Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Continuity fields enhance visual perception through positive serial dependence

Abstract

Positive serial dependencies are phenomena in which actions, perception, decisions, and memory of features or objects are systematically biased towards the recent past. Across several decades, serial dependencies have been variously referred to as priming, sequential dependencies, sequential effects or serial effects. Despite a great deal of research, the functional purpose of positive serial dependencies remains unknown. In this Perspective, we propose that their goal is to promote the stability, accuracy and efficiency of perceptual representations. By continuously inducing serial dependencies, cognition compensates for variability in sensory input and thus stabilizes what would otherwise be a noisy, jittery and discontinuous experience of the world. We theorize that this goal is served by continuity fields: spatiotemporal integration mechanisms that continuously bias perception and cognition towards previously encountered information, thereby smoothing representations to promote the stability, accuracy and efficiency of experience.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Positive serial dependencies across visual stimuli.
Fig. 2: Behavioural paradigms and data analysis in positive serial dependencies.
Fig. 3: Manifestations of positive serial dependencies.
Fig. 4: Tuning properties of positive serial dependencies.
Fig. 5: Continuity field operators.

Similar content being viewed by others

References

  1. Al-Haytham, I. The Optics of Ibn Al-Haytham. Books I–III on Direct Vision (transl. Sabra, A. I.) (Warburg Institute, Univ. London, 1989).

  2. Von Helmholtz, H. Handbuch der physiologischen Optik [Handbook of physiological optics] (Voss, 1866).

  3. Wurtz, R. H. Neuronal mechanisms of visual stability. Vis. Res. 48, 2070–2089 (2008).

    PubMed  Google Scholar 

  4. Foster, D. H. Color constancy. Vis. Res. 51, 674–700 (2011).

    PubMed  Google Scholar 

  5. Smithson, H. & Zaidi, Q. Colour constancy in context: roles for local adaptation and levels of reference. J. Vis. 4, 3 (2004).

    Google Scholar 

  6. Simons, D. J. & Rensink, R. A. Change blindness: past, present, and future. Trends Cogn. Sci. 9, 16–20 (2005).

    PubMed  Google Scholar 

  7. Webster, M. A. Adaptation and visual coding. J. Vis. 11, 3 (2011).

    PubMed  Google Scholar 

  8. Webster, M. A. Visual adaptation. Annu. Rev. Vis. Sci. 1, 547–567 (2015).

    PubMed Central  PubMed  Google Scholar 

  9. Watt, R. & Morgan, M. The recognition and representation of edge blur: evidence for spatial primitives in human vision. Vis. Res. 23, 1465–1477 (1983).

    PubMed  Google Scholar 

  10. Morgan, M., Chubb, C. & Solomon, J. A. A ‘dipper’ function for texture discrimination based on orientation variance. J. Vis. 8, 9 (2008).

    Google Scholar 

  11. Burr, D. Motion smear. Nature 284, 164–165 (1980).

    PubMed  Google Scholar 

  12. Ross, J., Burr, D. & Morrone, C. Suppression of the magnocellular pathway during saccades. Behav. Brain Res. 80, 1–8 (1996).

    PubMed  Google Scholar 

  13. Mack, A. & Rock, I. Inattentional Blindness 33 (MIT Press, 1998).

  14. Hollingworth, A., Richard, A. M. & Luck, S. J. Understanding the function of visual short-term memory: transsaccadic memory, object correspondence, and gaze correction. J. Exp. Psychol. Gen. 137, 163–181 (2008).

    PubMed Central  PubMed  Google Scholar 

  15. Fischer, J. & Whitney, D. Serial dependence in visual perception. Nat. Neurosci. 17, 738–743 (2014).

    PubMed Central  PubMed  Google Scholar 

  16. Liberman, A., Fischer, J. & Whitney, D. Serial dependence in the perception of faces. Curr. Biol. 24, 2569–2574 (2014).

    PubMed Central  PubMed  Google Scholar 

  17. Manassi, M., Murai, Y. & Whitney, D. Serial dependence in visual perception: a meta-analysis and review. J. Vis. 23, 18 (2023).

    PubMed Central  PubMed  Google Scholar 

  18. Cicchini, G. M., Anobile, G. & Burr, D. C. Compressive mapping of number to space reflects dynamic encoding mechanisms, not static logarithmic transform. Proc. Natl Acad. Sci. USA 111, 7867–7872 (2014).

    PubMed Central  PubMed  Google Scholar 

  19. Kohn, A. Visual adaptation: physiology, mechanisms, and functional benefits. J. Neurophysiol. 97, 3155–3164 (2007).

    PubMed  Google Scholar 

  20. Webster, M. A. Evolving concepts of sensory adaptation. F1000 Biol. Rep. 4, 21 (2012).

    PubMed Central  PubMed  Google Scholar 

  21. Simoncelli, E. P. & Olshausen, B. A. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 1193–1216 (2001).

    PubMed  Google Scholar 

  22. Schwartz, O., Hsu, A. & Dayan, P. Space and time in visual context. Nat. Rev. Neurosci. 8, 522–535 (2007).

    PubMed  Google Scholar 

  23. Dong, D. W. & Atick, J. J. Statistics of natural time-varying images. Netw. Comput. Neural Syst. 6, 345 (1995).

    Google Scholar 

  24. Cecchi, G. A., Rao, A. R., Xiao, Y. & Kaplan, E. Statistics of natural scenes and cortical color processing. J. Vis. 10, 21 (2010).

    PubMed  Google Scholar 

  25. Kiyonaga, A., Scimeca, J. M., Bliss, D. P. & Whitney, D. Serial dependence across perception, attention, and memory. Trends Cogn. Sci. 21, 493–497 (2017).

    PubMed Central  PubMed  Google Scholar 

  26. Motala, A., Zhang, H. & Alais, D. Auditory rate perception displays a positive serial dependence. i-Perception 11, 2041669520982311 (2020).

    PubMed Central  PubMed  Google Scholar 

  27. Ho, H. T., Burr, D. C., Alais, D. & Morrone, M. C. Auditory perceptual history is propagated through alpha oscillations. Curr. Biol. 29, 4208–4217.e3 (2019).

    PubMed Central  PubMed  Google Scholar 

  28. Dyson, B. J. Serial dependence in audition: free, fast, and featureless? Trends Cogn. Sci. 21, 819–820 (2017).

    PubMed  Google Scholar 

  29. Arzounian, D., de Kerangal, M. & de Cheveigné, A. Sequential dependencies in pitch judgments. J. Acoust. Soc. Am. 142, 3047–3057 (2017).

    PubMed  Google Scholar 

  30. Roseboom, W. Serial dependence in timing perception. J. Exp. Psychol. Hum. Percept. Perform. 45, 100–110 (2019).

    PubMed  Google Scholar 

  31. Alais, D., Kong, G., Palmer, C. & Clifford, C. Eye gaze direction shows a positive serial dependency. J. Vis. 18, 11 (2018).

    PubMed  Google Scholar 

  32. Papadimitriou, C., Ferdoash, A. & Snyder, L. H. Ghosts in the machine: memory interference from the previous trial. J. Neurophysiol. 113, 567–577 (2015).

    PubMed  Google Scholar 

  33. Papadimitriou, C., White, R. L. & Snyder, L. H. Ghosts in the machine II: neural correlates of memory interference from the previous trial. Cereb. cortex 27, 2513–2527 (2017).

    PubMed  Google Scholar 

  34. Cont, C. & Zimmermann, E. The motor representation of sensory experience. Curr. Biol. 31, 1029–1036.e1022 (2021).

    PubMed  Google Scholar 

  35. Pomè, A., Binda, P., Cicchini, G. M. & Burr, D. C. Pupillometry correlates of visual priming, and their dependency on autistic traits. J. Vis. 20, 3 (2020).

    PubMed Central  PubMed  Google Scholar 

  36. Van der Burg, E., Toet, A., Brouwer, A.-M. & van Erp, J. B. Sequential effects in odor perception. Chemosens. Percept. 15, 19–25 (2022).

    Google Scholar 

  37. Lau, W. K. & Maus, G. W. Visual serial dependence in an audiovisual stimulus. J. Vis. 19, 20 (2019).

    PubMed  Google Scholar 

  38. Van der Burg, E., Toet, A., Brouwer, A.-M. & Van Erp, J. B. Serial dependence of emotion within and between stimulus sensory modalities. Multisens. Res. 1, 1–22 (2021).

    Google Scholar 

  39. Molden, D. C. Understanding priming effects in social psychology: an overview and integration. Soc. Cogn. 32, 243–249 (2014).

    Google Scholar 

  40. Fleischman, D. A. Repetition priming in aging and Alzheimer’s disease: an integrative review and future directions. Cortex 43, 889–897 (2007).

    PubMed  Google Scholar 

  41. Molden, D. C. Understanding priming effects in social psychology: what is ‘social priming’ and how does it occur? Soc. Cogn. 32, 1–11 (2014).

    Google Scholar 

  42. Zillmann, D. Sequential dependencies in emotional experience and behavior. In Emotion: Interdisciplinary Perspectives (eds Kavanaugh, R. D. et al.) 243–272 (Psychology Press, 1996).

  43. Auld, F. Jr & White, A. M. Sequential dependencies in psychotherapy. J. Abnorm. Soc. Psychol. 58, 100–104 (1959).

    Google Scholar 

  44. Lieder, I. et al. Perceptual bias reveals slow-updating in autism and fast-forgetting in dyslexia. Nat. Neurosci. 22, 256–264 (2019).

    PubMed  Google Scholar 

  45. Sherrington, C. S. Flexion–reflex of the limb, crossed extension–reflex, and reflex stepping and standing. J. Physiol. 40, 28–121 (1910).

    PubMed Central  PubMed  Google Scholar 

  46. Kuffler, S. W. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37–68 (1953).

    PubMed  Google Scholar 

  47. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962).

    PubMed Central  PubMed  Google Scholar 

  48. Fründ, I., Wichmann, F. A. & Macke, J. H. Quantifying the effect of intertrial dependence on perceptual decisions. J. Vis. 14, 9 (2014).

    PubMed  Google Scholar 

  49. Fritsche, M. & de Lange, F. P. The role of feature-based attention in visual serial dependence. J. Vis. 19, 21 (2019).

    PubMed  Google Scholar 

  50. Pascucci, D. et al. Laws of concatenated perception: vision goes for novelty, decisions for perseverance. PLoS Biol. 17, e3000144 (2019).

    PubMed Central  PubMed  Google Scholar 

  51. Fritsche, M., Mostert, P. & de Lange, F. P. Opposite effects of recent history on perception and decision. Curr. Biol. 27, 590–595 (2017).

    PubMed  Google Scholar 

  52. Rafiei, M., Hansmann-Roth, S., Whitney, D., Kristjansson, A. & Chetverikov, A. Optimizing perception: attended and ignored stimuli create opposing perceptual biases. Atten. Percept. Psychophys. 83, 1230–1239 (2021).

    PubMed  Google Scholar 

  53. Collins, T. The perceptual continuity field is retinotopic. Sci. Rep. 9, (2019).

  54. Alais, D., Leung, J. & Van der Burg, E. Linear summation of repulsive and attractive serial dependencies: orientation and motion dependencies sum in motion perception. J. Neurosci. 37, 4381–4390 (2017).

    PubMed Central  PubMed  Google Scholar 

  55. Murai, Y. & Whitney, D. Serial dependence revealed in history-dependent perceptual templates. Curr. Biol. 31, 3185–3191.e3183 (2021).

    PubMed Central  PubMed  Google Scholar 

  56. Tanrikulu, Ö. D., Pascucci, D. & Kristjánsson, Á. Stronger serial dependence in the depth plane than the fronto-parallel plane between realistic objects: evidence from virtual reality. J. Vis. 23, 20 (2023).

    PubMed Central  PubMed  Google Scholar 

  57. Manassi, M., Liberman, A., Kosovicheva, A., Zhang, K. & Whitney, D. Serial dependence in position occurs at the time of perception. Psychon. Bull. Rev. 25, 2245–2253 (2018).

    PubMed  Google Scholar 

  58. Bliss, D. P., Sun, J. J. & D’Esposito, M. Serial dependence is absent at the time of perception but increases in visual working memory. Sci. Rep. 7, 14739 (2017).

    PubMed Central  PubMed  Google Scholar 

  59. Bays, P. M., Catalao, R. F. & Husain, M. The precision of visual working memory is set by allocation of a shared resource. J. Vis. 9, 7 (2009).

    Google Scholar 

  60. Foster, J. J., Bsales, E. M., Jaffe, R. J. & Awh, E. Alpha-band activity reveals spontaneous representations of spatial position in visual working memory. Curr. Biol. 27, 3216–3223.e3216 (2017).

    PubMed Central  PubMed  Google Scholar 

  61. Oberauer, K. & Lin, H.-Y. An interference model of visual working memory. Psychol. Rev. 124, 21–59 (2017).

    PubMed  Google Scholar 

  62. Van den Berg, R., Shin, H., Chou, W.-C., George, R. & Ma, W. J. Variability in encoding precision accounts for visual short-term memory limitations. Proc. Natl Acad. Sci. USA 109, 8780–8785 (2012).

    PubMed Central  PubMed  Google Scholar 

  63. Barbosa, J. & Compte, A. Build-up of serial dependence in color working memory. Sci. Rep. 10, (2020).

  64. Manassi, M., Kristjánsson, Á. & Whitney, D. Serial dependence in a simulated clinical visual search task. Sci. Rep. 9, (2019).

  65. Manassi, M. et al. Serial dependence in the perceptual judgments of radiologists. Cogn. Res. Princ. Impl. 6, 65 (2021).

    Google Scholar 

  66. Collins, T. Serial dependence occurs at the level of both features and integrated object representations. J. Exp. Psychol. Gen. 151, 1821–1832 (2021).

    PubMed  Google Scholar 

  67. Corbett, J. E., Fischer, J. & Whitney, D. Facilitating stable representations: serial dependence in vision. PLoS One 6, e16701 (2011).

    PubMed Central  PubMed  Google Scholar 

  68. Fornaciai, M. & Park, J. Serial dependence in numerosity perception. J. Vis. 18, 15 (2018).

    PubMed Central  PubMed  Google Scholar 

  69. Fornaciai, M. & Park, J. Serial dependence generalizes across different stimulus formats, but not different sensory modalities. Vis. Res. 160, 108–115 (2019).

    PubMed  Google Scholar 

  70. Manassi, M., Liberman, A., Chaney, W. & Whitney, D. The perceived stability of scenes: serial dependence in ensemble representations. Sci. Rep. 7, (2017).

  71. Suárez-Pinilla, M., Seth, A. K. & Roseboom, W. Serial dependence in the perception of visual variance. J. Vis. 18, 4 (2018).

    PubMed Central  PubMed  Google Scholar 

  72. Khayat, N., Ahissar, M. & Hochstein, S. Perceptual history biases in serial ensemble representation. J. Vis. 23, 7 (2023).

    PubMed Central  PubMed  Google Scholar 

  73. Collins, T. Serial dependence tracks objects and scenes in parallel and independently. J. Vis. 22, 4 (2022).

    PubMed Central  PubMed  Google Scholar 

  74. Czoschke, S., Fischer, C., Beitner, J., Kaiser, J. & Bledowski, C. Two types of serial dependence in visual working memory. Br. J. Psychol. 110, 256–267 (2019).

    PubMed  Google Scholar 

  75. Fischer, C. et al. Context information supports serial dependence of multiple visual objects across memory episodes. Nat. Commun. 11, 1932 (2020).

    Google Scholar 

  76. Kim, S., Burr, D. & Alais, D. Attraction to the recent past in aesthetic judgments: a positive serial dependence for rating artwork. J. Vis. 19, 19 (2019).

    PubMed  Google Scholar 

  77. Chang, S., Kim, C.-Y. & Cho, Y. S. Sequential effects in preference decision: prior preference assimilates current preference. PloS One 12, e0182442 (2017).

    PubMed Central  PubMed  Google Scholar 

  78. Turbett, K., Palermo, R., Bell, J., Burton, J. & Jeffery, L. Individual differences in serial dependence of facial identity are associated with face recognition abilities. Sci. Rep. 9, (2019).

  79. Hsu, S.-M. & Lee, J.-S. Relative judgment in facial identity perception as revealed by sequential effects. Atten. Percept. Psychophys. 78, 264–277 (2016).

    PubMed  Google Scholar 

  80. Turbett, K., Palermo, R., Bell, J., Hanran-Smith, D. A. & Jeffery, L. Serial dependence of facial identity reflects high-level face coding. Vis. Res. 182, 9–19 (2021).

    PubMed  Google Scholar 

  81. Alais, D., Xu, Y., Wardle, S. G. & Taubert, J. A shared mechanism for facial expression in human faces and face pareidolia. Proc. R. Soc. B 288, 20210966 (2021).

    PubMed Central  PubMed  Google Scholar 

  82. Mallett, R., Mummaneni, A. & Lewis-Peacock, J. A. Distraction biases working memory for faces. Psychon. Bull. Rev. 27, 350–356 (2020).

    PubMed Central  PubMed  Google Scholar 

  83. Taubert, J., Alais, D. & Burr, D. Different coding strategies for the perception of stable and changeable facial attributes. Sci. Rep. 6, 32239 (2016).

    PubMed Central  PubMed  Google Scholar 

  84. Kok, R., Taubert, J., Van der Burg, E., Rhodes, G. & Alais, D. Face familiarity promotes stable identity recognition: exploring face perception using serial dependence. R. Soc. Open Sci. 4, 160685 (2017).

    PubMed Central  PubMed  Google Scholar 

  85. Xia, Y., Leib, A. Y. & Whitney, D. Serial dependence in the perception of attractiveness. J. Vis. 16, 28 (2016).

    PubMed Central  PubMed  Google Scholar 

  86. Pegors, T. K., Mattar, M. G., Bryan, P. B. & Epstein, R. A. Simultaneous perceptual and response biases on sequential face attractiveness judgments. J. Exp. Psychol. Gen. 144, 664–673 (2015).

    PubMed Central  PubMed  Google Scholar 

  87. Van der Burg, E., Rhodes, G. & Alais, D. Positive sequential dependency for face attractiveness perception. J. Vis. 19, 6 (2019).

    PubMed  Google Scholar 

  88. Taubert, J., Van der Burg, E. & Alais, D. Love at second sight: sequential dependence of facial attractiveness in an on-line dating paradigm. Sci. Rep. 6, (2016).

  89. Taubert, J. & Alais, D. Serial dependence in face attractiveness judgements tolerates rotations around the yaw axis but not the roll axis. Vis. Cogn. 24, 103–114 (2016).

    Google Scholar 

  90. Kondo, A., Takahashi, K. & Watanabe, K. Sequential effects in face-attractiveness judgment. Perception 41, 43–49 (2012).

    PubMed  Google Scholar 

  91. Yu, J.-M. & Ying, H. A general serial dependence among various facial traits: evidence from Markov chain and derivative of Gaussian. J. Vis. 21, 4 (2021).

    PubMed Central  PubMed  Google Scholar 

  92. Yu, J.-M., Yang, W. & Ying, H. Modeling facial perception in group context from a serial perception perspective. J. Vis. 23, 4 (2023).

    PubMed Central  PubMed  Google Scholar 

  93. Hsu, S.-M. & Yang, L.-X. Sequential effects in facial expression categorization. Emotion 13, 573–586 (2013).

    PubMed  Google Scholar 

  94. Liberman, A., Manassi, M. & Whitney, D. Serial dependence promotes the stability of perceived emotional expression depending on face similarity. Atten. Percept. Psychophys. 80, 1461–1473 (2018).

    PubMed  Google Scholar 

  95. Mei, G. Working memory maintenance modulates serial dependence effects of perceived emotional expression. Front. Psychol. 10, 1610 (2019).

    PubMed Central  PubMed  Google Scholar 

  96. Hsu, S.-M. & Wu, Z.-R. The roles of preceding stimuli and preceding responses on assimilative and contrastive sequential effects during facial expression perception. Cogn. Emot. 34, 890–905 (2020).

    PubMed  Google Scholar 

  97. Clifford, C. W., Watson, T. L. & White, D. Two sources of bias explain errors in facial age estimation. R. Soc. Open Sci. 5, 180841 (2018).

    PubMed Central  PubMed  Google Scholar 

  98. Manassi, M. & Whitney, D. Illusion of visual stability through active perceptual serial dependence. Sci. Adv. 8, eabk2480 (2022).

    PubMed  Google Scholar 

  99. Alexi, J. et al. Past visual experiences weigh in on body size estimation. Sci. Rep. 8, 215 (2018).

    PubMed Central  PubMed  Google Scholar 

  100. Ortega, J., Chen, Z. & Whitney, D. Serial dependence in emotion perception mirrors the autocorrelations in natural emotion statistics. J. Vis. 23, 12 (2023).

    PubMed Central  PubMed  Google Scholar 

  101. Fritsche, M., Spaak, E. & de Lange, F. P. A Bayesian and efficient observer model explains concurrent attractive and repulsive history biases in visual perception. eLife 9, e55389 (2020).

    PubMed Central  PubMed  Google Scholar 

  102. Samaha, J., Switzky, M. & Postle, B. R. Confidence boosts serial dependence in orientation estimation. J. Vis. 19, 25 (2019).

    PubMed Central  PubMed  Google Scholar 

  103. Alexander, T. et al. Sequential dependency for affective appraisal of food images. Humanities Soc. Sci. Commun. 8, 228 (2021).

    Google Scholar 

  104. Cicchini, G. M., Mikellidou, K. & Burr, D. Serial dependencies act directly on perception. J. Vis. 17, 6 (2017).

    PubMed  Google Scholar 

  105. Craighero, L., Fadiga, L., Umiltà, C. A. & Rizzolatti, G. Evidence for visuomotor priming effect. Neuroreport 8, 347–349 (1996).

    PubMed  Google Scholar 

  106. Tucker, M. & Ellis, R. Action priming by briefly presented objects. Acta Psychol. 116, 185–203 (2004).

    Google Scholar 

  107. Schmidt, F., Haberkamp, A. & Schmidt, T. Dos and don’ts in response priming research. Adv. Cogn. Psychol. 7, 120–131 (2011).

    PubMed Central  PubMed  Google Scholar 

  108. Maljkovic, V. & Nakayama, K. Priming of pop-out: II. The role of position. Percept. Psychophys. 58, 977–991 (1996).

    PubMed  Google Scholar 

  109. Maljkovic, V. & Nakayama, K. Priming of pop-out: I. Role of features. Mem. Cogn. 22, 657–672 (1994).

    Google Scholar 

  110. Kristjánsson, Á. & Campana, G. Where perception meets memory: a review of repetition priming in visual search tasks. Atten. Percept. Psychophys. 72, 5–18 (2010).

    PubMed  Google Scholar 

  111. Cicchini, G. M., Mikellidou, K. & Burr, D. C. The functional role of serial dependence. Proc. R. Soc. B 285, 20181722 (2018).

    PubMed Central  PubMed  Google Scholar 

  112. Wiggs, C. L. & Martin, A. Properties and mechanisms of perceptual priming. Curr. Opin. Neurobiol. 8, 227–233 (1998).

    PubMed  Google Scholar 

  113. Galluzzi, F., Benedetto, A., Cicchini, G. M. & Burr, D. C. Visual priming and serial dependence are mediated by separate mechanisms. J. Vis. 22, 1 (2022).

    PubMed Central  PubMed  Google Scholar 

  114. Goettker, A. & Stewart, E. Serial dependence for oculomotor control depends on early sensory signals. Curr. Biol. 32, 2956–2961.e3 (2022).

    PubMed  Google Scholar 

  115. Fornaciai, M. & Park, J. Spontaneous repulsive adaptation in the absence of attractive serial dependence. J. Vis. 19, 21 (2019).

    PubMed  Google Scholar 

  116. Collins, T. Serial dependence alters perceived object appearance. J. Vis. 20, 9 (2020).

    PubMed Central  PubMed  Google Scholar 

  117. Gold, J. I. & Stocker, A. A. Visual decision-making in an uncertain and dynamic world. Annu. Rev. Vis. Sci. 3, 227–250 (2017).

    PubMed  Google Scholar 

  118. Senders, V. L. & Sowards, A. Analysis of response sequences in the setting of a psychophysical experiment. Am. J. Psychol. 65, 358–374 (1952).

    PubMed  Google Scholar 

  119. Verplanck, W. S., Collier, G. H. & Cotton, J. W. Nonindependence of successive responses in measurements of the visual threshold. J. Exp. Psychol. 44, 273–282 (1952).

    PubMed  Google Scholar 

  120. Urai, A. E., De Gee, J. W., Tsetsos, K. & Donner, T. H. Choice history biases subsequent evidence accumulation. eLife 8, e46331 (2019).

    PubMed Central  PubMed  Google Scholar 

  121. Urai, A. E., Braun, A. & Donner, T. H. Pupil-linked arousal is driven by decision uncertainty and alters serial choice bias. Nat. Commun. 8, (2017).

  122. Abrahamyan, A., Silva, L. L., Dakin, S. C., Carandini, M. & Gardner, J. L. Adaptable history biases in human perceptual decisions. Proc. Natl Acad. Sci. USA 113, E3548–E3557 (2016).

    PubMed Central  PubMed  Google Scholar 

  123. Feigin, H., Baror, S., Bar, M. & Zaidel, A. Perceptual decisions are biased toward relevant prior choices. Sci. Rep. 11, 648 (2021).

    PubMed Central  PubMed  Google Scholar 

  124. Zhang, H. & Alais, D. Individual difference in serial dependence results from opposite influences of perceptual choices and motor responses. J. Vis. 20, 2 (2020).

    PubMed Central  PubMed  Google Scholar 

  125. Summerfield, C. & De Lange, F. P. Expectation in perceptual decision making: neural and computational mechanisms. Nat. Rev. Neurosci. 15, 745–756 (2014).

    PubMed  Google Scholar 

  126. Hermoso-Mendizabal, A. et al. Response outcomes gate the impact of expectations on perceptual decisions. Nat. Commun. 11, 1057 (2020).

    PubMed Central  PubMed  Google Scholar 

  127. Abreo, S., Gergen, A., Gupta, N. & Samaha, J. Effects of satisfying and violating expectations on serial dependence. J. Vis. 23, 6 (2023).

    PubMed Central  PubMed  Google Scholar 

  128. Rahnev, D., Koizumi, A., McCurdy, L. Y., D’Esposito, M. & Lau, H. Confidence leak in perceptual decision making. Psychol. Sci. 26, 1664–1680 (2015).

    PubMed  Google Scholar 

  129. Rahnev, D. et al. The confidence database. Nat. Hum. Behav. 4, 317–325 (2020).

    PubMed Central  PubMed  Google Scholar 

  130. Lak, A. et al. Reinforcement biases subsequent perceptual decisions when confidence is low, a widespread behavioral phenomenon. eLife 9, e49834 (2020).

    PubMed Central  PubMed  Google Scholar 

  131. Moscoso, P. A. M., Burr, D. C. & Cicchini, G. M. Serial dependence improves performance and biases confidence-based decisions. J. Vis. 23, 5 (2023).

    Google Scholar 

  132. Bae, G.-Y. & Luck, S. J. Interactions between visual working memory representations. Atten. Percept. Psychophys. 79, 2376–2395 (2017).

    PubMed Central  PubMed  Google Scholar 

  133. Lorenc, E. S., Mallett, R. & Lewis-Peacock, J. A. Distraction in visual working memory: resistance is not futile. Trends Cogn. Sci. 25, 228–239 (2021).

    PubMed Central  PubMed  Google Scholar 

  134. Luck, S. J. & Vogel, E. K. The capacity of visual working memory for features and conjunctions. Nature 390, 279–281 (1997).

    PubMed  Google Scholar 

  135. Vogel, E. K., Woodman, G. F. & Luck, S. J. Storage of features, conjunctions, and objects in visual working memory. J. Exp. Psychol. Hum. Percept. Perform. 27, 92–114 (2001).

    PubMed  Google Scholar 

  136. Barbosa, J. et al. Interplay between persistent activity and activity-silent dynamics in the prefrontal cortex underlies serial biases in working memory. Nat. Neurosci. 23, 1016–1024 (2020).

    PubMed Central  PubMed  Google Scholar 

  137. Makovski, T. & Jiang, Y. V. Proactive interference from items previously stored in visual working memory. Mem. Cogn. 36, 43–52 (2008).

    Google Scholar 

  138. Keppel, G. & Underwood, B. J. Proactive inhibition in short-term retention of single items. J. Verb. Learn. Verb. Behav. 1, 153–161 (1962).

    Google Scholar 

  139. Peterson, L. & Peterson, M. J. Short-term retention of individual verbal items. J. Exp. Psychol. 58, 193–198 (1959).

    PubMed  Google Scholar 

  140. Jonides, J. & Nee, D. E. Brain mechanisms of proactive interference in working memory. Neuroscience 139, 181–193 (2006).

    PubMed  Google Scholar 

  141. Fornaciai, M. & Park, J. Attractive serial dependence between memorized stimuli. Cognition 200, 104250 (2020).

    PubMed  Google Scholar 

  142. Kondo, A., Murai, Y. & Whitney, D. The test–retest reliability and spatial tuning of serial dependence in orientation perception. J. Vis. 22, 5 (2022).

    PubMed Central  PubMed  Google Scholar 

  143. Ceylan, G., Herzog, M. H. & Pascucci, D. Serial dependence does not originate from low-level visual processing. Cognition 212, 104709 (2021).

  144. Kim, S., Burr, D., Cicchini, G. M. & Alais, D. Serial dependence in perception requires conscious awareness. Curr. Biol. 30, R257–R258 (2020).

    PubMed  Google Scholar 

  145. Shan, J. & Postle, B. R. The influence of active removal from working memory on serial dependence. J. Cogn. 5, 31 (2022).

    PubMed Central  PubMed  Google Scholar 

  146. Bansal, S. et al. Qualitatively different delay-dependent working memory distortions in people with schizophrenia and healthy control participants. Biol. Psychiat. Cogn. Neurosci. Neuroimaging 8, 1218–1227 (2023).

    Google Scholar 

  147. Mostert, P., Kok, P. & De Lange, F. P. Dissociating sensory from decision processes in human perceptual decision making. Sci. Rep. 5, 18253 (2015).

    PubMed Central  PubMed  Google Scholar 

  148. Wimmer, K. et al. Sensory integration dynamics in a hierarchical network explains choice probabilities in cortical area MT. Nat. Commun. 6, (2015).

  149. Ceylan, G. & Pascucci, D. Attractive and repulsive serial dependence: the role of task relevance, the passage of time, and the number of stimuli. J. Vis. 23, 8 (2023).

    PubMed Central  PubMed  Google Scholar 

  150. Bilacchi, C. M., Sirius, E. V. P., Cravo, A. M. & de Azevedo Neto, R. M. Temporal dynamics of implicit memory underlying serial dependence. Mem. Cogn. 50, 449–458 (2022).

    Google Scholar 

  151. Wexler, M., Duyck, M. & Mamassian, P. Persistent states in vision break universality and time invariance. Proc. Natl Acad. Sci. USA 112, 14990–14995 (2015).

    PubMed Central  PubMed  Google Scholar 

  152. Mikellidou, K., Cicchini, G. M. & Burr, D. C. Perceptual history acts in world-centred coordinates. i-Perception 12, 20416695211029301 (2021).

    PubMed Central  PubMed  Google Scholar 

  153. Luo, M., Zhang, H. & Luo, H. Cartesian coordinates scaffold stable spatial perception over time. J. Vis. 22, 13 (2022).

    PubMed Central  PubMed  Google Scholar 

  154. Liberman, A., Zhang, K. & Whitney, D. Serial dependence promotes object stability during occlusion. J. Vis. 16, 16 (2016).

    PubMed Central  PubMed  Google Scholar 

  155. Bae, G.-Y. & Luck, S. J. Serial dependence in vision: merely encoding the previous-trial target is not enough. Psychon. Bull. Rev. 27, 293–300 (2020).

    PubMed Central  PubMed  Google Scholar 

  156. Hartline, H. K. The receptive fields of optic nerve fibers. Am. J. Physiol. Legacy Content 130, 690–699 (1940).

    Google Scholar 

  157. Bayer, M. & Zimmermann, E. Serial dependencies in visual stability during self-motion. J. Neurophysiol. 130, 447–457 (2023).

    PubMed  Google Scholar 

  158. Cicchini, G. M. & Burr, D. C. Serial effects are optimal. Behav. Brain Sci. 41, e229 (2018).

    PubMed  Google Scholar 

  159. Burr, D. & Cicchini, G. M. Vision: efficient adaptive coding. Curr. Biol. 24, R1096–R1098 (2014).

    PubMed Central  PubMed  Google Scholar 

  160. Ren, Z., Li, X., Pietralla, D., Manassi, M. & Whitney, D. Serial dependence in dermatological judgments. Diagnostics 13, 1775 (2023).

    PubMed Central  PubMed  Google Scholar 

  161. Ren, Z. et al. Serial dependence in perception across naturalistic generative adversarial network-generated mammogram. J. Med. Imaging 10, 045501 (2023).

    Google Scholar 

  162. Kramer, R. S., Jones, A. L. & Sharma, D. Sequential effects in judgements of attractiveness: the influences of face race and sex. PLoS One 8, e82226 (2013).

    PubMed Central  PubMed  Google Scholar 

  163. Lockhead, G. & Hinson, J. Range and sequence effects in judgment. Percept. Psychophys. 40, 53–61 (1986).

    PubMed  Google Scholar 

  164. Treisman, M. & Williams, T. C. A theory of criterion setting with an application to sequential dependencies. Psychol. Rev. 91, 68–111 (1984).

    Google Scholar 

  165. Lages, M. & Treisman, M. Spatial frequency discrimination: visual long-term memory or criterion setting? Vis. Res. 38, 557–572 (1998).

    PubMed  Google Scholar 

  166. Hock, H. S., Kelso, J. S. & Schöner, G. Bistability and hysteresis in the organization of apparent motion patterns. J. Exp. Psychol. Hum. Percept. Perform. 19, 63–80 (1993).

    PubMed  Google Scholar 

  167. Treisman, M. & Lages, M. In Fechner’s Legacy in Psychology 155–182 (Brill, 2011).

  168. Bosch, E., Fritsche, M., Ehinger, B. V. & de Lange, F. P. Opposite effects of choice history and evidence history resolve a paradox of sequential choice bias. J. Vis. 20, 9 (2020).

    PubMed Central  PubMed  Google Scholar 

  169. Braun, A., Urai, A. E. & Donner, T. H. Adaptive history biases result from confidence-weighted accumulation of past choices. J. Neurosci. 38, 2418–2429 (2018).

    PubMed Central  PubMed  Google Scholar 

  170. Togoli, I., Fedele, M., Fornaciai, M. & Bueti, D. Serial dependence in time and numerosity perception is dimension-specific. J. Vis. 21, 6 (2021).

    PubMed Central  PubMed  Google Scholar 

  171. Fornaciai, M. & Park, J. Attractive serial dependence in the absence of an explicit task. Psychol. Sci. 29, 437–446 (2018).

    PubMed  Google Scholar 

  172. Cicchini, G. M., Benedetto, A. & Burr, D. C. Perceptual history propagates down to early levels of sensory analysis. Curr. Biol. 31, 1245–1250.e1242 (2021).

    PubMed Central  PubMed  Google Scholar 

  173. Wang, X.-Y., Gong, X.-M., Sun, Q. & Li, X. Attractive effects of previous form information on heading estimation from optic flow occur at perceptual stage. J. Vis. 22, 18 (2022).

    PubMed Central  PubMed  Google Scholar 

  174. Whitney, D., Manassi, M. & Murai, Y. Searching for serial dependencies in the brain. PLoS Biol. 20, e3001788 (2022).

    PubMed Central  PubMed  Google Scholar 

  175. Fornaciai, M. & Park, J. Neural dynamics of serial dependence in numerosity perception. J. Cogn. Neurosci. 32, 141–154 (2020).

    PubMed  Google Scholar 

  176. John-Saaltink, E. S., Kok, P., Lau, H. C. & De Lange, F. P. Serial dependence in perceptual decisions is reflected in activity patterns in primary visual cortex. J. Neurosci. 36, 6186–6192 (2016).

    Google Scholar 

  177. Sheehan, T. C. & Serences, J. T. Attractive serial dependence overcomes repulsive neuronal adaptation. PLoS Biol. 20, e3001711 (2022).

    PubMed Central  PubMed  Google Scholar 

  178. de Azevedo Neto, R. M. & Bartels, A. Disrupting short-term memory maintenance in premotor cortex affects serial dependence in visuomotor integration. J. Neurosci. 41, 9392–9402 (2021).

    PubMed Central  PubMed  Google Scholar 

  179. Bliss, D. P., Rahnev, D., Mackey, W. E., Curtis, C. E. & D’Esposito, M. Stimulation along the anterior-posterior axis of lateral frontal cortex reduces visual serial dependence. J. Vis. 23, 1 (2023).

    PubMed Central  PubMed  Google Scholar 

  180. Akrami, A., Kopec, C. D., Diamond, M. E. & Brody, C. D. Posterior parietal cortex represents sensory history and mediates its effects on behaviour. Nature 554, 368–372 (2018).

    PubMed  Google Scholar 

  181. Urai, A. E. & Donner, T. H. Persistent activity in human parietal cortex mediates perceptual choice repetition bias. Nat. Commun. 13, 6015 (2022).

    PubMed Central  PubMed  Google Scholar 

  182. Tsunada, J., Cohen, Y. & Gold, J. I. Post-decision processing in primate prefrontal cortex influences subsequent choices on an auditory decision-making task. eLife 8, e46770 (2019).

    PubMed Central  PubMed  Google Scholar 

  183. Schwiedrzik, C. M. et al. Medial prefrontal cortex supports perceptual memory. Curr. Biol. 28, R1094–R1095 (2018).

    PubMed  Google Scholar 

  184. Darlington, T. R., Beck, J. M. & Lisberger, S. G. Neural implementation of Bayesian inference in a sensorimotor behavior. Nat. Neurosci. 21, 1442–1451 (2018).

    PubMed Central  PubMed  Google Scholar 

  185. Darlington, T. R., Tokiyama, S. & Lisberger, S. G. Control of the strength of visual-motor transmission as the mechanism of rapid adaptation of priors for Bayesian inference in smooth pursuit eye movements. J. Neurophysiol. 118, 1173–1189 (2017).

    PubMed Central  PubMed  Google Scholar 

  186. Bae, G.-Y. & Luck, S. J. Reactivation of previous experiences in a working memory task. Psychol. Sci. 30, 587–595 (2019).

    PubMed Central  PubMed  Google Scholar 

  187. Ranieri, G., Benedetto, A., Ho, H. T., Burr, D. C. & Morrone, M. C. Evidence of serial dependence from decoding of visual evoked potentials. J. Neurosci. 42, 8817–8825 (2022).

    PubMed Central  PubMed  Google Scholar 

  188. Zhang, H. & Luo, H. Feature-specific reactivations of past information shift current neural encoding thereby mediating serial bias behaviors. PLoS Biol. 21, e3002056 (2023).

    PubMed Central  PubMed  Google Scholar 

  189. Luo, J. & Collins, T. The representational similarity between visual perception and recent perceptual history. J. Neurosci. 43, 3658–3665 (2023).

    PubMed Central  PubMed  Google Scholar 

  190. Sun, Q., Zhan, L.-Z., Zhang, B.-Y., Jia, S. & Gong, X.-M. Heading perception from optic flow occurs at both perceptual representation and working memory stages with EEG evidence. Vis. Res. 208, 108235 (2023).

    PubMed  Google Scholar 

  191. Stein, H. et al. Reduced serial dependence suggests deficits in synaptic potentiation in anti-NMDAR encephalitis and schizophrenia. Nat. Commun. 11, (2020).

  192. Tschiersch, M. Causal evidence for the higher-order origin of serial dependence suggests a multi-area account. J. Neurophysiol. 128, 336–338 (2022).

    PubMed  Google Scholar 

  193. Pascucci, D. et al. Serial dependence in visual perception: a review. J. Vis. 23, 9 (2023).

    PubMed Central  PubMed  Google Scholar 

  194. Cicchini, G. M., Mikellidou, K. & Burr, D. Serial dependence in perception. Annu. Rev. Psychol. 75, 129–154 (2004).

    Google Scholar 

  195. Kersten, D., Mamassian, P. & Yuille, A. Object perception as Bayesian inference. Annu. Rev. Psychol. 55, 271–304 (2004).

    PubMed  Google Scholar 

  196. van Bergen, R. S. & Jehee, J. F. Probabilistic representation in human visual cortex reflects uncertainty in serial decisions. J. Neurosci. 39, 8164–8176 (2019).

    PubMed Central  PubMed  Google Scholar 

  197. Glasauer, S. Mathematical modelling in motor neuroscience: state of the art and translation to the clinic. Gaze orienting mechanisms and disease. In Progress in Brain Research Vol. 249 (eds Ramat, S. & Shaikh, A. G.) 3–18 (Elsevier, 2019).

  198. Raviv, O., Ahissar, M. & Loewenstein, Y. How recent history affects perception: the normative approach and its heuristic approximation. PLoS Comput. Biol. 8, e1002731 (2012).

    PubMed Central  PubMed  Google Scholar 

  199. Kalm, K. & Norris, D. Visual recency bias is explained by a mixture model of internal representations. J. Vis. 18, 1 (2018).

    PubMed  Google Scholar 

  200. Tune, G. Response preferences: a review of some relevant literature. Psychol. Bull. 61, 286 (1964).

    PubMed  Google Scholar 

  201. Gallagher, G. K. & Benton, C. P. Stimulus uncertainty predicts serial dependence in orientation judgements. J. Vis. 22, 6 (2022).

    PubMed Central  PubMed  Google Scholar 

  202. Kim, S. & Alais, D. Individual differences in serial dependence manifest when sensory uncertainty is high. Vis. Res. 188, 274–282 (2021).

    PubMed  Google Scholar 

  203. Jakob, A. M. & Gershman, S. J. Rate-distortion theory of neural coding and its implications for working memory. eLife 12, e79450 (2022).

    Google Scholar 

  204. Hsu, S.-M. A neural-based account of sequential bias during perceptual judgment. Psychon. Bull. Rev. 28, 1051–1059 (2021).

    PubMed  Google Scholar 

  205. Bliss, D. P. & D’Esposito, M. Synaptic augmentation in a cortical circuit model reproduces serial dependence in visual working memory. PLoS One 12, e0188927 (2017).

    PubMed Central  PubMed  Google Scholar 

  206. Kilpatrick, Z. P. Synaptic mechanisms of interference in working memory. Sci. Rep. 8, (2018).

  207. Gardner, J. L. Optimality and heuristics in perceptual neuroscience. Nat. Neurosci. 22, 514–523 (2019).

    PubMed  Google Scholar 

  208. Laquitaine, S. & Gardner, J. L. A switching observer for human perceptual estimation. Neuron 97, 462–474.e466 (2018).

    PubMed  Google Scholar 

  209. Budescu, D. V. Analysis of dichotomous variables in the presence of serial dependence. Psychol. Bull. 97, 547–561 (1985).

    Google Scholar 

  210. Wei, X.-X. & Stocker, A. A. A Bayesian observer model constrained by efficient coding can explain ‘anti-Bayesian’ percepts. Nat. Neurosci. 18, 1509–1517 (2015).

    PubMed  Google Scholar 

  211. Wei, X.-X. & Stocker, A. A. Lawful relation between perceptual bias and discriminability. Proc. Natl Acad. Sci. USA 114, 10244–10249 (2017).

    PubMed Central  PubMed  Google Scholar 

  212. Gekas, N., McDermott, K. C. & Mamassian, P. Disambiguating serial effects of multiple timescales. J. Vis. 19, 24 (2019).

    PubMed  Google Scholar 

  213. Moon, J. & Kwon, O.-S. Attractive and repulsive effects of sensory history concurrently shape visual perception. BMC Biol. 20, 247 (2022).

    PubMed Central  PubMed  Google Scholar 

  214. Sadil, P., Cowell, R. A. & Huber, D. E. The push–pull of serial dependence effects: attraction to the prior response and repulsion from the prior stimulus. Psychon. Bull. Rev. 31, 259–273 (2023).

    PubMed  Google Scholar 

  215. Yarrow, K., Haggard, P., Heal, R., Brown, P. & Rothwell, J. C. Illusory perceptions of space and time preserve cross-saccadic perceptual continuity. Nature 414, 302–305 (2001).

    PubMed  Google Scholar 

  216. Tse, P. & Hsieh, P.-J. The infinite regress illusion reveals faulty integration of local and global motion signals. Vis. Res. 46, 3881–3885 (2006).

    PubMed  Google Scholar 

  217. Lu, Z.-L., Lesmes, L. A. & Sperling, G. Perceptual motion standstill in rapidly moving chromatic displays. Proc. Natl Acad. Sci. USA 96, 15374–15379 (1999).

    PubMed Central  PubMed  Google Scholar 

  218. Lisi, M. & Cavanagh, P. Dissociation between the perceptual and saccadic localization of moving objects. Curr. Biol. 25, 2535–2540 (2015).

    PubMed  Google Scholar 

  219. Tangen, J. M., Murphy, S. C. & Thompson, M. B. Flashed face distortion effect: grotesque faces from relative spaces. Perception 40, 628–630 (2011).

    PubMed  Google Scholar 

  220. Balas, B. & Pearson, H. The flashed face distortion effect does not depend on face-specific mechanisms. Sci. Rep. 9, 1612 (2019).

    PubMed Central  PubMed  Google Scholar 

  221. Berliner, J. & Durlach, N. Intensity perception. IV. Resolution in roving‐level discrimination. J. Acoust. Soc. Am. 53, 1270–1287 (1973).

    PubMed  Google Scholar 

  222. Hollingworth, H. L. The central tendency of judgment. J. Phil. Psychol. Sci. Meth. 7, 461–469 (1910).

    Google Scholar 

  223. Petzschner, F. H., Glasauer, S. & Stephan, K. E. A Bayesian perspective on magnitude estimation. Trends Cogn. Sci. 19, 285–293 (2015).

    PubMed  Google Scholar 

  224. Williams, D., Phillips, G. & Sekuler, R. Hysteresis in the perception of motion direction as evidence for neural cooperativity. Nature 324, 253–255 (1986).

    PubMed  Google Scholar 

  225. Trapp, S., Pascucci, D. & Chelazzi, L. Predictive brain: addressing the level of representation by reviewing perceptual hysteresis. Cortex 141, 535–540 (2021).

    PubMed  Google Scholar 

  226. Kosovicheva, A. & Whitney, D. Stable individual signatures in object localization. Curr. Biol. 27, R700–R701 (2017).

    PubMed Central  PubMed  Google Scholar 

  227. Wang, Z., Murai, Y. & Whitney, D. Idiosyncratic perception: a link between acuity, perceived position and apparent size. Proc. R. Soc. B 287, 20200825 (2020).

    PubMed Central  PubMed  Google Scholar 

  228. Rahnev, D. Response bias reflects individual differences in sensory encoding. Psychol. Sci. 32, 1157–1168 (2021).

    PubMed Central  PubMed  Google Scholar 

  229. Grzeczkowski, L., Clarke, A. M., Francis, G., Mast, F. W. & Herzog, M. H. About individual differences in vision. Vis. Res. 141, 282–292 (2017).

    PubMed  Google Scholar 

  230. Bae, G.-Y., Olkkonen, M., Allred, S. R., Wilson, C. & Flombaum, J. I. Stimulus-specific variability in color working memory with delayed estimation. J. Vis. 14, 7 (2014).

    PubMed  Google Scholar 

  231. DeCarlo, L. T. & Cross, D. V. Sequential effects in magnitude scaling: models and theory. J. Exp. Psychol. Gen. 119, 375–396 (1990).

    Google Scholar 

  232. Tversky, A. & Kahneman, D. Judgment under uncertainty: heuristics and biases: biases in judgments reveal some heuristics of thinking under uncertainty. Science 185, 1124–1131 (1974).

    PubMed  Google Scholar 

  233. Ward, L. M. & Lockhead, G. Response system processes in absolute judgment. Percept. Psychophys. 9, 73–78 (1971).

    Google Scholar 

  234. Furnham, A. & Boo, H. C. A literature review of the anchoring effect. J. Socio-econ. 40, 35–42 (2011).

    Google Scholar 

  235. Kanai, R. & Verstraten, F. A. Perceptual manifestations of fast neural plasticity: motion priming, rapid motion aftereffect and perceptual sensitization. Vis. Res. 45, 3109–3116 (2005).

    PubMed  Google Scholar 

  236. Rafiei, M., Chetverikov, A., Hansmann-Roth, S. & Kristjánsson, Á. You see what you look for: targets and distractors in visual search can cause opposing serial dependencies. J. Vis. 21, 3 (2021).

    PubMed Central  PubMed  Google Scholar 

  237. Rafiei, M., Chetverikov, A., Hansmann-Roth, S. & Kristjansson, Á. The influence of the tested item on serial dependence in perceptual decisions. Perception 52, 255–265 (2022).

    Google Scholar 

  238. Boi, M., Öğmen, H. & Herzog, M. H. Motion and tilt aftereffects occur largely in retinal, not in object, coordinates in the Ternus–Pikler display. J. Vis. 11, 7 (2011).

    PubMed  Google Scholar 

  239. Knapen, T., Rolfs, M. & Cavanagh, P. The reference frame of the motion aftereffect is retinotopic. J. Vis. 9, 16 (2009).

    Google Scholar 

  240. Gibson, J. J. & Radner, M. Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies. J. Exp. Psychol. 20, 453–467 (1937).

    Google Scholar 

  241. Campbell, F. & Maffei, L. The tilt after-effect: a fresh look. Vis. Res. 11, 833–840 (1971).

    PubMed  Google Scholar 

  242. Blakemore, C. & Nachmias, J. The orientation specificity of two visual after‐effects. J. Physiol. 213, 157–174 (1971).

    PubMed Central  PubMed  Google Scholar 

  243. Thompson, P. & Burr, D. Visual aftereffects. Curr. Biol. 19, R11–R14 (2009).

    PubMed  Google Scholar 

  244. Chopin, A. & Mamassian, P. Predictive properties of visual adaptation. Curr. Biol. 22, 622–626 (2012).

    PubMed  Google Scholar 

  245. Gepshtein, S., Lesmes, L. A. & Albright, T. D. Sensory adaptation as optimal resource allocation. Proc. Natl Acad. Sci. USA 110, 4368–4373 (2013).

    PubMed Central  PubMed  Google Scholar 

  246. Wohlgemuth, A. On the After-Effect of Seen Movement (Univ. Press, 1911).

  247. Rees, G., Frith, C. & Lavie, N. Processing of irrelevant visual motion during performance of an auditory attention task. Neuropsychologia 39, 937–949 (2001).

    PubMed  Google Scholar 

  248. Nishida, S. Y. & Ashida, H. A hierarchical structure of motion system revealed by interocular transfer of flicker motion aftereffects. Vis. Res. 40, 265–278 (2000).

    PubMed  Google Scholar 

  249. Schwiedrzik, C. M. et al. Untangling perceptual memory: hysteresis and adaptation map into separate cortical networks. Cereb. Cortex 24, 1152–1164 (2014).

    PubMed  Google Scholar 

  250. Treue, S. & Maunsell, J. H. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996).

    PubMed  Google Scholar 

  251. Kastner, S. & Ungerleider, L. G. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 23, 315–341 (2000).

    PubMed  Google Scholar 

  252. Carrasco, M. Visual attention: the past 25 years. Vis. Res. 51, 1484–1525 (2011).

    PubMed  Google Scholar 

  253. Fairhall, A. L., Lewen, G. D., Bialek, W. & van Steveninck, R. R. D. R. Efficiency and ambiguity in an adaptive neural code. Nature 412, 787–792 (2001).

    PubMed  Google Scholar 

  254. Haak, K. V. & Mesik, J. Adaptation, the coding catastrophe and disaster management in natural vision. J. Neurosci. 36, 9286–9288 (2016).

    PubMed Central  PubMed  Google Scholar 

  255. Gutierrez, G. J. & Denève, S. Population adaptation in efficient balanced networks. eLife 8, e46926 (2019).

    PubMed Central  PubMed  Google Scholar 

  256. Liu, X. & Engel, S. A. Higher-level meta-adaptation mitigates visual distortions produced by lower-level adaptation. Psychol. Sci. 31, 654–662 (2020).

    PubMed  Google Scholar 

  257. Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

    PubMed  Google Scholar 

  258. Friston, K. & Kiebel, S. Predictive coding under the free-energy principle. Phil. Trans. R. Soc. B 364, 1211–1221 (2009).

    PubMed Central  PubMed  Google Scholar 

  259. Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Institutes of Health grant (R01 CA236793 to D.W.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Mauro Manassi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks David Burr and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manassi, M., Whitney, D. Continuity fields enhance visual perception through positive serial dependence. Nat Rev Psychol 3, 352–366 (2024). https://doi.org/10.1038/s44159-024-00297-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-024-00297-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing