Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photoinduced radical–ionic dihalogen transfer to carbon–carbon multiple bonds using oxime-based surrogates

This article has been updated

Abstract

Functional-group transfer strategies that utilize bench-stable and easy-to-handle surrogates create new synthetic avenues with the prospect to avoid the use of highly toxic and hazardous reagents. We disclose here an operationally simple and mechanistically distinct catalytic transfer protocol for the vicinal dihalogenation of carbon–carbon multiple bonds in alkenes, alkynes and allenes using easily synthesized oxime-based dihalogen surrogates. The reaction is promoted by visible-light photoredox catalysis. The success of this radical–ionic functional-group transfer hinges on the fragmentation of the surrogates into a halogen radical and halide anion with benzonitrile formation and sulfur dioxide evolution as the driving forces. Mechanistic studies suggest that oxidative quenching of the photocatalyst initiates the catalytic process. The released electrophilic halogen radical then engages in a radical addition to the carbon–carbon double or triple bond, followed by a radical–polar crossover and carbocation trapping by the previously formed halide anion to deliver the desired vicinal dihalides in a redox-neutral manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transfer FG strategy.
Fig. 2: Development of radical–ionic transfer dichlorination of alkenes.
Fig. 3: Mechanistic investigations and proposed reaction mechanism.

Similar content being viewed by others

Data availability

The authors declare that all other data supporting the findings of this study are available within the article and Supplementary Information files, and also are available from the corresponding author upon request.

Change history

  • 20 March 2023

    In the version of this article initially published, “SO2” at the top right of the reaction arrow in Figure 3e originally appeared as “O2” and is now corrected in the HTML and PDF versions of the article.

References

  1. Zheng, C. & You, S.-L. Transfer hydrogenation with Hantzsch esters and related organic hydride donors. Chem. Soc. Rev. 41, 2498–2518 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Bhawal, B. N. & Morandi, B. Catalytic transfer functionalization through shuttle catalysis. ACS Catal. 6, 7528–7535 (2016).

    Article  CAS  Google Scholar 

  3. Oestreich, M. Transfer hydrosilylation. Angew. Chem. Int. Ed. 55, 494–499 (2016).

    Article  CAS  Google Scholar 

  4. Wang, D. & Astruc, D. The golden age of transfer hydrogenation. Chem. Rev. 115, 6621–6686 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Tundo, P. & Anastas, P. T. Green Chemistry: Challenging Perspectives (Oxford Univ. Press, 2000).

  6. Zhang, W. & Cue, B. W. Green Techniques for Organic Synthesis and Medicinal Chemistry (Wiley, 2018).

  7. Franke, R., Selent, D. & Börner, A. Applied hydroformylation. Chem. Rev. 112, 5675–5732 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Pospech, J., Fleischer, I., Franke, R., Buchholz, S. & Beller, M. Alternative metals for homogeneous catalyzed hydroformylation reactions. Angew. Chem. Int. Ed. 52, 2852–2872 (2013).

    Article  CAS  Google Scholar 

  9. Murphy, S. K., Park, J.-W., Cruz, F. A. & Dong, V. M. Rh-catalyzed C–C bond cleavage by transfer hydroformylation. Science 347, 56–60 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fang, X., Yu, P. & Morandi, B. Catalytic reversible alkene–nitrile interconversion through controllable transfer hydrocyanation. Science 351, 832–836 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Yu, P., Bismuto, A. & Morandi, B. Iridium‐catalyzed hydrochlorination and hydrobromination of alkynes by shuttle catalysis. Angew. Chem. Int. Ed. 59, 2904–2910 (2020).

    Article  CAS  Google Scholar 

  12. Petrone, D. A. et al. Palladium-catalyzed hydrohalogenation of 1,6-enynes: hydrogen halide salts and alkyl halides as convenient HX surrogates. J. Am. Chem. Soc. 139, 3546–3557 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Walker, J. C. & Oestreich, M. Ionic transfer reactions with cyclohexadiene-based surrogates. Synlett 30, 2216–2232 (2019).

    Article  CAS  Google Scholar 

  14. Bhunia, A. & Studer, A. Recent advances in radical chemistry proceeding through pro-aromatic radicals. Chem 7, 2060–2100 (2021).

    Article  CAS  Google Scholar 

  15. Keess, S. & Oestreich, M. Cyclohexa-1,4-dienes in transition-metal-free ionic transfer processes. Chem. Sci. 8, 4688–4695 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Walton, J. C. & Studer, A. Evolution of functional cyclohexadiene-based synthetic reagents: the importance of becoming aromatic. Acc. Chem. Res. 38, 794–802 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Guin, J., Mück-Lichtenfeld, C., Grimme, S. & Studer, A. Radical transfer hydroamination with aminated cyclohexadienes using polarity reversal catalysis: scope and limitations. J. Am. Chem. Soc. 129, 4498–4503 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Amrein, S., Timmermann, A. & Studer, A. Radical transfer hydrosilylation/cyclization using silylated cyclohexadienes. Org. Lett. 3, 2357–2360 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Chatterjee, I., Qu, Z. W., Grimme, S. & Oestreich, M. B(C6F5)3‐catalyzed transfer of dihydrogen from one unsaturated hydrocarbon to another. Angew. Chem. Int. Ed. 54, 12158–12162 (2015).

    Article  CAS  Google Scholar 

  20. Walker, J. C. & Oestreich, M. Lewis acid catalyzed transfer hydromethallylation for the construction of quaternary carbon centers. Angew. Chem. Int. Ed. 58, 15386–15389 (2019).

    Article  CAS  Google Scholar 

  21. Orecchia, P., Yuan, W. & Oestreich, M. Transfer hydrocyanation of α‐ and α,β‐substituted styrenes catalyzed by boron Lewis acids. Angew. Chem. Int. Ed. 58, 3579–3583 (2019).

    Article  CAS  Google Scholar 

  22. Simonneau, A. & Oestreich, M. Formal SiH4 chemistry using stable and easy-to-handle surrogates. Nat. Chem. 7, 816–822 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Xie, K. & Oestreich, M. Decarbonylative transfer hydrochlorination of alkenes and alkynes based on a B(C6F5)3‐initiated Grob fragmentation. Angew. Chem. Int. Ed. 61, e202203692 (2022).

    Article  CAS  Google Scholar 

  24. Chen, W., Walker, J. C. & Oestreich, M. Metal-free transfer hydroiodination of C–C multiple bonds. J. Am. Chem. Soc. 141, 1135–1140 (2018).

    Article  PubMed  Google Scholar 

  25. Bhawal, B. N. & Morandi, B. Catalytic isofunctional reactions—expanding the repertoire of shuttle and metathesis reactions. Angew. Chem. Int. Ed. 58, 10074–10103 (2019).

    Article  CAS  Google Scholar 

  26. Gribble, G. W. Naturally Occurring Organohalogen Compounds—A Comprehensive Update Vol. 91 (Springer, 2009).

  27. Saikia, I., Borah, A. J. & Phukan, P. Use of bromine and bromo-organic compounds in organic synthesis. Chem. Rev. 116, 6837–7042 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Cresswell, A. J., Eey, S. T. C. & Denmark, S. E. Catalytic, stereoselective dihalogenation of alkenes: challenges and opportunities. Angew. Chem. Int. Ed. 54, 15642–15682 (2015).

    Article  CAS  Google Scholar 

  29. Hennecke, U., Rösner C., Wald, T., Robert, T. & Oestreich, M. in Comprehensive Organic Synthesis 2nd edn, Vol. 7 (eds Molander, G. A. & Knochel, P.) 638–691 (Elsevier, 2014).

  30. Lian, P., Long, W., Li, J., Zheng, Y. & Wan, X. Visible‐light‐induced vicinal dichlorination of alkenes through LMCT excitation of CuCl2. Angew. Chem. Int. Ed. 59, 23603–23608 (2020).

    Article  CAS  Google Scholar 

  31. Dong, X., Roeckl, J. L., Waldvogel, S. R. & Morandi, B. Merging shuttle reactions and paired electrolysis for reversible vicinal dihalogenations. Science 371, 507–514 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Sarie, J. C., Neufeld, J., Daniliuc, C. G. & Gilmour, R. Catalytic vicinal dichlorination of unactivated alkenes. ACS Catal. 9, 7232–7237 (2019).

    Article  CAS  Google Scholar 

  33. Fu, N., Sauer, G. S. & Lin, S. Electrocatalytic radical dichlorination of alkenes with nucleophilic chlorine sources. J. Am. Chem. Soc. 139, 15548–15553 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Prier, C. K., Rankic, D. A. & MacMillan, D. W. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laudadio, G. et al. C(sp3)–H functionalizations of light hydrocarbons using decatungstate photocatalysis in flow. Science 369, 92–96 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Li, J. et al. Photoredox catalysis with aryl sulfonium salts enables site-selective late-stage fluorination. Nat. Chem. 12, 56–62 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Shu, C., Noble, A. & Aggarwal, V. K. Metal-free photoinduced C(sp3)–H borylation of alkanes. Nature 586, 714–719 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Kim, J. H. et al. A radical approach for the selective C–H borylation of azines. Nature 595, 677–683 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Kleinmans, R. et al. Intermolecular [2π+2σ]-photocycloaddition enabled by triplet energy transfer. Nature 605, 477–482 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Monos, T. M., McAtee, R. C. & Stephenson, C. R. Arylsulfonylacetamides as bifunctional reagents for alkene aminoarylation. Science 361, 1369–1373 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tan, G. et al. Photochemical single-step synthesis of β-amino acid derivatives from alkenes and (hetero)arenes. Nat. Chem. 14, 1174–1184 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Majhi, J. et al. Metal-free photochemical imino-alkylation of alkenes with bifunctional oxime esters. J. Am. Chem. Soc. 144, 15871–15878 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Tay, N. E., Lehnherr, D. & Rovis, T. Photons or electrons? A critical comparison of electrochemistry and photoredox catalysis for organic synthesis. Chem. Rev. 122, 2487–2649 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wiles, R. J. & Molander, G. A. Photoredox‐mediated net‐neutral radical/polar crossover reactions. Isr. J. Chem. 60, 281–293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kischkewitz, M., Okamoto, K., Mück-Lichtenfeld, C. & Studer, A. Radical–polar crossover reactions of vinylboronate complexes. Science 355, 936–938 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, Z., Hu, S. & Wu, X.-F. Trifluoroacetimidoyl halides: a potent synthetic origin. Org. Chem. Front. 7, 223–254 (2020).

    Article  CAS  Google Scholar 

  47. Dong, X. et al. Visible‐light‐induced radical cyclization of trifluoroacetimidoyl chlorides with alkynes: catalytic synthesis of 2‐trifluoromethyl quinolines. Chem. Eur. J. 19, 16928–16933 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, Q. et al. Decarboxylative borylation of stabilized and activated carbon radicals. Angew. Chem. Int. Ed. 59, 21875–21879 (2020).

    Article  CAS  Google Scholar 

  49. Hopkinson, M. N., Gómez‐Suárez, A., Teders, M., Sahoo, B. & Glorius, F. Accelerated discovery in photocatalysis using a mechanism‐based screening method. Angew. Chem. Int. Ed. 55, 4361–4366 (2016).

    Article  CAS  Google Scholar 

  50. Patra, T., Das, M., Daniliuc, C. G. & Glorius, F. Metal-free photosensitized oxyimination of unactivated alkenes with bifunctional oxime carbonates. Nat. Catal. 4, 54–61 (2021).

    Article  CAS  Google Scholar 

  51. Lowry, M. S. et al. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem. Mater. 17, 5712–5719 (2005).

    Article  CAS  Google Scholar 

  52. Jiang, X., Zhang, M. M., Xiong, W., Lu, L. Q. & Xiao, W. J. Deaminative (carbonylative) alkyl‐Heck‐type reactions enabled by photocatalytic C–N bond activation. Angew. Chem. Int. Ed. 58, 2402–2406 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Alexander von Humboldt Foundation (postdoctoral fellowship to M.Z., 2021‒2023), and J.Z. is grateful for a Shenzhen Postdoctoral Scholarship (2021‒2023). M.O. is indebted to the Einstein Foundation Berlin for an endowed professorship. We thank members of the laboratory of Matthias Drieß (TU Berlin) for their competent assistance with operando ultraviolet–visible and cyclic voltammetry measurements.

Author information

Authors and Affiliations

Authors

Contributions

M.Z. and M.O. conceived and designed the experiments. M.Z. and J.Z. performed the experiments and analysed the data. M.Z., J.Z. and M.O. discussed the results and co-wrote the paper.

Corresponding author

Correspondence to Martin Oestreich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Xiaobing Wan, Peng-Ju Xia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, Supplementary Sections 1–9 and Figs. 1–211.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhang, J. & Oestreich, M. Photoinduced radical–ionic dihalogen transfer to carbon–carbon multiple bonds using oxime-based surrogates. Nat. Synth 2, 439–447 (2023). https://doi.org/10.1038/s44160-023-00256-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00256-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing