
nature synthesis Volume 2 | June 2023 | 464–466 | 464

https://doi.org/10.1038/s44160-023-00335-1

Comment

Automation, analytics and artificial 
intelligence for chemical synthesis

Junliang Liu & Jason E. Hein

Automation and real-time reaction monitoring 
have enabled data-rich experimentation, 
which is critically important in navigating  
the complexities of chemical synthesis.  
Linking real-time analysis with machine 
learning and artificial intelligence tools 
provides the opportunity to accelerate the 
identification of optimal reaction conditions 
and facilitate error-free autonomous 
synthesis. This Comment provides a viewpoint 
underscoring the growing significance of 
data-rich experiments and interdisciplinary 
approaches in driving future progress in 
synthetic chemistry.

The appearance of SARS-CoV-2 in 2019 set many ground-breaking 
changes in motion. The urgent and immediate threat to human health 
presented the global scientific community with one of the most sig-
nificant challenges of our generation. Even in the earliest days of the 
virus’ spread, synthetic chemistry was poised to play an enormous role 
in mitigating the global pandemic1. One of the most striking advances 
that has emerged from these circumstances was the development of 
nirmatrelvir; an orally bioavailable protease inhibitor developed by 
Pfizer. This drug development campaign set the record for the fastest 
commercial development of a novel pharmaceutical, moving from 
small-scale discovery, though the gauntlet of preclinical toxicology, 
phase I–III trials and gaining emergency use authorization in only  
17 months2. Such fast development at a large scale required the con-
certed efforts of a multitude of scientific disciplines, with synthetic 
chemistry featuring prominently. The synthetic teams had to iden-
tify optimal feedstock materials, solvents, reagents, and catalysts to 
ensure consistent access to material with exceptionally limited time. 
The nirmatrelvir project highlights the critical role reaction process 
data holds in rapid and successful decision making.

The role of automation when navigating the synthesis maze
Synthesizing most molecules requires navigating a multi-step trans-
formation, balancing input materials (solvents, reagents, catalysts), 
reaction parameters (temperatures, order of additions, time) as well 
as workup and purification strategies. Traversing this multifacto-
rial challenge is analogous to searching through a maze with limited 
resources. Historically, chemists had to draw on prior experiences, 
create careful strategies and make decisions with limited data. Enabling 

technology, such as laboratory automation, radically changed the land-
scape, enhancing both the quantity and accuracy of analytical reaction 
data, allowing better decisions in less time. Techniques, such as high-
throughput experimentation (HTE) can be deployed to rapidly survey 
possible reaction conditions3, but these techniques usually only provide 
an analytical percent yield at a fixed reaction time, forfeiting critical 
details pertaining to the reaction mechanism or dynamics (Fig. 1).

The corollary strategy, termed data-rich experimentation (DRE), 
focuses on extracting real-time reaction progress data, quantifying 
all measurable species or parameters, and providing a comprehensive 
play-by-play for a single reaction. Route scouting and optimizing using 
real-time monitoring provides a detailed picture of the reaction kinet-
ics, revealing critical information such as reaction intermediates, rate 
constants, and by-product reaction pathways. Automation is the key 
enabling tool to make DRE approaches a manageable and productive 
endeavour. First, hardware and instrument automation are needed to 
accurately orchestrate the capture and analysis of reaction aliquots 
repeatedly over the entire reaction progression. This applies to differ-
ent degrees depending on the analytical technology of choice (high-
performance liquid chromatography–mass spectrometry, nuclear 
magnetic resonance spectroscopy, high-resolution mass spectrom-
etry) but in all cases the frequency, precision and extended duration 
demanded of the reaction progress measurement disincentivizes 
manual operation. Second, the sheer volume and complexity of reac-
tion analytical data requires software automation techniques to help 
annotate, process, and convert the raw data into trends representing 
concentration versus time arrays for each reaction component. Finally, 
complex reaction manipulations can be executed with automation, 
such as precise variations in temperature or catalyst dosing, allowing 
data to be extracted from a single reaction, which would typically 
require multiple experiments.

Replacing clockwork executing with ‘rules’ and ‘goals’
The current paradigm of data-driven reaction investigation focuses 
almost exclusively on using human-in-the-loop steps for converting 
data to information. This means the analytical tools create real-time 
reaction trends that are then interpreted by an operator to plan or guide 
the experimental campaign. Fixed multivariant statistical tools, such 
as design of experiments or optimization strategies such as batch-
Bayesian optimization leverage automation to acquire large data sets, 
but the final interpretation and scripting is manual.

An emergent opportunity now exists, where telemetry from 
real-time monitoring can be used to dramatically accelerate process 
optimization and reaction discovery. Real-time data can be lever-
aged, enabling automated systems to receive critical feedback on 
the process. This both ensures accurate execution of the intended 
experiment and enhances the transferability and reproducibility of the 
automated synthetic protocol. The same data set can be used to allow 
the automated reaction hardware to adapt to variable circumstances. 
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have merit, but reduction to a single measurement at a fixed time belies 
the complexity inherent to chemical reactions.

Many studies have demonstrated that drawing reaction perfor-
mance data (yield) from existing literature leads to mixed results. 
Data are biased towards most frequently published conditions, lead-
ing to extraction of popular reaction parameters rather than optimal 
conditions9. Worse yet, the heterogeneity in both the quantitative 
measurements, and conditions or techniques applied make it impos-
sible to distinguish if a reported yield is the result of an experimental 
failure or difficulty in isolation. Attempts to homogenize and sys-
tematize reported synthetic data are emerging, however, they are yet 
in their infancy.

Data sets generated from HTE automation systems are more con-
sistent, however may still provide systemic bias, limiting their broad 
applicability. In particular, the time point chosen to assay for the cho-
sen analytical metric may deliver false-positive, or -negative data. 
For example, a low recorded product yield could be due to a reaction 
combination that had a delayed initiation, or if the desired product was 
unstable under the reaction conditions. Thus, choosing the wrong time 
window to query the reaction can lead to dramatic oversimplification 
or misinterpretation of the system under interrogation. While sparse 
data from HTE can act as a guidepost, many truly interesting and unex-
pected breakthroughs are missed.

This is incredibly impactful when trying to execute multi-step trans-
formations, where a precursor must be formed prior to the synthesis 
proceeding. In place of a hardcoded script that would dose a fixed 
quantity of material at a set time, the reactor can be trained to add 
enough reagent when the first reaction is finished4. These conditional 
arguments allow on-the-fly corrections more typical of traditional 
research and development workflows and open the door for error-free 
autonomous synthesis by providing a synthetic ‘goal’ to be achieved 
following experimental ‘rules’.

The potential of AI- and ML-enhanced reaction design
Machine learning (ML) and artificial intelligence (AI) tools are power-
ful additions to experimental data-driven workflows for accelerat-
ing the identification of reaction conditions5. Predictive models have 
been built from experimental data obtained from HTE or literature 
sources, which can suggest reaction conditions to execute an unknown 
transformation6. In addition, autonomous optimization platforms 
have been created by fusing robotic reaction execution, end-point 
sampling and data extraction with ML optimization algorithms7. Using 
these approaches, it is possible to reduce the number of experiments 
required to identify the ideal conditions, however, both examples 
reduce the experimental outcome to a single score of quantity, such 
as percentage yield or percentage stereoselectivity8. These strategies 
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Fig. 1 | Suzuki–Miyaura cross-coupling analysed by ultra-high-performance 
liquid chromatography showing the different peak areas versus time for the 
starting materials as well as products and common by-products. a, Limited 
understanding is achieved when few time-points are captured. b, The identical 

transformation visualized as the full reaction profile immediately provides a 
comprehensive view for the reaction. a.u., arbitrary units; XPhos Pd G2, chloro 
(2-dicyclohexylphosphino-2′,4′,6′-triisopropyl-1,1′-biphenyl)[2-(2′-amino-1,1′-
biphenyl)]palladium(II); THF, tetrahydrofuran.
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Real-time reaction monitoring presents a critical advantage, 
whereby predictive models could be trained using the full kinetic data. 
These comprehensive data address all issues relating to data integrity, 
bias and oversimplification. First, by recording the entire reaction pro-
file, variations in reaction performance by different researchers could 
be captured and explained. Mismatches would serve to focus efforts to 
rectify issues of failed transfer of a protocol. Second, the full evolution 
of reaction species would be captured, allowing the evolution of the 
target material to be delineated, as well as by-products and intermedi-
ates. These trends would serve as useful metadata for future reaction 
discovery as they capture transformations that are possible even if they 
are not the focus of the study. Finally, very few reaction trends may be 
required to unambiguously classify the underlying mechanism using 
an appropriately trained neural network10. In general, the pattern rec-
ognition ability of ML-methods is well suited to train on the complex 
pattern from the entire reaction.

Overall, the data-science revolution in synthetic chemistry is accel-
erating, enhancing the need for robust, data-rich experiments. Real-
time reaction analytics have already been leveraged to dramatically 
reduce the time needed to reach a molecular target. By further linking 
these automated data-gathering methods with new ML and AI tools, 
our ability to predict optimal conditions and discover new synthetic 
routes will grow exponentially. It is through these new interdisciplinary 
approaches that the record-breaking pace for the commercialization 
of nirmatrelvir will become business as usual.
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