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Optimal thermodynamic conditions to 
minimize kinetic by-products in aqueous 
materials synthesis

Zheren Wang    1,2,5, Yingzhi Sun    1,2,5, Kevin Cruse    1,2, Yan Zeng    2, 
Yuxing Fei    1,2, Zexuan Liu    3, Junyi Shangguan    1,2, Young-Woon Byeon    2, 
KyuJung Jun    1,2, Tanjin He    1,2, Wenhao Sun    4   & Gerbrand Ceder    1,2 

Phase diagrams offer substantial predictive power for materials synthesis by 
identifying the stability regions of target phases. However, thermodynamic 
phase diagrams do not offer explicit information regarding the kinetic 
competitiveness of undesired by-product phases. Here we propose a 
quantitative and computable thermodynamic metric to identify synthesis 
conditions under which the propensity to form kinetically competing 
by-products is minimized. We hypothesize that thermodynamic 
competition is minimized when the difference in free energy between 
a target phase and the minimal energy of all other competing phases is 
maximized. We validate this hypothesis for aqueous materials synthesis 
through two empirical approaches: first, by analysing 331 aqueous 
synthesis recipes text-mined from the literature; and second, by systematic 
experimental synthesis of LiIn(IO3)4 and LiFePO4 across a wide range 
of aqueous electrochemical conditions. Our results show that even for 
synthesis conditions that are within the stability region of a thermodynamic 
Pourbaix diagram, phase-pure synthesis occurs only when thermodynamic 
competition with undesired phases is minimized.

Over the past decade, the Materials Genome Initiative has made it 
possible to discover and design new materials from first principles1–4. 
However, synthesizing a computationally predicted material remains a 
challenging but necessary step before any further investigation into its 
functional properties5–7. Thermodynamic phase diagrams are routinely 
used to guide scientists to synthesize a target phase by indicating its 
region of thermodynamic stability8–11. However, from a practical experi-
mental perspective, one must carefully optimize reaction conditions 
to eliminate any undesired competing phases, which often appear as 
kinetic by-products12–14. Traditional phase diagrams do not visualize 
the free-energy axis, which contains essential information regarding 

the thermodynamic competition from these competing phases. Even 
within the same stability region of a thermodynamic phase diagram, 
the details of nucleation kinetics can drive a reaction through differ-
ent intermediate phases15,16, which can persist in the final product as 
undesired by-products.

The difference in free energy between precursors and products is 
the fundamental driving force that propels a reaction toward thermo-
dynamic equilibrium. The magnitude of the thermodynamic driving 
force is an effective proxy for phase transformation kinetics, as ther-
modynamic driving force appears in the kinetic equations of nuclea-
tion, diffusion and growth17–19. Here we hypothesize that one avenue to 
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investigations that the desired target materials can only be synthesized 
in phase-pure form when the thermodynamic competition is mini-
mized. Our work illustrates how a comprehensive understanding of 
the free-energy axis of a phase diagram, considering not only the stable 
phase but also its competing phases, enables the computational design 
and guidance of optimal materials synthesis conditions.

Thermodynamic competition in 
aqueous-solution-based systems
Our thermodynamic strategy aims to maximize the thermodynamic 
driving force from precursors to the desired target while minimizing 
that to the competing phases, thus leading to synthesis conditions that 
maximize the chance of obtaining high phase purity while avoiding the 
kinetic formation and persistence of competing products. When con-
sidering the stability of a target material, the thermodynamic boundary 
conditions should be framed to examine the stability response of the 
target material with respect to an open external chemical reservoir. 
In such case, the natural variables of the thermodynamic system are 
intensive, and the resulting free-energy surfaces are concave. This 
transforms the conditions of heterogeneous equilibrium from a convex 
hull—which applies to extensive variables such as composition—to a 
concave envelope, which can be solved by half-space intersection15,23.

From this geometric description of the energy landscape, the 
thermodynamic competition that a target phase experiences from 
the other phases is defined as the difference in free energy between 
the desired target phase and the minimum free energy of all compet-
ing phases, and is schematically shown in Fig. 1a. We denote phase k 

determine optimal synthesis conditions is to maximize the difference 
in relative free energy between a target phase and its competing phases, 
as illustrated in Fig. 1a. When the free energy difference between a tar-
get phase and its competing phases is maximized, there will be a large  
difference in relative driving force from the precursor to target phase 
versus precursor to by-product phases, meaning the likelihood that 
kinetic factors can promote the competing phases is reduced. We name 
this hypothesis ‘minimum thermodynamic competition’ (MTC). Impor 
tantly, this identifies a unique point in thermodynamic space for  
optimal materials synthesis, such as the example in Fig. 1b—in contrast 
with a stability region from the thermodynamic phase diagram. A  
similar concept based on maximum driving force was recently  
proposed by Walters and Rondinelli for determination of which oxide 
phases form to protect against metal corrosion20.

Here we present an optimization strategy that relies on the 
inherent concave geometry of the free-energy landscape of an aque-
ous electrochemical system (see Methods section), which leads to 
an efficient computational algorithm that can be readily scaled to 
high-dimensional (multicomponent) optimization spaces21. We pro-
vide empirical confirmation of our MTC hypothesis using two comple-
mentary approaches, as shown in Fig. 1c. First, we perform a large-scale 
analysis on a text-mined dataset of solution synthesis recipes22, and find 
that within the available parameter space of synthesis conditions, the 
experimentally reported (and probably optimized) synthesis condi-
tions lie near the conditions predicted by our MTC criteria. Second, we 
perform a detailed thermodynamic competition analysis of two sys-
tems, LiIn(IO3)4 and LiFePO4, and confirm by systematic experimental 
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Fig. 1 | Schematic representation of approach for predicting aqueous-
solution-based synthesis conditions. a, Generation of the hypothesis: 
conditions where the target phase experiences minimum thermodynamic 
competition from other phases are favoured for synthesis. Upper: the 2D plot 
depicts this general concept. The different coloured lines represent the energy 
of various phases. The green line represents the desired target phase; the other 
lines depict the energies of competing phases. Double-headed arrows between 
the lines illustrate the difference in free energy between the desired target 
phase and the minimum free energy among all competing phases, which is the 
thermodynamic competition denoted as ΔΦ. The solid arrow indicates the 

MTC, and stars denote the conditions at which MTC is achieved. The projection 
of the phases with the lowest energy under different conditions forms the 
thermodynamic phase diagram, with the stability regions of phases indicated 
by blocks of corresponding colours. Lower: the 3D plot represents the energy 
landscape of thermodynamic competition in a multidimensional Pourbaix 
system. The dotted line axes represent the high-dimensional aspect for the other 
conditions. b, Predictive synthesis: minimizing thermodynamic competition to 
predict synthesis conditions. E, redox potential. c, Hypothesis testing: large-scale 
analysis based on the text-mined dataset and detailed investigation of LiIn(IO3)4 
and LiFePO4.
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as the desired target phase, Y as intensive variables and Ic as the index 
set of other competing phases. The thermodynamic competition that 
the phase k experiences from other phases, ΔΦ(Y), can be written as:

ΔΦ(Y ) = Φk(Y ) −min
i∈Ic

Φi(Y ) (1)

Here Φk(Y) is the free energy of the desired target phase, and 
mini∈IcΦi(Y )  is the minimum free energy of all competing phases.  
Note that for multiple intensive variables, Y represents a multidimen-
sional vector rather than a scalar.

As ΔΦk(Y) decreases, the thermodynamic competition that the 
desired target phase experiences with other phases becomes weaker. 
Thus, the condition where the thermodynamic competition that phase 
k experiences is minimized is written as:

Y∗ = argmin
Y

ΔΦ(Y ) = argmin
Y

[Φk(Y ) −min
i∈Ic

Φi(Y )] (2)

According to our proposed definition, the ΔΦ for a thermo
dynamically stable phase is always negative, indicating that the target 
compound possesses a lower free-energy state than all its competing 
phases. Minimizing the thermodynamic competition with undesired 
phases is equivalent to maximizing the energy difference from the most 
competitive competing phase to the target phase.

To model solid–aqueous equilibrium, the Pourbaix potential, Ψ, 
provides the free-energy surfaces needed to compute the thermo
dynamic competition that the desired target phase experiences from 
its competing phases in the aqueous solution. As we previously derived 
in ref. 15, the Pourbaix potential is written as:

Ψ̄ = 1
NM

((G − NOμH2O) − RT × ln(10) × (2NO − NH)pH

− (2NO − NH +Q) E)
(3)

where NM, NO and NH are the number of metal, oxygen and hydrogen 
atoms in the composition, respectively; Q is the charge of the phase;  
R is the ideal gas constant; T is the temperature; and E is the  
redox potential. The molar Gibbs free energy of a substance, G, is its 
chemical potential given by, μi = μ∘i + RT ln[ai], where μ∘i  is given by 
the standard-state Gibbs formation free energy and ai is the activity. 
For solids, the activity is 1, whereas for ions, the activity scales with the 
aqueous metal ion concentration. Here we assume that the aqueous 
solution is ideal, such that ai = xi.

From our MTC framework, the intensive variables Y in aqueous 
materials synthesis are pH, E and the concentrations of the metal 
ions. For an aqueous system with three metal ions, this becomes a 
five-dimensional optimization space. In Supplementary Information 
Note 1, we provide a gradient-based computational algorithm that 
efficiently identifies the optimal point within the five-dimensional 
thermodynamic space. There are three additional considerations for 
the MTC framework. (1) In aqueous synthesis, we assume that diffusion 
and growth are fast and that nucleation is the rate-limiting step in phase 
transformation kinetics. The MTC analysis determines which phase 
has the largest driving force to nucleate, based on the initial experi-
mentally prepared solution conditions. Although large differences 
in surface energies can promote the preferential nucleation of meta-
stable phases24–26, we will show here that large free-energy differences 
between the target and competing phases can effectively overcome 
the fast nucleation or long persistence of metastable intermediates. 
(2) Following nucleation, growth of the solid phases will consume ions 
in solution thereby changing the concentrations, pH and redox poten-
tial16. In principle, this can be addressed by developing a model that 
calculates these changes from the amount of solid materials formed 
and re-evaluates the Pourbaix potential for the changing conditions15. 
(3) Our MTC metric here does not consider the influence of temperature 

or time. Aqueous synthesis tends to occur at relatively low synthesis 
temperatures (generally ≤250 °C even under hydrothermal conditions) 
as compared to solid-state powder synthesis (up to ∼1,000 °C); under 
our aqueous synthesis conditions, we thus assume that the contribu-
tion of TΔS (ΔS being the change in entropy between different phases) 
away from 25 °C, where the original Pourbaix formalism was fitted27, is 
small relative to the μ° term in our stability and driving-force analyses. 
The MTC analysis also does not consider time, as our analyses aim 
to predict structure selection at the instant of nucleation, whereas 
longer-time considerations are more relevant in modelling crystal 
growth and particle morphology.

Evaluation of MTC from literature aqueous 
synthesis recipes
Recently, we used a variety of natural-language-processing algorithms 
to text-mine 35,675 solution synthesis recipes from the literature22. Here 
we combine this dataset with first-principles multielement Pourbaix 
diagrams from the Materials Project3,27 to interrogate our MTC hypoth-
esis. When optimizing a solution synthesis procedure, there are many 
experimental degrees of freedom available—including precursor selec-
tion, precursor molar concentration, pH and redox potential. We will 
show that the majority of literature-reported solution synthesis condi-
tions are near the optimal conditions as predicted by MTC, providing 
post hoc empirical validation of the MTC hypothesis.

In the Methods, we describe the procedure for converting a 
reported synthesis recipe into metal ion concentrations, pH values 
and effective redox potential, and the calculation of thermodynamic 
competition under given text-mined conditions. Our text-mined data-
set contains 331 synthesis recipes, including recipes for 200 ternary 
metal oxides, 64 phosphates, 29 carbonates, 15 iodates, 12 sulfates 
and 11 silicates.
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First, we confirm that the majority of the materials in our text- 
mined dataset are stable phases on the Pourbaix diagram under 
some thermodynamic condition, in other words ΔΦ ≤ 0. Specifically, 
Pourbaix-stable phases account for 125/200 ternary metal oxides, 
47/64 phosphates, 27/29 carbonates, 11/15 iodates, 8/12 sulfates and 
9/11 silicates. In Fig. 2a, we plot the distributions of thermodynamic 
competition, ΔΦ, for both the MTC-predicted thermodynamic optimal 
conditions (left violin plot) versus the reported text-mined synthesis 
conditions (right violin plot), using kernel density estimates (KDEs) 
of the thermodynamic competition distributions for ternary metal 
oxides and different polyanionic compounds.

Given the fact that these materials have been synthesized, we can 
directly estimate the magnitude of the MTC that may be required to 
synthesize materials in aqueous solutions. We find that ternary metal 
oxides have a median ΔΦ = −89 meV per atom, phosphates at ΔΦ = −189 
meV per atom, carbonates at ΔΦ = −377 meV per atom, iodates at 
ΔΦ = −96 meV per atom, sulfates at ΔΦ = −311 meV per atom and sili-
cates at ΔΦ = −69 meV per atom. Because these values are derived from 
reported successful syntheses, they may serve as guidelines when 
evaluating the aqueous synthesizability of novel computationally 
predicted materials.

Whereas Fig. 2a shows overall distributions between the thermo-
dynamically optimal conditions and the text-mined condition distribu-
tions, Fig. 2b shows for specific compounds the one-to-one difference 
in energy between their text-mined thermodynamic conditions and 
the corresponding MTC-predicted optimal conditions. Hereinafter, 
we refer to this difference in experimental versus theoretically optimal 
energy difference as Δ(ΔΦ) or the ‘energy above optimum’.

Figure 2b shows that text-mined reported procedures are slightly 
non-optimal, which is evidenced by the peak in probability distribution 
at Δ(ΔΦ) being slightly above the MTC-predicted optimal conditions. 
There are multiple reasons for this. First, successful synthesis of a 
phase-pure target is not limited to the MTC optimum. Once a synthesis 
route has been developed for a material, researchers may not feel the 
need to explore all other possible conditions28. Stated in more mathe
matical language, the optimization function of experimental work 
(achieving a phase-pure target in a reasonable time) is not identical to 
the MTC function. Any contribution to the data from successful reac-
tions away from the MTC (which is a single point in parameter space) 
leads by definition to a positive contribution to Δ(ΔΦ). A second reason 
is that experimental constraints, not included in our analysis, make 
synthesis under some conditions less desirable. For example, extreme 
pH or oxidation potential values may create safety or containment 
hazards29. It is further possible that density functional theory (DFT) 

formation energy errors, which are of the order of 25 meV per atom 
(ref. 30), can lead to inaccuracies in specific Δ(ΔΦ) systems. Neverthe-
less, the magnitude of Δ(ΔΦ) (medians ranging from 19 to 136 meV per 
atom) is much smaller than the magnitude of thermodynamic com-
petition (medians ranging from −69 to −377 meV per atom) shown in  
Fig. 2a, which suggests that the experimentally optimized conditions 
are near the thermodynamically optimal conditions. Most importantly, 
this provides a large-scale empirical validation that the MTC predicts 
synthesis conditions that are likely to be experimentally viable.

A final intriguing observation from Fig. 2a is that many synthesized 
materials have text-mined ΔΦ values that are positive, suggesting that 
some compounds can be synthesized under conditions where they are 
not the lowest free-energy phase. For example, the 90th percentile 
boundary is ΔΦ = +83 meV per atom for phosphates and +34 meV 
per atom for iodates. This compares closely to the 90th percentile of 
inorganic crystalline metastability, which was previously reported to 
be ∼67 meV per atom energy above the convex hull averaged across 
many chemistries31. It is well understood that the relatively low tem-
peratures of solution synthesis often allow ‘chimie douce’ kinetics32 
to dominate structure selection during nucleation33,34, which may 
facilitate the formation of metastable compounds. Our text-mined 
dataset provides explicit quantitative validation of this anecdotal 
intuition for the realization of metastable materials.

Overall, our text-mined dataset provides explicit post hoc empiri-
cal validation of the MTC hypothesis, and furthermore highlights the 
value of such text-mined datasets in not only providing data to train 
machine-learning models35, but also in empirically validating new 
mechanistic theories36.

MTC-guided aqueous synthesis of LiIn(IO3)4 and 
LiFePO4
In addition to our text-mined dataset validation of the MTC hypothesis, 
we also directly validate the MTC hypothesis by evaluating its ability  
to guide the experimental synthesis of multicomponent oxides. Here 
we apply the MTC to search for optimal aqueous electrochemical con-
ditions to synthesize LiIn(IO3)4, a promising superionic conductor37,  
and LiFePO4, a commercialized cathode material38. This repre-
sents two five-dimensional thermodynamic spaces in which to find  
optimized conditions, which are [Li]–[In]–[I]–pH–E for LiIn(IO3)4 and 
[Li]–[Fe]–[P]–pH–E for LiFePO4. We will show that only conditions with 
ΔΦ ≤ −51 meV per atom and ΔΦ ≤ −29 meV per atom successfully result 
in phase-pure LiIn(IO3)4 and LiFePO4, respectively. The magnitudes of 
these ΔΦ values are consistent with our data-driven analyses from our 
text-mined recipes. This ΔΦ information is inaccessible from traditional 

Table 1 | Synthesis parameters with thermodynamic competition analysis and experimental results from X-ray diffraction 
measurements for the synthesis of LiIn(IO3)4

ID Lithium source [Li] [In] [I] pH E (V) ΔΦ (meV per atom) X-ray diffraction results

A1 LiCl + Li(CH3COO) 1.5 0.1 0.8 0.77 1.58 −58 LiIn(IO3)4

A2 LiCl 1.5 0.1 0.8 0.66 1.59 −56 LiIn(IO3)4

A3 LiCl + Li(CH3COO) 1.2 0.1 0.8 0.56 1.59 −51 LiIn(IO3)4

A4 LiCl 1.2 0.1 0.8 0.43 1.60 −46 In(IO3)3

A5 LiCl + Li(CH3COO) 0.8 0.1 0.8 0.87 1.57 −15 In(IO3)3

A6 LiCl 0.8 0.1 0.8 0.71 1.58 −13 In(IO3)3

A7 LiCl + Li(CH3COO) 0.5 0.1 0.8 0.65 1.59 −11 In(IO3)3

A8 LiCl 0.5 0.1 0.8 0.52 1.60 −9 In(IO3)3

A9 Li(CH3COO) 0.15 0.1 0.8 0.91 1.57 −8 In(IO3)3

A10 LiCl 0.15 0.1 0.8 0.85 1.58 −8 In(IO3)3

The concentrations are reported in molarity (mol l−1), calculated with the assumption that all the precursors are completely dissociated. The specific amount of precursors can be found in 
Methods. The pH values are experimentally measured. The redox potentials are derived from data in Pourbaix’s Atlas40.
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Pourbaix diagrams, which only show the stability region and do not 
provide the conditions for optimal phase selectivity.

LiIn(IO3)4 synthesis analysis
First, we focused on synthesizing phase-pure LiIn(IO3)4, which was 
predicted to exhibit one of the highest room-temperature lithium 
ionic conductivities, reaching up to 18 mS cm−1 in the pristine state37. 
When we attempted to reproduce the synthesis of this material using 
the published procedure from Yang et al.39, we were unable to produce 
the target compound. However, using the MTC, we were able to iden-
tify robust synthesis conditions that led to the successful synthesis 
of LiIn(IO3)4.

MTC indicates that the most competitive phase (that is, the phase 
with the lowest energy among all competing phases) is In(IO3)3. The 
MTC analysis further suggests that to promote LiIn(IO3)4, we should 
maximize the aqueous concentration of lithium, and drive the solution 
towards a highly oxidizing and acidic environment. We can rationalize 
this prediction because increasing the concentration of Li+ increases 
the supersaturation of LiIn(IO3)4, while it has no effect on the competi-
tive non-lithium-bearing phase In(IO3)3. The oxidizing environment is 

required because the polyanion IO3
− can only exist at a high redox 

potential because the standard half-cell potential for decomposition 
to I2 isE⦵(IO3

−/I2(s) = 1.18 V. Simultaneously, an acidic environment is 
required to avoid hydrolysis of In3+ to phases such as InOOH. Following 
the MTC recommendations, we designed a series of synthesis experi-
ments that spanned a range of ΔΦ to evaluate the predictive power of 
the MTC analysis.

The highly oxidizing and acidic environment was created by using 
an H5IO6 (E⦵(H5IO6/HIO3) = 1.626 V)40,41 precursor as the iodine source. 
The experimental synthesis conditions and corresponding thermody-
namic competition and final products are given in Table 1. The effec-
tive redox potential of H5IO6 as a function of pH is given by the Nernst 
equation (Methods).

Condition A9 replicates the condition reported by Yang 
et al.39, in which Li(CH3COO) is used as the lithium source, achieving 
[Li] = 0.15 mol l−1. Additional experiments were designed with vary-
ing lithium concentrations, ranging from 0.5 to 1.5 mol l−1, all using 
Li(CH3COO) as the lithium source. Detailed results for these experi-
ments are provided in Supplementary Information Note 2. We confine 
our MTC investigation here to the low-pH regime because we found that 
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for pH ≥ 1.27 ([Li] ≥ 0.5 mol l−1) the In2O3 precursor does not fully dis-
solve, leading to uncertainty as to what the indium concentration is. To 
increase the lithium concentration and maintain pH ≤ 1, we employed 
LiCl as an alternative lithium source, as the presence of CH3COO− would 
act as a pH buffer, which would have increased pH from the desired 
highly acidic solution. Condition A1 is the optimal condition predicted 
by the MTC, achievable by utilizing both LiCl and Li(CH3COO) as the 
sources of lithium. Condition A2 is designed to be similar to A1 but 
utilizes solely LiCl as the lithium source.

To further investigate the influence of lithium concentration and 
pH, conditions A3–A8 and A10 are designed with intermediate lithium 
concentrations, using LiCl and an Li(CH3COO)/LiCl mixture as the 
lithium source, respectively.

LiIn(IO3)4 was successfully synthesized under conditions A1–A3,  
whereas In(IO3)3 was the product phase for conditions A4–A10.  
Figure 3a shows the Pourbaix potentials of several competitive  
phases with respect to LiIn(IO3)4 under conditions A1–A10, and Fig. 3b  
presents the X-ray diffraction results of the corresponding syntheses. 
The XRD data of standard LiIn(IO3)4 and In(IO3)3 refer to ICSD-422056  
and ICSD-250450 (ICSD release 2023.1), respectively42. Figure 3c 
directly maps the lithium concentrations, pH and redox potential to 
ΔΦ to the corresponding synthesis products under conditions A1–A10.

In line with the MTC theory, our experiments confirm that the more 
negative ΔΦ, the higher the kinetic propensity to synthesize a phase-pure 
material. Importantly, we find that even within the Pourbaix stability 
region of LiIn(IO3)4, where ΔΦ < 0, impurity phases can form when the 
ΔΦ relative to the target phase is not negative enough. Under conditions 
A1–A3, with ΔΦ < −51 meV per atom, implying limited thermodynamic 
competition from other phases, LiIn(IO3)4 can be readily synthesized. 
Even though under conditions A4–A10 LiIn(IO3)4 is still the stable phase 
as indicated by a negative ΔΦ (−8 to −46 meV per atom), the energetic 
proximity of undesired phases means that various kinetic mechanisms 
may drive their more favourable formation. Experimentally, In(IO3)3 is 
the final product of conditions A4–A10, which complements the find-
ing from thermodynamic competition analysis that In(IO3)3 is the most 
competitive phase under conditions A5–A10, and the second most 
competitive phase under condition A4, as shown in Fig. 3a.

Our successful synthesis of LiIn(IO3)4 under conditions A1 and A2 
indicates that the irreproducibility of the experiment from Yang et al. 
(corresponding to our A9 condition) could be due to human error, as 

Yang et al. reported [Li] = 0.15 mol l−1 instead of an actual optimal con-
centration of [Li] = 1.5 mol l−1. MTC not only predicts robust synthesis 
conditions to synthesize LiIn(IO3)4, but can also provide a sanity check 
to verify literature synthesis recipes—overall providing a valuable tool 
to guide synthesis design.

LiFePO4 synthesis analysis
In our second example, we evaluate the MTC for providing the pre-
cise conditions for successful phase-pure synthesis of LiFePO4. The 
Pourbaix diagram shown in Fig. 4a presents the stable phases in the 
Li–Fe–P–H2O aqueous electrochemical system at ion concentra-
tions of [Li] = 0.75 mol l−1, [Fe] = 0.25 mol l−1, [P] = 0.3 mol l−1. LiFePO4 
is stable only in the near-neutral pH region. (Note that LiFePO4 is 
not Pourbaix-stable at conventional Pourbaix ion concentrations of 
[M] = 10−6 mol l−1; this illustrates that it is not appropriate to evaluate 
electrochemical stability or metastability without considering ion 
concentrations that are above the solubility product of a target phase43).

Results reported by Liu et al.44 indicate that LiFePO4 was not 
successfully synthesized even within this thermodynamically stable 
region. Here we experimentally validate that the MTC identifies the 
optimal conditions within the LiFePO4 stability window to successfully 
produce phase-pure LiFePO4.

Table 2 summarizes the concentrations of lithium, iron and phos-
phorus, the pH, the redox potential and the final products under dif-
ferent synthesis conditions, which span the experimental conditions 
used by Liu et al.44. Various amounts of H3PO4 were used to control the 
pH and the phosphorus concentration. The pH values in Table 2 are 
measured values, whereas the redox potentials are estimated based on 
glucose oxidation (E⦵(CO2/C6H12O6) = −0.016 V)45, which comes from 
the hydrolysis of sucrose, acting as a reducing agent in this system. The 
effective redox potential of glucose as a function of pH is given by the 
Nernst equation (Methods). Figure 4(b) presents the X-ray diffraction 
results for the products synthesized under conditions B1–B7, indicat-
ing that LiFePO4 is successfully synthesized under conditions B2–B5. 
By contrast, LiFePO4 does not form under basic condition B1 or acidic 
conditions B6 and B7—even though the pH for B6 is within the Pourbaix 
stability region for LiFePO4. Here the XRD data of standard Li3PO4, 
LiFe5O8, LiFePO4, Fe5H10P4O20 and Fe3(PO4)2(OH)2 refer to ICSD-10257, 
ICSD-35768, ICSD-15448, ICSD-61695 and ICSD-91881 (ICSD release 
2023.1), respectively42.
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Fig. 4 | Pourbaix diagram of the Li–Fe–P–H2O system and synthesis results. 
a, Li–Fe–P–H2O Pourbaix diagram with [Li] = 0.75 mol l−1, [Fe] = 0.25 mol l−1, 
[P] = 0.3 mol l−1. The stability regions of different stable phases are marked in 

different colours. b, X-ray diffraction results on the products from syntheses 
under conditions B1–B7, which are associated with varying phosphorus 
concentration, pH and redox potential.
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We calculated ΔΦ for the seven experimental conditions (B1–B7) 
and found that thermodynamic stability (ΔΦ ≤ 0) is not a sufficient pre-
dictor for the formation of phase-pure LiFePO4. Similar to our findings 
for LiIn(IO3)4 synthesis, LiFePO4 can only be synthesized when ΔΦ ≤ −29 
meV per atom, indicating minimal thermodynamic competition from 
potential impurity phases. As the pH changes from basic to acidic, the 
thermodynamic competition first decreases and then increases, with 
the resulting product phases agreeing well with the thermodynamic 
predictions. Under condition B1, when the pH is 12.35, ΔΦ = +1 meV 
per atom, and therefore the thermodynamic competition LiFePO4 
experiences from other phases is very strong and LiFePO4 is not the 
stable phase, which explains why LiFePO4 was not the final product 
under this condition.

As the pH decreases to neutral and weak acidic regions (con-
ditions B2–B5), the ΔΦ ranges from −71 to −29 meV per atom, and 
therefore LiFePO4 is not only the stable equilibrium phase, but also 
experiences minimal thermodynamic competition. LiFePO4 was suc-
cessfully synthesized as the final product under all these conditions. 
However, as the pH further decreases to 5.13 (condition B6), the ΔΦ 
reduces in magnitude to −19 meV per atom, and therefore the relative 
energy of the competing phases becomes closer to that of LiFePO4, 
resulting in greater thermodynamic competition than that under 
conditions B2–B5. Accordingly, we see that the final product formed in 
this experiment is Fe5H10P4O20, indicating that Fe5H10P4O20 is evidently 
kinetically preferred over LiFePO4, even though the latter is still the 
equilibrium phase for these conditions according to the Pourbaix 
diagram.

Our ability to rationalize the kinetic unsuitability of certain con-
ditions that are within the thermodynamic stability region of the  
Pourbaix diagram demonstrates the advantage of our MTC theory over 
traditional phase diagram methods.

Discussion
We have presented here a computable thermodynamic strategy to 
navigate a multidimensional thermodynamic space and identify 
optimal experimental conditions to synthesize a phase-pure target 
material. Our approach adds to traditional phase diagrams a quantita-
tive measure to approximate the kinetic competitiveness of poten-
tial competing phases. Both our large-scale analysis on text-mined 
synthesis recipes, and our experimental synthesis of LiIn(IO3)4 and 
LiFePO4 under varying aqueous electrochemical conditions, demon-
strate that thermodynamic stability alone may not be sufficient to 
predict conditions that result in phase-pure synthesis. Instead, target 
phases are more likely to be synthesized when the energy difference 

with undesired phases is maximized, such that ΔΦ is as negative as 
possible, and therefore thermodynamic competition with undesired 
by-products is minimized. The relevance of the quantitative compe-
tition measurement for successful synthesis is consistent with our 
mechanistic understanding of the kinetic processes that can bias 
reaction kinetics away from thermodynamic end-products. The more 
negative the ΔΦ for a target phase is, the stronger the required kinetic 
bias needs to be to form other phases (lower surface energy15, faster 
monomer diffusion or attachment rates12). As such, while the MTC 
does not explicitly include kinetics calculations, by minimizing the 
energetic competition from other phases, the MTC safeguards the 
synthesis of the target phases as much as possible from undesired 
by-products.

We note that the magnitude of the thermodynamic competition 
scale (tens of meV per atom) in aqueous-solution-based synthesis is 
smaller than the thermodynamic limit for the synthesis of metastable 
inorganic materials (>100 meV per atom)46, and might be comparable 
with DFT errors47–49. However, we note that literature-established DFT 
errors cannot be directly applied as error bars in our analysis because: 
(1) they are reduced by corrections based on the experimentally known 
dissolution energies of elemental solids and oxides, as implemented in 
pymatgen;27 and (2) solid-state errors in DFT tend to be systematic and 
to a large extent cancel between phases within the same chemistry47. 
Another important consideration is that the MTC analysis here predicts 
how ΔΦ between a target phase and undesired phases changes with 
applied aqueous electrochemical conditions. Because the gradients 
of the high-dimensional Pourbaix free-energy planes are formulated 
based on the chemical compositions of the phases, which are known 
exactly, this means we can evaluate ΔΦ with much greater confidence 
than Φ.

Beyond synthesis from aqueous solutions, we note that our 
schema is generalizable to other synthesis scenarios. For other syn-
thesis methods, appropriate thermodynamic potentials based on 
different natural intensive variables are also viable. Fortunately, 
Materials Genome Initiative efforts have not only led to large-scale 
ab initio computed databases1,3 that provide reliable sources of ther-
modynamic data, but also deliver materials analysis platforms2 that 
can automate competing phase-generation and grand-potential 
calculations. Therefore, different thermodynamic potentials can be  
easily constructed from this thermodynamic data using Legendre 
transformations based on the relevant boundary conditions of 
the thermodynamic system27,50. For example, the surface-energy 
term should be considered in nanoparticle synthesis analysis15,51,52; 
mechanical work should be included in ball-milling synthesis53–55; 
and an electromagnetic-susceptibility term is important to take into 
account when electric and magnetic fields are applied56,57. Thus, the 
MTC hypothesis can be extended to different synthesis scenarios, 
although the applicability of MTC in different syntheses requires 
further comprehensive and systematic evaluation.

Methods
Thermodynamic potential in an aqueous solution system
To apply the MTC hypothesis to synthesis from aqueous solutions, the 
relevant thermodynamic potential is the Pourbaix potential, which can 
be constructed from the Gibbs free energy by Legendre transformation:

Φ(Y ) = G − ∂G
∂NH

NH −
∂G
∂NO

NO −
∂G
∂Q

Q, (4)

where NM, NO, NH are the number of metal, oxygen and hydrogen atoms 
in the composition, respectively, and Q is the charge of the phase15. The 
partial derivative of G with respect to NH is the chemical potential of 
hydrogen μH. The partial derivative with respect to NO is the chemical 
potential of oxygen μO. The partial derivative with respect to Q is the 
redox potential E.

Table 2 | Synthesis parameters with thermodynamic 
competition analysis and experimental results for LiFePO4 
synthesis

ID [Li] [Fe] [P] pH E (V) ΔΦ (meV 
per atom)

Product

B1 0.75 0.25 0.15 12.35 −0.74 1 LiFe5O8 and 
Li3PO4

B2 0.75 0.25 0.27 9.27 −0.56 −71 LiFePO4

B3 0.75 0.25 0.28 8.29 −0.50 −58 LiFePO4

B4 0.75 0.25 0.29 7.21 −0.44 −43 LiFePO4

B5 0.75 0.25 0.44 6.00 −0.37 −29 LiFePO4

B6 0.75 0.25 0.69 5.13 −0.31 −19 Fe5H10P4O20

B7 0.75 0.25 1.82 0.95 −0.07 44 Fe3(PO4)2·3H2O

The concentrations are reported in molarity (mol l−1), calculated on the assumption that all 
the precursors are completely dissociated. The specific amount of precursors can be found 
in Methods. The pH values are experimentally measured. The redox potentials are estimated 
based on glucose oxidation45.
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The two constraints imposed by equilibrium in water,

1
2
H2 ↔ H+ + e−

H2O ↔ 2H+ + 1
2
O2 + 2e−,

(5)

yield:

μH = μH+ − E

μO = μH2O − 2μH+ + 2E
(6)

After substituting the chemical equilibrium equations from equa-
tion (6) and the relationship between pH and μH (μH+ = −RT × ln(10) × pH) 
into the Legendre transformation equation (4) and normalizing the 
Pourbaix potential by the number of metal atoms, the Pourbaix poten-
tial can be obtained:

Ψ̄ = 1
NM

((G − NOμH2O) − RT × ln(10) × (2NO − NH)pH − (2NO − NH +Q) E)
(7)

The molar Gibbs free energy of a compound, G, is its chemical 
potential, μi = μ∘i + RT ln[ai] , where μ∘i  is given by the standard-state 
Gibbs formation free energy. A pure solid with no defects has an activity 
of 1, making the RT ln[ai] term zero. The chemical potential of metal 
ions in solution is assumed to scale with the natural log of the metal ion 
concentration in solution.

Thermodynamic competition calculation and optimization
The thermodynamic data used here were retrieved from the Materials 
Project3 using the Python Materials Genomic (pymatgen) package2. All 
competing phases and corresponding Pourbaix potentials were gener-
ated and calculated through the Pourbaix Diagram module27. Here we 
assume that the thermodynamic potential is linearized15, such that the 
thermodynamic competition analysis formulated in equation (1) can 
be treated as a convex optimization problem in its natural variables, as 
stated by the pointwise minimum theorem58. Therefore, gradient-based 
optimization algorithms (Code availability and Supplementary Informa-
tion Note 1) can be used to optimize natural variables (that is, pH, redox 
potential (E), and log-scaled concentrations (ln[X]) in aqueous solution 
system) to obtain the minimized thermodynamic competition in the pre-
defined searching synthesis space. In this work, the searching synthesis 
space was defined as 0 ≤ pH ≤ 14, −1 V ≤ E ≤ 2 V and 0 mol l−1 ≤ [X] ≤ 2 mol l−1.

Text-mined dataset analysis
We used the dataset of text-mined solution-based synthesis recipes22 
to perform the thermodynamic competition analysis. We first filtered 
out syntheses that have a final heat-treatment step after the precipi-
tate is obtained from the solution. Then, we identified aqueous solu-
tion syntheses based on the solvent (that is, solvent is water)22. The 
filtering resulted in 20,062 out of 35,675 procedures to be defined as 
aqueous-solution-based without subsequent heat treatment. In this 
subset, 4,431 unique targets were synthesized, and 1,370 of them can be 
found in the Materials Project database, leading to 421 metal oxides and 
251 unique polyanionic compounds. We selected procedures resulting 
in ternary metal oxides, phosphates, carbonates, iodates, sulfates and 
silicates, as synthesized targets, and kept only those targets with an 
mp-id, meaning their thermodynamic data are available in the Materi-
als Project database. Because the dataset is unbalanced, we randomly 
sampled up to three procedures for compounds, such as LiFePO4 and 
CaCO3, which appear with high frequency to avoid distributions being 
skewed. To specify the synthesis conditions, we manually curated the 
synthesis recipes: (1) the quantities of materials were converted into 
concentrations of different ions; (2) pH was calculated based on the 
concentrations and pKa of different ions using pHcalc (https://github.
com/rnelsonchem/pHcalc); (3) the redox potentials at the calculated pH 

were estimated. We only kept synthesis recipes that can provide enough 
information to construct the Pourbaix system. In the final dataset used 
for the statistical analysis in Fig. 2, there are 139 unique ternary metal 
oxides, 40 phosphates, 15 carbonates, 13 iodates, 9 sulfates and 9 sili-
cates. Pourbaix potentials for all target phases and their corresponding 
possible competing phases were then calculated based on the estimated 
synthesis conditions using the Pourbaix diagram module in pymatgen. 
Finally, we calculated the thermodynamic competition the target phases 
experience according to equation (1). We then performed the optimiza-
tion to minimize the thermodynamic competition the target phases 
experience from competing phases for comparison purposes. The details 
of the data format are provided in Supplementary Information Note 3.

Effective electrochemical potential of redox agents
The half-cell reaction between an oxidized species [A] and its reduced 
product [B] can be written as:

aA +mH+ + ne− → bB + cC (8)

The effective electrochemical redox potential of these redox pairs is 
determined by the Nernst equation:

E = E⊖ − 0.0591 1n ln [B]b[C]c
[A]a − 0.0591mn pH (9)

Here, A and B represent the redox pair, C is another possible chemical 
species involved in the reaction in case A and B cannot form a balanced 
reaction, and E⦵ is the standard redox potential.

We note that after the product phase has nucleated and the reac-
tion proceeds via crystal growth, the chemical oxidizing/reducing 
agents will be consumed, and the effective electrochemical redox 
potential in the solution will change as a function of reaction progress. 
Determining the final redox potential and pH of an aqueous synthe-
sis reaction is not currently amenable to Pourbaix diagram analyses 
because this requires a model to couple the growth of the solid phase to 
the depletion of the solution. Based on refs. 59,60, we use the following 
formula to estimate the redox potential in the system:

E = E⊖ − 0.0591mn pH (10)

Synthesis of LiIn(IO3)4

Li(CH3COO) (anhydrous, Sigma-Aldrich, 99.9%) and LiCl (Sigma- 
Aldrich, 99%) were used as lithium sources for the synthesis of LiIn(IO3)4.  
Different amounts of lithium salts (A1, 1.5 mmol Li(CH3COO) + 13.5 mmol  
LiCl; A2, 15 mmol LiCl; A3, 1.5 mmol Li(CH3COO) + 10.5 mmol LiCl; A4, 
12 mmol LiCl; A5, 1.5 mmol Li(CH3COO) + 6.5 mmol LiCl; A6, 8 mmol 
LiCl; A7, 1.5 mmol Li(CH3COO) + 3.5 mmol LiCl; A8, 5 mmol LiCl; 
A9, 1.5 mmol Li(CH3COO); and A10, 1.5 mmol LiCl) were mixed with 
0.5 mmol In2O3 and 8 mmol H5IO6. The mixture was dissolved in 10 ml 
water. The obtained solution was sealed in an autoclave equipped with 
a Teflon liner (49 ml) and heated at 200 °C for 132 h, followed by natural 
cooling to room temperature. The products were centrifuged, washed 
with water three times and dried in a 70 °C vacuum oven for 12 h.

Synthesis of LiFePO4

LiFePO4 was synthesized by a hydrothermal method in a nitrogen 
environment. This method involved dissolving 5 mmol FeSO4·7H2O 
(Sigma-Aldrich, 99%), 15 mmol LiOH·H2O (Sigma-Aldrich, 99.95%), 
0.04 g sucrose and various amounts of 85 wt% H3PO4 (Sigma-Aldrich) in 
20 ml water and then sealing the solution in an autoclave equipped with 
a Teflon liner (49 ml). The pH of the mixture solution was controlled by 
the amount of 85 wt% H3PO4. The autoclave was heated at 170 °C for 12 h, 
followed by natural cooling to room temperature. The products were 
centrifuged, washed with water and ethanol three times and dried in 
a 70 °C vacuum oven for 12 h.
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Structure characterization
X-ray diffraction analysis was carried out using a Rigaku MiniFlex 600 
diffractometer with Cu Kα radiation (λ = 1.5406 Å) with a step size of 
1° min−1 from 10° to 70°.

Data availability
All relevant data are provided within this paper and are available at 
https://doi.org/10.6084/m9.figshare.23902362 ref. 61,42.

Code availability
All of the codes used for analysing the coordination environment were 
based on pymatgen software and its Pourbaix diagrams module27. Code 
to calculate the thermodynamic competition and optimize synthesis 
conditions by minimizing thermodynamic competition is provided 
at: https://github.com/zherenwang/synthesis_condition_optimizer.
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