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Abstract

Background The intensity of transmission of Aedes-borne viruses is heterogeneous, and

multiple factors can contribute to variation at small spatial scales. Illuminating drivers of

heterogeneity in prevalence over time and space would provide information for public health

authorities. The objective of this study is to detect the spatiotemporal clusters and determine

the risk factors of three major Aedes-borne diseases, Chikungunya virus (CHIKV), Dengue

virus (DENV), and Zika virus (ZIKV) clusters in Mexico.

Methods We present an integrated analysis of Aedes-borne diseases (ABDs), the local cli-

mate, and the socio-demographic profiles of 2469 municipalities in Mexico. We used

SaTScan to detect spatial clusters and utilize the Pearson correlation coefficient, Randomized

Dependence Coefficient, and SHapley Additive exPlanations to analyze the influence of socio-

demographic and climatic factors on the prevalence of ABDs. We also compare six machine

learning techniques, including XGBoost, decision tree, Support Vector Machine with Radial

Basis Function kernel, K nearest neighbors, random forest, and neural network to predict risk

factors of ABDs clusters.

Results DENV is the most prevalent of the three diseases throughout Mexico, with nearly

60.6% of the municipalities reported having DENV cases. For some spatiotemporal clusters,

the influence of socio-economic attributes is larger than the influence of climate attributes for

predicting the prevalence of ABDs. XGBoost performs the best in terms of precision-measure

for ABDs prevalence.

Conclusions Both socio-demographic and climatic factors influence ABDs transmission in

different regions of Mexico. Future studies should build predictive models supporting early

warning systems to anticipate the time and location of ABDs outbreaks and determine the

stand-alone influence of individual risk factors and establish causal mechanisms.
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Plain language summary
The rate of the spread of diseases

caused by the Chikungunya, Dengue,

and Zika viruses varies in space and

time. Here, we aimed to identify the

causes of such variation in the popu-

lation with the disease in a given time

period and specific area. To identify

some of these factors we analyzed

local climate and socio-demographic

profiles of 2469 municipalities in

Mexico and how these related to the

presence of the diseases caused by

Chikungunya, Dengue, and Zika viru-

ses. We detected that the areas with

most cases of these diseases at a

certain time were influenced both by

socio-demographic and climatic fac-

tors, but socio-economic factors are

more influential in predicting the out-

breaks. This information could help

health authorities predict outbreaks

and plan better how to target them.
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The three most important viruses transmitted by Aedes
aegypti mosquitoes include chikungunya (CHIKV), dengue
virus (DENV), and Zika virus (ZIKV)1. These Aedes-borne

diseases (ABDs) are considered human-amplified urban arbo-
viruses because humans play the primary reservoir, facilitating
virus amplification. The exact global burden of CHIKV and ZIKV
is unknown. The prevalence of DENV has increased dramatically
worldwide in recent decades. Over the last two decades, the
number of DENV cases increased over eightfold2. Nearly 105
million DENV infections are reported globally per year3, with ~51
million febrile DENV cases and four million symptomatic
infections requiring hospitalization3. The Latin American coun-
tries alone had an estimated 16% of the global DENV burden3.
These three ABDs are all common in Mexico and are reported
within 57% of its municipalities4,5. In 2019, Mexico had one of
the highest numbers of reported DENV cases in Latin America,
along with Brazil, which had a slightly higher number of reported
cases2.

Due to its continuously immense burden on public health, it is
crucial to integrate arbovirus control efforts6. For this purpose,
spatiotemporal cluster detection techniques can serve as a useful
research tool7,8. Temperature and rainfall have both positive and
negative effects on ABDs outbreaks9. Differences in the land-
scape, climatic variations, and socio-economic development result
in differences in transmission potential among locations. Climatic
parameters such as rainfall, wind speed, and temperature are
important drivers in mosquito development and virus
reproduction10. In addition, socio-economic factors such as bar-
riers to healthcare services, inadequate sanitation, poverty, living
in a poor neighborhood, and poor water supply were associated
with the transmission of ABDs11–15.

Specific risk factors associated with CHIKV, DENV, and ZIKV
are also multifactorial. The risk of exposure to DENV is influ-
enced by rainfall, temperature, relative humidity, and unplanned
rapid urbanization16,17. Smaller to larger DENV outbreaks were
associated with increased temperature (23.8–33.1 °C) and the
delayed effects could be predicted with a one-week lag18. Mean
(>27 °C), minimum (>22 °C), and maximum temperature
(>38 °C) were found to be the most favorable weather condition
at a lag of 1–3 months in the tropical and subtropical climate
zone, respectively19,20. Monthly mean rainfall showed a positive
correlation with monthly DENV cases at a lag of
1–3 months19–21. An increase of 1 mm of rainfall with a lag of
2–3 weeks was associated with 1.3–2.1% more DENV cases22.
Another study also suggested that an increase of 1% in rainfall
corresponded to an increase of 3.3% in the DENV cases21. ZIKV
prevalence was greater in neighborhoods with little access to
municipal water infrastructure, whereas CHIKV prevalence was
weakly correlated with urbanization23. In addition, another study
determined both total rainfall and average temperature were the
best meteorological factors to predict ZIKV infection24.

While certain studies conducted in Mexico revealed that
specific climate factors are strong drivers for these ABDs25–27,
other studies suggested socioeconomic factors were the stron-
gest predictors in the spread of arthropod-borne (or arbovirus)
transmission in some parts of Mexico28–30. Despite Mexico
being a country highly endemic to CHIKV, DENV, and
ZIKV4,5,31,32, there is no national study to date in which long-
time series data have been combined with spatiotemporal
socio-demographic risk factors and climatic parameters.
Understanding the spatiotemporal and socio-demographic risk
factors (e.g. access to improved water, housing quality, popu-
lation density, sanitation) and climatic factors (e.g. temperature
and rainfall) associated with the risk of these three ABDs is key
for informing vector control programs and predicting the time
and location of outbreaks.

The hypothesis of this study is that there are geographic
clusters of CHIKV, DENV, and ZIKV in Mexico. The geographic
clusters can be associated with either socioeconomics or climatic
parameters. For some clusters, the multifactorial causes (e.g.,
socio-economic features may have more impact on the prevalence
of ABDs, whereas, in other clusters, climatic features have the
greatest impact) can be isolated to determine the stand-alone
influence of individual risk factors. To the best of our knowledge,
no such analysis has ever been performed in Mexico. Therefore,
to address this gap, this study aims to detect the spatiotemporal
clusters and determine the risk factors of CHIKV, DENV, and
ZIKV clusters in Mexico with lab-confirmed human cases from
2012 to 2019 using machine learning approaches.

Method
Study area. Mexico, the southernmost country in North America,
has 32 states, 2469 municipalities, and an estimated population of
126 million33. With its high population density and diverse
weather conditions (including tropical zones), Mexico has an
ideal environment for vector-borne diseases. Northern Mexico
has an arid climate characterized by hot summers and sporadic
rainfall. In contrast, southern Mexico observes more than
2000 mm of rainfall annually (Fig. S1)33. Although vastly differ-
ent, both regions facilitate optimal conditions for vector-borne
diseases, including ABDs34,35.

Disease prevalence data. The dataset was compiled from the
daily reported individual-level data for CHIKV, DENV, and
ZIKV. To collect information for this dataset, state public health
laboratories of Mexico began by identifying cases of CHIKV,
DENV, and ZIKV. Confirmed cases were reported to the local
health facility within 24 h of detection. These cases were relayed
to the General Directorate of Epidemiology, which gathers
national data36. After gathering data from the General Directorate
of Epidemiology, we assessed de-identified daily case records of
Mexico’s national data of arboviral disease (or arbovirus infec-
tion). This includes information from 2469 municipalities over
the period between January 2012 and December 2019.

Spatial data. We used the Geographic Information Systems (GIS)
package, ArcGIS version 10.7 (Environmental Systems Resource
Institute; [ESRI], Redlands, CA), to create municipality-based
shapefile centroids in the UTM projection system to which the
recorded surveillance data was appended. Altitude was calculated
based on the municipality center.

Climate data. Monthly temperature data, measured as surface air
temperature at 2-m height, were obtained for municipalities from
the Climate Forecast System Reanalysis (CFSR) dataset of the
National Centers for Environmental Prediction (NCEP)37.
Monthly precipitation data were obtained for each municipality
from the Climate Hazards Group Infrared Rainfall with Stations
(CHIRPS) dataset38. We prepared the daily average climatic
parameters (rainfall and temperature) in Mexico throughout the
8-year study period. We also used the daily mean, minimum, and
maximum of temperatures as well as the daily mean, minimum,
and maximum of rainfall (mm) as the primary climate para-
meters (Fig. S1). All climate variables were obtained for the
period from 2012 to 2019.

Population, entomology, rural/ urban, and socio-economic
data. For each municipality, the Mexican National Council carried
out the collection of socio-economic data and the calculation of
average change for Evaluating the Social Development Policy
(Consejo Nacional de Evaluación de la Política de Desarrollo Social
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or, CONEVAL) using the national census data39. We used illiteracy,
populations without health services, houses with dirt floors, houses
without a toilet facility, houses without water pipelines, houses
without a sewage system, and houses without electricity as the
socio-economic parameters (Supplementary Fig. S2). Based on
socio-economic variables in 2005 and 2015, we built a time series
ARIMA model to project the socio-economic variables from 2012
to 2019. We extracted population density and rural/ urban classi-
fication for each municipality from Consejo Nacional de
Población40. A population size of <10,000 per municipality was
considered rural, and >10,000 was considered urban41. Presence
points of Ae. aegypti and Ae. albopictus at the municipality level was
compiled from 1993 to 2016 across all municipalities in Mexico.
This entomological dataset was collected and reported based on the
Mexican national vector surveillance guidelines42.

Statistics and reproducibility. SaTScan (v. 9.6.1) was used to
detect spatial clusters separately for CHIKV, DENV, and ZIKV
(settings: spatial analysis; discrete Poisson probability model;
latitude/longitude coordinates; no geographical overlap; scanning
for clusters with high rates). Spatial clusters were determined by
calculating the maximum-likelihood ratio. Standardized pre-
valence ratios were estimated by dividing the number of observed
cases by the number of expected cases in each cluster. Simulated
p-values were obtained using Monte Carlo methods with 9999
replications43. For further detail, refer to the supplement section.

The clustering method and evaluation of the clusters. Under the
null hypothesis, and in absence of covariates, it is expected that
the number of ABDs in each municipality is proportional to its
population size. The Poisson model requires the total counts of
ABDs and population counts in each year and geographical
coordinates for each municipality. The goal was to detect the
statistically significant geographic clusters and identify the risk
factors behind the clusters.

We used the Pearson correlation coefficient44, randomized
dependence coefficient (RDC)45, and SHapley Additive exPlana-
tions (SHAP)46 to assess the stand-alone influence of the socio-
economic and climate factors on each arbovirus cluster.

Pearson correlation coefficient: The Pearson product–moment
correlation coefficient (or Pearson correlation coefficient, for short)
is a measure of the strength of a linear association between two
variables and is denoted by r. The Pearson correlation coefficient
(PCC) is defined as the covariance of the two variables divided by
the product of their standard deviations. A Pearson
product–moment correlation attempts to draw a line of best fit
through the data of two variables, and the Pearson correlation
coefficient, r, indicates how far away all these data points are to this
line of best fit (i.e., how well the data points fit this new model/line
of best fit). The Pearson correlation coefficient, r, can take a range of
values from +1 to −1. A value of 0 indicates that there is no
association between the two variables. A value >0 indicates a
positive association; that is, as the value of one variable increases, so
does the value of the other variable. A value <0 indicates a negative
association; that is, as the value of one variable increases, the value
of the other variable decreases. The stronger the association of the
two variables, the closer the Pearson correlation coefficient, r, will be
to either +1 or −1 depending on whether the relationship is
positive or negative, respectively.

The randomized dependence coefficient (RDC). The randomized
dependence coefficient (RDC)45 is a measure of nonlinear
dependence between random variables of arbitrary dimension
based on the Hirschfeld–Gebelein–Renyi maximum correlation

coefficient. Given the random samples, X 2 Rp ´ n and Y 2 Rq ´ n

and the parameters k 2 Nþ and s 2 Rþ, the randomized depen-
dence coefficient between X and Y is defined as

rdc X; Y ;k; sð Þ :¼ supα;βρðaTΦ P Xð Þ;k; sð Þ; βTΦ P Yð Þ;k; sð ÞÞ ð1Þ
Φ P Xð Þ; k; sð Þ is a map from X to Φ P Xð Þ; k; sð Þ. α; β are pairs of

basis vectors such that the projections aTX and βTY of two
random samples X 2 Rp ´ nand Y 2 Rq ´ nare maximally corre-
lated. RDC is defined in terms of the correlation of random
nonlinear copula projections; it is invariant with respect to
marginal distribution transformations. RDC is a computationally,
efficient, copula-based measure of dependence between multi-
variate random variables. RDC is invariant with respect to
nonlinear scaling of random variables, is capable of discovering a
wide range of functional association patterns, and takes a value of
zero at independence.

SHapley Additive exPlanations (SHAP). SHAP is a game-theoretic
approach to explain the output of any machine learning model. It
connects optimal credit allocation with local explanations using
the classic Shapley values from game theory and their related
extensions. SHAP values as a unified measure of feature impor-
tance. These are the Shapley values of a conditional expectation
function of the original model; thus, they are the solution to the
following equation:

ϕi f ; x
� � ¼ ∑z02x0

z0j j! M � z0j j � 1ð Þ!
M!

½f x z0ð Þ � f xðz0iÞ� ð2Þ

where z0j j is the number of non-zero entries in z0, and z0 2 x0

represents all z0vectors where the non-zero entries are a subset of
the non-zero entries in x0. Understanding why a model makes a
certain prediction can be as critical as its accuracy in many
applications. However, the highest accuracy for large modern
datasets is often achieved by complex models that even experts
struggle to interpret, such as ensemble or deep learning models,
creating a tension between accuracy and interpretability. In
response, various methods have recently been proposed to help
users interpret the predictions of complex models. However, it is
often unclear how these methods are related and when one
method is preferable to another.

SHAP assigns each feature an important value for a particular
prediction. Its novel components include (1) identifying a new
class of additive feature important measures and (2) theoretical
results exemplifying a unique solution in this class with a set of
desirable properties. The new class unifies six existing methods, of
notable importance due to several recent methods lacking the
proposed desirable properties in their class. Based on insights
from this unification, SHAP demonstrates improved computa-
tional performance and/or better consistency with human
intuition than previous approaches. In this study, we used SHAP
to analyze the impact of model output with respect to different
features. In addition, we summarized the impact of socio-
economic features, and climate features separately for different
clusters.

By using PCC, RDC, and SHAP, we got the impact of each
factor simultaneously. For this, we first normalized the weight of
socio-economic and climate features for each method separately.
For example, for a given method, the importance of socio-
economic features is calculated by taking the average importance
of these features. We repeated the same approach to calculate
climate features. Then, the weight/importance of socio-economic
and climate features are calculated in the following way: weight/
importance of socio-economic features= socio-economic attri-
butes impact/(socio-economic attributes impact+ climate
impact).
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We separately used CHIKV, DENV, and ZIKV cases as
outcome variables in our dataset, and socio-economic variables,
population density, urban/rural information, altitude, seasonality,
and presence of Ae. aegypti and Ae. albopictus and climate
variables as our features (predictor) to build the model. We
computed SHAP values based on the XGBoost model, which
showed the important weight for each feature concerning our
model. RDC is another approach that can reflect the relationship
between features and the target variable. For every feature in our
dataset, we computed the important coefficient between this
feature and the target variable based on this RDC approach. We
computed the correlation coefficient between every feature and
the target variable for Pearson coefficients based on the
covariance of our dataset.

Next, to summarize/combine the result, we developed two
evaluation metrics: majority voting and average. Here, we used
three methods to predict the important weight of socio-economic
and climate factors. The majority voting metric gives the
weighted impact for socio-economic and climate attributes based
on the majority of SHAP, RDC, and Pearson results. For example,
in the majority voting metric for a specific cluster, if SHAP and
RDC values indicated that socio-economic attributes had more
impact than climate attributes, we took the average of the SHAP
values and the RDC results’ values as the majority voting result
for this cluster. For the average metric, we took the average result
of SHAP, RDC, and Pearson as the average result.

The data distributions may vary based on different ABDs. To
ensure we consider each ABD separately and did not introduce
data distribution bias, we conducted a stratified analysis to
address the potential biases and examined the magnitude and
95% CI in the associations between predictors (independent
variables) with CHIKV, DENV, and ZIKV outcomes separately
for urban and rural areas.

We also compared six commonly used prediction methods for
the best model, such as XGBoost, decision tree, SVM with RBF
kernel, KNN (K nearest neighbors) with five neighbors, random
forest with six estimators, and neural network with 100 hidden
layers. XGBoost is an implementation of gradient-boosted
decision trees designed for speed and performance.

Accuracy, weighted accuracy, precision, recall and F1 scores.
Accuracy measures how often the classifier makes the correct

predictions and the ratio between the number of correct predic-
tions and the total number of predictions. However, if the
dataset is imbalanced, then the accuracy may not be a good
evaluation metric, since here, it only considers the correct pre-
dictions and does not care about the instance from which class.
Weighted accuracy computes the accuracy based on sample
weight for each class, which is more suitable for an imbalanced
dataset. Precision and recall are commonly used in the evaluation
metric for model performance. Precision represents the propor-
tion of positive identifications that were actually correct.
Recall indicates the proportion of actual positives that were
identified correctly. F1 score is the harmonic mean of precision
and recall, which is a measure that combines precision and
recall. From Tables 1 and 2, we can see our dataset is imbalanced
in that compared to normal cases; our dataset has fewer infected
cases.

10-fold cross-validation details. We split data into 10 non-
overlapping subsets; each time, we use one subset as a testing
set and use the rest data as a training set. We set a 5 threshold
for the infected prevalence based on a cross-validation experi-
ment. For specific instances, it contains information: location,
infected prevalence, etc. If the number of infected prevalence
of a specific instance exceeds the threshold, we define it as
Class 0 (which represents the infected class); otherwise, we define
it as Class 1 (which represents the normal class) (Supplementary
Figs. S3–S23). We repeat this process 10 times by taking a dif-
ferent training set and test set.

After the data is shuffled and split into training and testing sets,
the experiments were carried out 10 times, the mean accuracy and
the standard deviation were calculated, and training accuracy and
testing accuracy for predicting dependent variables by different
ML methods based on risk factors were generated. We take the
average result as the final result. Cross-validation can overcome
the overfitting problem.

Ethical approval. This study has been approved by the ethical
committee of UNIVERSIDAD DE SONORA, Mexico. Informed
consent was waived by the ethical committee because the data
analyzed was aggregated, de-identified and delinked, and there-
fore, obtaining informed consent was not applicable.

Table 1 Classification performance of various ML algorithms on dengue, zika and CHIKV virus prediction for all clusters.

Method Dengue Zika CHIKV

Accuracy Weighted
accuracy

Precision Recall F-
score

Accuracy Weighted
accuracy

Precision Recall F-
score

Accuracy Weighted
accuracy

Precision Recall F-
score

XGBoost 0.93 0.78 0.86 0.78 0.81 0.99 0.61 0.76 0.61 0.65 0.99 0.59 0.87 0.59 0.65
Decision tree 0.91 0.78 0.77 0.78 0.78 0.98 0.63 0.63 0.63 0.63 0.98 0.63 0.63 0.63 0.63
SVM 0.90 0.60 0.86 0.60 0.64 0.99 0.50 0.50 0.50 0.50 0.99 0.50 0.50 0.50 0.50
KNN 0.90 0.73 0.77 0.73 0.75 0.99 0.52 0.62 0.52 0.54 0.99 0.55 0.70 0.55 0.58
Random forest 0.92 0.76 0.85 0.76 0.79 0.99 0.54 0.70 0.54 0.57 0.99 0.54 0.76 0.55 0.58
Neural
network

0.92 0.75 0.81 0.75 0.78 0.99 0.59 0.73 0.59 0.63 0.99 0.61 0.73 0.61 0.65

Table 2 Classification performance of various ML algorithms on dengue, zika, and CHIKV virus prediction for non-clusters.

Method Dengue Zika CHIKV

Accuracy Weighted
accuracy

Precision Recall F-
score

Accuracy Weighted
accuracy

Precision Recall F-
score

Accuracy Weighted
accuracy

Precision Recall F-
score

XGBoost 0.98 0.77 0.89 0.77 0.82 0.99 0.53 0.85 0.53 0.56 0.99 0.62 0.72 0.62 0.65
Decision tree 0.98 0.79 0.79 0.79 0.79 0.99 0.61 0.65 0.61 0.63 0.99 0.64 0.58 0.64 0.60
SVM 0.98 0.58 0.90 0.58 0.64 0.99 0.50 0.50 0.50 0.50 0.99 0.50 0.50 0.50 0.50
KNN 0.98 0.73 0.81 0.73 0.76 0.99 0.51 0.61 0.51 0.52 0.99 0.53 0.57 0.53 0.54
Random forest 0.98 0.75 0.87 0.75 0.79 0.99 0.54 0.74 0.54 0.57 0.99 0.54 0.72 0.54 0.56
Neural
network

0.98 0.76 0.85 0.76 0.80 0.99 0.50 0.50 0.50 0.50 0.99 0.53 0.56 0.53 0.54
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Results
General disease patterns between 2012–2019. DENV was the
most prevalent of the three diseases throughout Mexico. Nearly
60.6% (1498/2469) of the municipalities reported DENV cases,
29.3% (723/2469) reported CHIKV cases, and 31.2% (771/2469)
reported ZIKV cases. Of all the municipalities, 2.1% (52/2469)
reported all three ABDs (Fig. 1). However, 39.6% (978/2469) of
the municipalities in Mexico never reported any case of disease
from these viral cases from 2012 through 2019. In total, 26,211
CHIKV, 224,701 DENV, and 12,813 laboratory-confirmed ZIKV
cases were reported throughout the 8-year study period. In
Mexico, 67 municipalities consistently reported more than 1%
DENV prevalence, with the Tomatlán (Jalisco) municipality in
the state of Jalisco reporting the highest prevalence (2.48%). A
sharp increase in CHIKV, DENV, and ZIKV cases was reported
in Veracruz.

Our results show that for all three ABDs, the influence of socio-
economic attributes is larger than the influence of climate
attributes for some clusters. This study shows that socio-
economic features have more impact on the prevalence of ABDs
in most areas, whereas, in other clusters, climatic features have
the greatest impact. DENV is the most prevalent of the three
diseases throughout Mexico, with over 60% of the municipalities
reporting DENV cases, while only 29.3% reported CHIKV cases,
and 31.2% ZIKV cases. Barely 2% of municipalities report all
three ABDs. However, 39.6% (978/2469) of the municipalities in
Mexico never reported any case of disease from these viral cases
from 2012 through 2019. We find the attributes of altitude and
minimum rainfall volume have a marginal influence on the model
output. Average rainfall and maximum rainfall are more
important than minimum rainfall.

Spatiotemporal clusters. Identified spatial clusters of CHIKV,
DENV, and ZIKV prevalence are shown in Fig. 1. Twenty-one
statistically significant (p = 0.0001) clusters were observed in
Mexico. We analyzed all clusters and non-clusters, as SES features

and climate features may have different levels of impact for all
clusters and non-clusters. Supplementary Table S1 indicates the
majority vote and average results for CHIKV, DENV, and ZIKV
prevalence based on different clusters. There were 12 spatio-
temporal clusters of DENV prevalence (Supplementary
Tables S1–S14). Climatic features had more impact than SES
features on model output in clusters 1, 4, 5, 6, 7, and 12 (Sup-
plementary Figs. S6–S17). There were six spatiotemporal clusters
of ZIKV prevalence (Supplementary Tables S1, S15–S21). Cli-
matic features had more impact in clusters 1, 2, 3, and 5, whereas
SES features had more impact than climatic features on model
output in clusters 4 and 6 (Supplementary Figs. S18–S23). There
were three spatiotemporal clusters of CHIKV prevalence (Sup-
plementary Tables S1, S22–S25). Climatic features had more
impact than SES features on model output in clusters 1, 2, and 3
(Supplementary Figs. S3–S5). All model output data used to
generate tables and figures are available as Supplementary Data.

Table 1 displays the performance of various ML classification
algorithms across all clusters after taking the average. Table 3
demonstrates the standard error of classification performance of
various ML algorithms on CHIKV, DENV, and ZIKV prevalence
prediction for all clusters. Table 2 shows the performance of various
ML classification algorithms across non-clusters after taking the
average. Table 4 indicates the standard error of classification
performance of various ML algorithms on CHIKV, DENV, and
ZIKV case predictions for non-clusters. The results show that
XGBoost performed the best in terms of precision-measure for
CHIKV, DENV, and ZIKV prevalence (Tables 1 and 3). Besides
XGBoost, other methods are baseline methods. The F scores of
XGBoost for CHIKV, DENV, and ZIKV prevalence are larger than
other baseline approaches in most cases, which suggests XGBoost
has better performance than other approaches (Table 1). The values
of accuracy are larger than weighted accuracy and precision values
(Tables 1 and 3). For instance, in Table 1, the accuracy of XGBoost
under DENV prevalence is 0.93, which is higher than the
corresponding weighted accuracy of 0.78 and precision of 0.86.
This may happen due to a class imbalance issue. More specifically,

Fig. 1 Spatial distribution of CHIKV, DENV, and ZIKV (2012–2019) in Mexico. The blue lines indicate cluster boundaries, while the legend shades
indicate the levels of prevalence. The darker the shade, the higher the prevalence. A Mean spatial distribution of Chikungunya. B Mean spatial distribution
of Dengue. C Mean spatial distribution of Zika.

Table 3 Standard error of classification performance of various ML algorithms on dengue, zika, and CHIKV virus prediction for
all clusters.

Method Dengue (standard error) Zika (standard error) CHIKV (standard error)

Accuracy Weighted
accuracy

Precision Recall F-
score

Accuracy Weighted
accuracy

Precision Recall F-
score

Accuracy Weighted
accuracy

Precision Recall F-
score

XGBoost 0.08 0.07 0.05 0.06 0.07 0.04 0.13 0.16 0.18 0.07 0.04 0.19 0.15 0.19 0.16
Decision tree 0.08 0.09 0.11 0.09 0.11 0.01 0.11 0.09 0.11 0.14 0.07 0.12 0.11 0.18 0.21
SVM 0.07 0.13 0.05 0.10 0.15 0.05 0.13 0.18 0.15 0.11 0.08 0.09 0.25 0.23 0.13
KNN 0.04 0.18 0.05 0.13 0.22 0.07 0.15 0.21 0.28 0.17 0.09 0.18 0.23 0.14 0.19
Random forest 0.13 0.11 0.08 0.07 0.29 0.07 0.17 0.19 0.09 0.15 0.08 0.21 0.13 0.17 0.18
Neural
network

0.13 0.09 0.11 0.13 0.19 0.07 0.08 0.15 0.19 0.13 0.17 0.23 0.11 0.27 0.23
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concerning expected prevalence (normal class), we may have low
prevalence.

Accuracy is the fraction of relevant correct instances over
total instances. We presented the standard error of ‘all clusters’
and ‘non-clusters’ predictive results in accuracy, weighted
accuracy, precision, recall (sensitivity), and F measure (Tables 2
and 4). XGBoost performed the best for CHIKV, DENV, and
ZIKV prevalence. The standard error of XGBoost is more stable
than other baseline approaches. For example, in Table 3, the
standard error of XGBoost under DENV prevalence for

accuracy, weighted accuracy precision, recall, and F-score were
0.08, 0.07, 0.05, 0.06, and 0.07, respectively, which are lower
than most of the standard errors of the other baseline
approaches.

For all three ABDs, the influence of socio-economics attributes
was larger than the influence of climate attributes for some
clusters. Socio-economics attributes had a higher impact than
climate attributes (Figs. 2A, B, 3A, B, 4A). The weighted socio-
economic attributes SHAP value is 0.61, and the weighted climate
attributes SHAP value is 0.39 (Fig. 4A).

Fig. 2 Average impact on model output magnitude for CHIKV using SHAP values. Class 0 (blue) represents the infected class, while class 1 (brown)
represents the normal class of CHIKV. A Average impact on model output magnitude for all clusters of CHIKV, and B Average impact on model output
magnitude for all non-clusters of CHIKV.

Table 4 Standard error of classification performance of various ML algorithms on dengue, zika, and CHIKV virus prediction for
non-clusters.

Method Dengue (standard error) Zika (standard error) CHIKV (standard error)

Accuracy Weighted
accuracy

Precision Recall F-
score

Accuracy Weighted
accuracy

Precision Recall F-
score

Accuracy Weighted
accuracy

Precision Recall F-
score

XGBoost 0.07 0.09 0.11 0.07 0.11 0.05 0.03 0.18 0.07 0.11 0.02 0.08 0.25 0.13 0.09
Decision tree 0.04 0.15 0.14 0.18 0.04 0.08 0.11 0.17 0.08 0.05 0.04 0.17 0.22 0.29 0.11
SVM 0.08 0.13 0.13 0.05 0.19 0.01 0.11 0.13 0.19 0.08 0.06 0.13 0.18 0.18 0.14
KNN 0.11 0.09 0.25 0.23 0.18 0.22 0.21 0.07 0.19 0.23 0.11 0.12 0.18 0.27 0.26
Random forest 0.08 0.11 0.17 0.12 0.17 0.08 0.19 0.17 0.19 0.21 0.06 0.34 0.12 0.21 0.25
Neural
network

0.06 0.17 0.09 0.19 0.13 0.04 0.23 0.15 0.09 0.32 0.09 0.11 0.23 0.26 0.09
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The attributes of altitude and minimum rainfall volume had a
marginal influence on the model output (Figs. 3A, B, 4A, B).
The average rainfall volume and the maximum rainfall volume
were more important than the minimum rainfall volume
concerning the model output for the rainfall volume (Supple-
mentary Fig. S1).

Based on the results presented in Tables 1–4, the accuracy of
different approaches was higher than the corresponding weighted
accuracy, precision, recall, and F-score. For example, in Table 1,
for the decision tree method under the DENV case scenario, the
accuracy was 0.91, while the corresponding weighted accuracy,
precision, recall, and F-score were 0.78, 0.77, 0.78, and 0.78,
respectively.

While the magnitude of measures of associations was slightly
stronger for urban areas than for rural areas, the results show no
differences in inferences. Regarding temperature, for example, the
association with DENV outcome was relatively higher in urban
than in rural areas. For population density, the association with
DENV outcome was also slightly higher in urban than in rural
areas. Inferences for urban in comparison with rural were similar
for CHIKV and ZIKV.

Discussion
This study set out to determine the longitudinal dynamics of
three major arbovirus diseases over 8 years in Mexico. We found
substantial differences in the prevalence of CHIKV, DENV, and
ZIKV across Mexico. Tomatlán (Jalisco) had the highest level of
DENV prevalence among all diseases. Acapulco de Juárez (Oax-
aca) had the highest prevalence of CHIKV and ZIKV. Both cli-
matic and SES attributes were significantly associated with risk
factors of clustering of all three ABDs.

The outbreak of CHIKV and ZIKV in 2016 established a co-
transmission of three different ABDs in certain municipalities in
Mexico47. However, the circulation of all three viruses in the same
municipalities at the same time continues to provide challenges
and is concerning for public health47. The clinical presentations
of CHIKV, DENV, and ZIKV are very similar, causing mis-
identification when laboratory testing is not conducted5. This is
important to keep in mind despite the prevalence analyzed in this
study being laboratory-confirmed cases. The differences in each
disease prevalence might be due to differences in landscape,
vector control program, and socio-economic development for
different locations in Mexico.

Fig. 3 Average impact on model output magnitude for DENV using SHAP values. Class 0 (blue) represents the infected class, while class 1 (brown)
represents the normal class of DENV. A Average impact on model output magnitude for all clusters of DENV, and B Average impact on model output
magnitude for all non-clusters of DENV.
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We found a positive association between mean temperature
and CHIKV (Supplementary Fig. S6), DENV (Supplementary
Figs. S7, S11, S12, S14–S16, S19), and ZIKV transmission (Sup-
plementary Figs. S21 and S23), consistent with previous studies’
findings8,15,24,26,27,32. While other published findings show that
Aedes mosquitoes can be infected with and can transmit all
combinations of these viruses simultaneously within the observed
temperature ranges in Mexico48–50, our results indirectly support
this as evidence in the concurrent circulation of various arbo-
viruses within the same population and geographic areas.

Clustering of CHIKV, DENV, and ZIKV prevalence has been
associated with lower socioeconomic status (Supplementary
Fig. S13), as indicated in the highest mean among houses without
toilet facilities. Houses without toilet facilities, water pipelines,
and access to improved sources of water are all conducive to
creating an aquatic container habitat that harbors Ae. aegypti
mosquito larvae. These socio-economic risk factors were highest
(Supplementary Figs. S12, S13), where there were also high levels
of illiteracy and consistent with the previous findings (Supple-
mentary Figs. S13, S15, and S19).

In this work, we evaluated different ecosystems in 21 statisti-
cally significant clusters of three major arboviruses. CHIKV was

the only disease for which spread was clustered only in certain
parts of Mexico. Twelve clusters had the greatest disease pre-
valence, having the most favorable climatic factors (Supplemen-
tary Figs. S1–S4, S7–S10, S15–S17, and S20), and 10 had greater
poverty indices. These results highlight how climatic and socio-
demographic factors are not uniformly predictive of ABDs
throughout Mexico. The transmission of ABDs is complex and
numerous factors could contribute to transmission heterogeneity.
For example, the primary vector, Ae. aegypti is not uniformly
distributed in Mexico and, in some cases, overlaps with Ae.
albopictus, the secondary vector4. Additionally, a substantial
proportion of Mexicans have naturally acquired antibodies from
past exposure resulting in protective immunity for CHIKV,
ZIKV, or the same DENV serotype51.

A major contribution of this study is the implementation and
comparison of spatial statistics and different machine learning
techniques. The combination of these techniques helped to
improve our understanding of the risk posed by these three
viruses. The geographical settings for these clusters determined
different climatic zones, different ecosystems, and variations in
SES in Mexico. Specific climatic factors associated here highly
affected disease prevalence. This was particularly evident for 11

Fig. 4 Average impact on model output magnitude for ZIKV using SHAP values. Class 0 (blue) represents the infected class, while class 1 (brown)
represents the normal class of ZIKV. A Average impact on model output magnitude for all clusters of ZIKV, and B Average impact on model output
magnitude for all non-clusters of ZIKV.
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out of 21 spatiotemporal clusters across Mexico. These different
ecosystems are expected to establish contrasting socio-ecological
and behavioral patterns that transmit ABDs. Nearly 39.6% of
municipalities in Mexico never reported transmission of these
three arboviruses. This makes sense as higher elevation regions of
north-western central Mexico have fewer Ae. aegypti and lower
reports of ABDs52.

XGBoost performed the best in terms of precision (positive
predictive value)-measure for these three ABDs. Compared to
traditional machine learning methods (linear regression, logistic
regression, naïve Bayes, k-means, decision trees, etc.), XGBoost
used more accurate approximations to find the best tree model.
XGBoost computed second-order gradients, i.e., second partial
derivatives of the loss function, which provided more information
about the direction of gradients and how to get to the minimum
of our loss function. While regular gradient boosting used the loss
function of our base model (e.g., decision tree) as a proxy for
minimizing the overall model’s error, XGBoost used the second-
order derivative as an approximation. More details about the
advantages and disadvantages of all machine learning methods
are in the supplement section.

Findings from this study suggest that both climate and SES
variables proved to be strong predictors in some clusters. How-
ever, for some clusters, either climate or SES variables proved to
be a strong predictor.

The values of accuracy were higher than weighted accuracy and
precision values, possibly due to the imbalanced scenario (the
prevalence of people with infection is low and the data is sparse).
The accuracy only considered the correct predicted cases and not
which class the case came from. Therefore, if the dataset is
imbalanced, we need to add more evaluation metrics to evaluate
the model performance. In our results, we used weighted accuracy,
precision, recall, and F-score to evaluate our models. Here we used
aggregated data at the municipality level. This study also used only
the laboratory-confirmed cases. Additionally, the risk factors for
ABDs transmission were determined based on the passive sur-
veillance system. In this study, we used municipality-level data and
adjusted it for population density, seasonality, and presence of Ae.
aegypti, Ae. albopictus, rural/urban classification, and altitude.
Although the municipality-level data has been widely used47, it
could be possible that some of the observed patterns are con-
founded by potential hidden factors in our data, as the many
factors at the individual and household level may influence the
distribution of Ae aegypti. Identifying and addressing these hidden
factors could be of great interest in future studies.

The distribution of ABDs infections is often driven by local
spatiotemporal patterns influenced by fine-scale socio-economic,
environmental, virological, and demographic factors53–55. The
current analysis at the municipality scale is too crude to capture
many of these drivers of transmission heterogeneity56. This
implies a clear need for the development of a more integrated
individual and household level with fine-scale time series data to
understand the implications of these household patterns for tar-
geted disease surveillance and vector control activities.

Future studies should be used to build predictive models to
anticipate the time and location of ABDs outbreaks and deter-
mine the stand-alone influence of individual risk factors and
establish causal relationship. Incorporating microclimate data,
landscape ecology, and urban environment into disease trans-
mission models has the potential to yield more spatial precision
and ecologically interpretable metrics of mosquito-borne disease
transmission risk in urban landscapes57–59. Further study of
disease clusters concurrent with entomological data on Aedes
distribution and human contact would also be beneficial. A better
understanding of the drivers of ABDs transmission that consider
local dynamics should contribute to the design of more effective

mosquito control and disease prevention programs and promote
public health in Mexico and other endemic countries.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Data availability
The arbovirus data (Chikungunya, dengue, and Zika virus) used in this study are not
publicly downloadable but can be requested at their original sites. Parties interested in
data access should visit the Mexican Ministry of Health website (https://www.gob.mx/
salud/en, E-mail: petitionscitizens@salud.gob.mx). The source data for the figures are
available in Supplementary Data (Excel).

Code availability
Code to reproduce study findings is freely available and accessible at GitHub link: https://
github.com/BoDong111/COMMSMED in zenodo submission (https://doi.org/10.5281/
zenodo.7071115)60.
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