
dereplicated viral contigs and genome coverage of viral contigs was
normalized as performed for MAGs and used as a proxy for relative
abundance as previously described [15, 59, 62].
Virus-host linkages were established utilizing a combination of at least

two of three different methods, clustered regularly interspaced short
palindromic repeats (CRISPR) sequences [63], genome similarities [64], and
tetranucleotide frequencies (threshold distance < 0.001) between host and
viral contig (Supplementary Information) [15, 64–67]. Host genome
metabolic potential determined using METABOLIC (v4.0) [68], DRAM
(v1.2) [69], and FeGenie (v1.0) [70] at the MAG level. Viral contribution in
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the host metabolic processes was investigated by screening assembled
viral contigs for encoded putative AMGs in parviglumis and B73 using
DRAM-v with flags flag-v, m with ranks of AMG confidence of 1 and 2.

Statistical analyses
All statistical analyses were conducted in R version 4.1.2 (2021-11-01).
Differences between Z. mays genotypes in bacterial and virus abundances
were tested using t-test assuming unequal variances. The correlation
of cells and virus abundances were analyzed using Mantel’s test and
linear regression (Supplementary Information). Relationships between
the microbial and viral community structure were analyzed using
principal coordinate analysis (PCoA) with Bray-Curtis dissimilarities as
implemented in the vegan package [71]. Differences between Z. mays
genotypes in the microbial and viral community composition were
evaluated using permutational multivariate analysis of variance (perMA-
NOVA) using adonis2.

RESULTS
Virus to cell ratio in the parviglumis and B73 rhizobiome
Virus abundance exceeded cell abundance in the rhizobiome
collected from parviglumis (VCR of 2.24 ± 0.21) and B73 (VCR
1.52 ± 0.12) and was positively correlated with cell abundance
(Fig. 1). Cell abundance in the parviglumis and B73 rhizobiome
totaled (1.34 ± 0.30 × 107 cells g−1) and (1.54 ± 0.16 × 107 cells g−1)
respectively but was not statistically different between genotypes
(p > 0.05, Fig. 1a). Similarly, rhizobiome virus abundance of
parviglumis (2.89 ± 0.55 × 107 g−1) and B73 (2.28 ± 0.20 × 107 g−1)
(Fig. 1b) exceeded cell abundance and was not statistically
different between genotypes (p > 0.05). Cell and virus abundance
did not differ significantly between genotypes, even when
standardized by plant phenotypic parameters including root
length, surface area, volume, density, fresh weight, or biomass
(Supplementary Figs. S1, S2). Cell abundance g−1 of rhizobiome
collected from parviglumis and B73 was positively correlated with
the rhizosphere mass. While cell or virus abundance g−1 of
rhizobiome collected was not statistically different between
genotypes, the VCR significantly varied (p= 0.02) between
genotypes indicating variation between genotypes.

Microbial community composition of parviglumis and B73
rhizobiome
The rhizobiome microbial community collected from the
biological replicates of parviglumis and B73 revealed 6,317
unique ASVs from total ASVs identified (range 34,397–96,390)
and (range 29,779–75,780) from clean reads of parviglumis and
B73, respectively. The ASVs were broadly classified into 1 archaeal

phylum and 17 bacterial phyla (Fig. 2a). The rhizobiome common
between genotypes consisted of Verrucomicrobiota, Proteobac-
teria, and Actinobacteriota with an abundance in similar
proportions accounting for a combined 72.64% and 74.97% of
the rhizobiome community in parviglumis and B73, respectively.
The microbial community identified by 16S rRNA gene amplicon
sequencing was statistically different between genotypes.
(Fig. 2b; R2= 0.098, p= 0.001) where Z. mays genotype
accounted for 10.8% of the variation in the microbial community
structure (Fig. 2b).
Genome assembly of metagenomic sequence data resulted in

MAGs similar to taxa identified at the ASV level where reads
represented more than 2.5% of the microbial community (Fig. 2c).
Biological replicates of the shotgun metagenome sequenced data
yielded clean reads in the range of 22.85 to 24.12 million bps for
parviglumis and 23.35 to 27.30 million bps for B73. These data
rendered 50 and 61 rhizobiome metagenome-assembled gen-
omes (MAGs) for parviglumis and B73, respectively. The parviglu-
mis rhizobiome MAGs averaged 42.91 ± 2.49% completeness,
totaling 15 medium-quality MAGs and 35 low-quality MAGs and
B73 MAGs averaged estimated completeness of 43.60 ± 2.23%,
comprising one high-quality, 19 medium-quality, and 41 low-
quality MAGs. All MAGs were included in additional analyses. Nine
and 11 phyla in the archaeal and bacterial domains were
identified in parviglumis and B73, respectively (Fig. 3). Similar to
16S rRNA sequencing data, the Thermoproteota was the only
archaeal MAG reconstructed from the rhizobiome metagenomic
sequence data obtained from both genotypes. The bacterial MAGs
reconstructed from parviglumis rhizobiome were Acidobacteriota,
Actinobacteriota, Bacteroidota, Desulfobacterota, Gemmatimon-
dadota, Patescibacteria, Planctomycetota, Verrucomicrobiota, and
unclassified bacteria. In addition to these taxa, two additional
phyla, Chloroflexota and Desulfobacterota, were also recon-
structed from B73 rhizobiome (Figs. 2c, 3).
As observed in 16S rRNA gene sequence data, taxa identified

from MAGs revealed variance in the microbial community
structure between genotypes (Fig. 2d; p= 0.001, R2= 0.99). The
PCoA revealed 88.1% and 2.3% of the variance on axis 1 and 2,
respectively (Fig. 2d). High variability of PCoA axis 1 demonstrated
the variation in beta diversity between the two genotypes. This
further highlighted the differences in the microbial community
structure of Z. mays genotypes.
Similar to the 16S rRNA gene amplicon sequence data, MAGs

also identified Proteobacteria and Actinobacteriota as the two
most abundant rhizobiome phyla of both parviglumis and B73
rhizobiome (Fig. 3). Analyses of the B73 rhizobiome 16S rRNA gene
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amplicon data revealed that in addition to taxa identified in the
Proteobacteria and Actinobacteriota, Verrucomicrobiota taxa were
abundant community members (Figs. 2a, c, 3). Within the
Proteobacteria, community members in the family Xanthobacter-
aceae (18.00%) were the most abundant in the parviglumis
rhizobiome. This result is different relative to the most abundant
taxa identified at the family level in the B73 rhizobiome, where
taxa within the Chthoniobacterales UBA10450 in the Verrucomi-
crobiota (16.39%) were the most abundant in B73 followed by
Xanthobacteraceae (13.11%), Chloroflexota CSP1-4 (1.62%) and

Binatia UBA 9968 in Desulfobacterota (1.63%) (Figs. 2c, 3). In
addition to microbial taxa, viral contigs were also identified from
the shotgun metagenome sequence data (Fig. 3).

Rhizobiome viral community structure variation between
parviglumis and B73
Identification of putative viruses from rhizobiome shotgun
metagenome sequence data detected 329 and 488 viral contigs
in parviglumis and B73, respectively. Further manual curation of
viral contigs yielded 67 and 86 contigs with in the rhizobiome of
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parviglumis and B73, respectively. The average nucleotide identity
(ANI) distribution not only displayed a high level of strain
heterogeneity but also revealed a wide range of viral genome
variations. The size of putative viruses identified in the parviglumis
rhizobiome ranged from 1.50 to 40.54 Kbp with 5 vOTUs and
B73 viral contigs ranged from 1.51–31.18 Kbp with only 1 vOTU
reconstructed. Viral contig clustering between two rhizobiomes
resulted in the identification of only 7 (4.5%) viral contigs
identified in both parviglumis and B73 (2 clustered >3 kb
and 5 clustered <3 kb) (Fig. 4a). Rhizobiome viral community
structure collected from each genotype was significantly different
(R2= 0.999, p= 0.005) (Fig. 4b).
Taxonomy of rhizobiome viral contigs could be assigned to

38.80% in parviglumis and 30.23% in B73 viral contigs. Putative
viruses were taxonomically associated with the Class Caudovir-
icetes. One unclassified archaeal dsDNA virus, Halovirus (3.84%

relative abundance), was present in the rhizobiome of B73 but was
absent in the parviglumis rhizobiome. Over two-thirds of the viral
contigs present could not be assigned.

Virus-host linkages
Virus-host linkages could be established for 31.34% of parviglumis
and 36.04% of B73 viral contigs and vOTUs. Phyla Thermoproteota,
Acidobacteriota, Actinobacteriota, and Patescibacteria were com-
monly identified in both genotypes and were associated with the
highest number of viral contigs in parviglumis and B73 rhizobiome.
Few viruses were coarsely associated with unclassified bacteria
(4.76% in parviglumis and 9.67% in B73). Thermoproteota family
Nitrososphaeraceae was the only archaeal host identified in the Z.
mays rhizobiome. Of the identified hosts, 19.04% and 9.67% of viral
contigs were linked to Nitrososphaeraceae in parviglumis and B73,
respectively (Fig. 5a). Among the bacterial taxa Vicinamibacterales
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Fig. 3 Metagenome assembled genomes (MAGs) and viral contigs from the Z. mays parviglumis and B73 rhizobiome. MAGs were
reconstructed and viral contigs were identified from three biological replicates from each genotype, parviglumis and B73 rhizobiome. The
number of genomes corresponding to the archaeal and bacterial taxa classified by the GTDB database and clustered to the family level when
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the number of reads in the sample to calculate the relative abundance of the MAGs.
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UBA2999, Micrococcaceae, Saccharimonadaceae, Xanthobactera-
ceae, and some unclassified bacteria were identified as common
hosts in parviglumis and B73 (Fig. 5a). Viruses linked to Acidobacter-
iae UBA2999, Koribacteraceae, and Streptomycetaceae were
unique to parviglumis. Rhizobiaceae, Propionibacteriaceae, Binatia
UBA9968, Alphaproteobacteria UBA1301, Sphingomonadaceae,
Chthoniobacterales UBA10450 were unique hosts in the rhizobiome
of B73. None of the viral contigs were found to be infecting more
than a single MAG in an established virus-host correlation indicating
the virus host specificity. Verrucomicrobiota member Chthoniobac-
terales UBA10450 was highly abundant in the rhizobiome of both
genotypes, it served as a virus host only in the B73 rhizobiome.
Together these results indicated the variation of the community in
the rhizobiome with host specificity.

A total of 64 and 98 putative CRISPR spacer regions were
detected in parviglumis and B73 infected MAGs, respectively.
Among all the identified CRISPR spacer sequences in both
genotypes, only a single CRISPR spacer sequence provided a
positive hit to one of the B73 MAGs. This corresponded to B73 MAG
Xanthobacteraceae VAZQ01 sp005883115 with a 100% nucleotide
identity match. The direct repeats flanking the CRISPR spacer region
compared against the infected MAGs rendered an e-value < 10−10

confirming infection in Xanthobacteraceae VAZQ01 sp005883115 in
B73 rhizobiome.
The ratio of viral contig and vOTUs (genome coverage) to host

abundance as determined by MAG genome coverage ranged
from 0.41 to 8.38 in rhizobiome parviglumis and B73. Viruses linked
to Nitrososphaeraceae (Thermoproteota), Xanthobacteraceae
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Fig. 4 Identification of viral contigs within the parviglumis and B73 rhizobiome. To assess the similarities/differences of viral contigs in the
parviglumis and B73 rhizobiome, pairwise comparison with average nucleotide identity (ANI) ≥ 95% with coverage ≥ 85% of the viral contigs of
the shorter sequence was performed where (a) only 7 viral contigs were clustered ≥ 95% ANI showing heterogeneity in identified viral contigs.
b Ordination conducted with Bray-Curtis dissimilarity on the relative abundance of the viral contigs explained 91.9% variance on PCoA1 and
3.6% variance of PCoA2 (R2= 0.999 p= 0.005) as analyzed by permutational multivariate analysis of variance (perMANOVA) conducted utilizing
adonis2.
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(Proteobacteria), and Saccharimonadaceae (Patescibacteria)
exceeded host cells in both genotypes (Fig. 5b). Viruses linked
to Vicinamibacterales UBA2999 (Acidobacteriota) equaled host cell
abundance of in parviglumis but exceeded the linked host cells in
the B73 rhizobiome. Viruses linked to the Micrococcaceae
(Actinobacteriota) were lower in abundance than identified hosts
in the rhizobiome collected from both genotypes. Viruses
infecting Koribacteraceae (Acidobacteriota) in parviglumis and
Chthoniobacterales UBA10450 (Verrucomicrobiota) in B73 were
also lower than the linked host cell.

Metabolic potential of microbial and viral rhizobiome
The metabolic potential of the microbial community revealed the
ability of the community to degrade carbohydrates as well as
short chain fatty acids (Fig. 6). Bacterial hosts such as Xantho-
bacteraceae (Proteobacteria) not only showed the capability to
degrade polyphenols, starch, short chain fatty acids, alcohols,
chitins, and acetate utilization but were also capable of central
carbon, nitrogen, sulfur, and iron metabolism (Fig. 6).
Host cells Acidobacteriota (Acidobacteriae UBA7541, Vicinami-

bacterales UBA2999, Koribacteraceae) and Actinobacteriota (Micro-
coccaceae, Propionibacteriaceae) harbored genes that associated
with polysaccharide degradation enabling central carbon metabo-
lisms such as glycolysis and the Kreb’s cycle. Interestingly, the
metabolic potential for CO2 fixation, utilizing the dicarboxylate-
hydroxybutyrate cycle, hydroxypropionate-hydroxybutylate cycle,
and reductive citrate cycle (Arnon-Buchanan cycle) were identified
in MAGs corresponding to archaea, Thermoproteota, and bacteria,
Actinobacteriota, Bacteriodota, Proteobacteria, Verrucomicrobiota,
in both genotypes. Genes associated with the Calvin Cycle were not
identified in any of the MAGs. The metabolic potential to degrade
polyphenol and cleavage of arabinan and fucose cleavage was
restricted to the Koribacteraceae identified in the parviglumis rhizo-
biome (Fig. 6a). The ability to degrade chitin was specific to
Desulfobacterota (Binatia UBA9968) and Verrucomicrobiota (Chtho-
niobacterales UBA10450) with the potential to degrade beta-
mannan in the B73 rhizobiome (Fig. 6b). Archaeon Thermoproteota
indicated the metabolic potential to convert acetate into methane,
carbohydrate degradation and detoxification of aromatic com-
pounds, and ammonia oxidation. Additionally, parviglumis MAGs
Thermoproteota (Nitrososphaeraceae) and Proteobacteria (Xantho-
bacteraceae) were capable of denitrification. No B73 MAGs showed
any role in nitrification and similarly, no parviglumis or B73 viral
infected MAGs showed any role in sulfur metabolism. The microbial
community in both parviglumis and B73 viral infectedMAGs showed
a role in siderophore transport to support iron acquisition in soils.
Putative AMGs were identified in one viral contig collected from

the rhizobiome of B73 whereas putative AMGs were not identified
in viral contigs recovered from parviglumis. Analysis of the viral
encoded putative AMG identified this gene as a glycoside
hydrolase family 5 (GH5). This virus was linked to the host
Propionibacteriaceae (Actinobacteriota) in the B73 rhizobiome
and carried putative AMGs capable of degrading amorphous
cellulose, xyloglucan, xylan, beta-mannan, mixed-linkage glucans
backbone cleavage, and chitin (Fig. 6b). The potential to degrade
amorphous cellulose is redundant with the host whereas the
AMGs associated with xyloglucan, xylan, beta-mannan, mixed-
linkage glucans backbone cleavage, and chitin degradation
potentially introduce additional metabolic function to the host.
These results indicated that rhizobiome viruses can harbor genes
with the potential to produce labile mono and oligosaccharides.

DISCUSSION
Here we demonstrated that both microbial and viral community
structure varies between two Z. mays genotypes, parviglumis and
B73, cultivated in the same homogenized soil under the same
environmental conditions. While it is recognized the Z. mays

genotype influences the rhizosphere microbial community [72], to
our knowledge this is the first study to demonstrate the variation
of the rhizobiome viral community structure between plant
genotypes. Plants release root exudates below ground, creating
a diverse chemical milieu that impacts rhizobiome assemblage
and structure [47, 73, 74]. The root exudate composition is also
recognized to vary among maize genotypes [25], thus further
promoting variation in the rhizosphere community. Our results are
consistent with prior research demonstrating Z. mays genotype
plays a factor influencing the selection of rhizobiome microbial
community [72]. Here we identified Proteobacteria, Actinobacter-
iota, and Verrucomicrobiota constituted the microbiome of
parviglumis and B73 consistent with a prior study [47] and were
more abundant relative to the Acidobacteriota and Desulfobac-
terota. Interestingly, an abundance of viral contigs linked to
Acidobacteria suggested the production of a higher number of
viruses which could result in lower Acidobacterial cell abundance
as a result of virus-mediated cell lysis. The relatively lower
abundant microbial taxa in Z. mays rhizobiome such as Chloro-
flexota and Desulfobacterota (relative abundance <2.5% in 16S
rRNA gene data) were reconstructed in B73, but we were unable
to recover MAGs from parviglumis. This could be a result of low
relative abundance and/or lysed host cells not detected in
sequencing. Alternatively the result could be due to differential
root-exudate production between genotypes [25] and recruitment
of these taxa to the root. Microbial community structure and viral
host cells are recognized to influence viral community structure
[31, 75, 76]. Small but significant differences in rhizobiome
microbial community composition in parviglumis and B73
manifested dramatic differences in the viral community of these
two Z. mays genotypes.
Viruses were abundant in the rhizobiome of parviglumis and B73

rhizobiome outnumbering epifluorescent enumerated cells. The
virus to cell ratio resulted in a VCR > 1.5, 3 times more than
previously reported in the wheat rhizosphere (VCR= 0.27) [8]. Viral
contigs recovered from the shotgun metagenome sequence data
supported variation of the viral community between genotypes
revealing the presence of a distinct viral community in the
rhizobiome of parviglumis and B73. We recognize that members
of the viral community composition reported in this study may
represent an underestimate of viral diversity in the Z. mays
rhizobiome due to sampling constraints because reported data in
this study are limited to viruses associated with the host genome,
adsorbed to particulate matter, and greater than 0.2 μm in size. Prior
research has demonstrated significant variations in both microbial
and viral community due to spatial distribution and/or soil
heterogeneity [60, 77, 78], the close clustering of the Z. mays
biological replicates on PCoA plot demonstrated that soil hetero-
geneity among replicates didn’t contribute to significant differences
in microbial and viral community structure. Rather the genotype of
the plant played a significant role in the pronounced variation in the
rhizobiome viral community where only seven viral contigs were
shared between the two plant genotypes. This finding is also
supported by pairwise comparison clustering of viral contigs which
yielded only 7 similar viral contigs and validated that parviglumis
and B73 comprised contrastingly different viral communities while
grown in the same conditions using the same soil inoculum. Thus in
addition to soil physiochemical factors, plant species and genotype
can further contribute to the spatial variation of viral communities
observed in soils.

Viral community variation in parviglumis and B73
Virus-host specificity and host range abundance plays an important
role in viral selection in the rhizosphere [8]. The viral contigs
recovered from the parviglumis and B73 rhizobiome revealed host
specificity. All viral contigs recovered were found to infect a unique
MAG. The strong correlation between cell and virus abundance is
interconnected through prey-predator interactions. Repeated viral
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infections and host cell lysis give rise to virus-defense through
immunity systems including the CRISPR-cas system found within
some bacterial and archaeal lineages, thus, avoiding future viral
infections [79]. The presence and 100% identity match to the CRISPR
sequence in B73 MAG suggested the adaptation of a defense
mechanism against viral infection by Xanthobacteraceae. This active
defense mechanism of bacteria exploiting CRISPR sequences could
be a possible explanation for the lower number of viral contigs in
Xanthobacteraceae MAGs, hence, the high abundance of Xantho-
bacteraceae in rhizobiome. The small genome size of the ultra-small
bacteria Saccharimonadaceae (Patescibacteria) may not be able to
comprise CRISPR sequences, thus rendering that cells are more
susceptible to viral infection [80, 81]. However, the Patescibacteria
adopted the strategy to evade viral infection by deleting common
membrane phage protein receptors [82]. In contrast to these
findings, we detected virus-host linkages in Patescibacteria
[4, 76, 83, 84]. Viral predation results in altered community structure
[85], can increase the release of biologically available nutrients, and
can consequently impact ecosystem productivity [86]. Here we
observed rhizobiome viral contigs linked to the host cells which
demonstrated host preference which could subsequently impact
host abundance as demonstrated by the variation in the ratio of
viruses abundance to host abundance. Viral infection found to be
impacting host metabolic output not only by impacting host
abundance but also through acquiring putative glycoside hydro-
lases AMG capable of complex polysaccharide degradation [15].

Impact of virus-host interactions on metabolic potential
Viruses can cause viral-mediated cell lysis liberating labile sources of
carbon and nutrients [87] which can stimulate microbial population
growth from the bottom up potentially altering community
diversity and metabolic output [88, 89]. In a stable isotope probing
(SIP) study performed in soils, the phyla Acidobacteriota, Actino-
bacteriota, Chloroflexota, Proteobacteria, Patescibacteria, Verruco-
microbiota were identified as active viral hosts involved in soil
carbon cycling [81]. Taxa identified in our study were also identified
to harbor the metabolic potential to play a role in carbon cycling
within the roots. Genes associated with the metabolic potential to
drive carbon oxidation and fermentation as well as carbon dioxide
fixation (reductive citric acid cycle) were identified in the
rhizobiome. Acidobacteriota (Acidobacteriae UBA7541, Vicinami-
bacterales UBA2999, Koribacteraceae), Actinobacteriota (Micrococ-
caceae, Propionibacteriaceae, Streptomycetaceae), Patescibacteria
(Saccharimonadaceae), Proteobacteria (Alphaproteobacteria
UBA1301, Sphingomonadaceae, Rhizobiaceae, Xanthobacteraceae),
Verrucomicrbiota (Chthoniobacterales UBA10450), with the addi-
tion archaeon Thermoproteota (Nitrososphaeraceae) showed
potential to metabolize carbon through central carbon metabolism
pathways. In addition to carbon biogeochemical cycling, members
of the rhizobiome of both parviglumis and B73 had the potential for
siderophore transport to support iron acquisition in soils. We did not
detect the metabolic potential for nitrification and sulfur metabo-
lism within taxa that were infected by viruses.
Viral encoded glycoside hydrolases putative AMGs have the

potential to contribute to carbon metabolism in Z. mays
rhizobiome through expression within the host cells. Here we
observed the unclassified vOTU in the B73 rhizosphere that
contained a glycoside hydrolase (GH5) which is recognized to
degrade amorphous cellulose, beta-mannan, chitin, mixed-linkage
glucans, xylans, and xyloglucan. The acquisition of the putative
AMG, glycoside hydrolases responsible for carbohydrate hydro-
lysis, by soil viruses is consistent with prior studies [15, 35, 81, 90]
and demonstrates the metabolic potential within the rhizobiome.
This vOTU that was linked to host Propionibacteriaceae (Actino-
bacteriota) that respond to a variety of carbon sources by
secreting extracellular enzymes such as cellulases, amylases, and
chitinases were found to be regulating carbohydrate catabolic
pathways [91, 92]. These results indicate that virus-encoded

glycoside hydrolases have the potential to contribute to the
production of labile mono- and oligosaccharides which can further
serve as a carbon source for the host and other rhizobiome
community members.

CONCLUSION
Together these results indicated that plant genotype plays a role in
microbial assemblage in rhizobiome and viral community parallel
shifts in response tomicrobial community selection. Viral community
structure is linked to compositional patterns of microbial commu-
nities based on plant genotypes. Thus, variation in below ground
plant roots has the potential significantly influence heterogeneity of
viruses within soils. The virus-host interaction showed differences in
host abundance between two genotypes which has the capability to
influence the metabolic potential of the rhizobiome. Putative viral
AMGs have the potential to alter carbohydrate degradation and
produce labile mono- and oligosaccharides in the rhizosphere. These
labile carbon sources could further promote microbial community
proliferation. Therefore, to extent to which host-virus interaction
alters host abundance, microbial community structure, and functions
remains a critical question in rhizosphere microbial ecology and soil
biogeochemical cycling.

DATA AVAILABILITY
Experimental data and results summary have been uploaded as a supplement. DNA
sequence data and corresponding metadata has been deposited to the NCBI under
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