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High-resolution computed tomography
with scatteredX-ray radiation and a single
pixel detector
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X-ray imaging is a prevalent technique for non-invasively visualizing the interior of the humanbody and
other opaque samples. In most commercial X-ray modalities, an image is formed by measuring the
X-rays that pass through the object of interest. However, despite the potential of scattered radiation to
provide additional information about the object, it is often disregarded due to its inherent tendency to
cause blurring. Consequently, conventional imaging modalities do not measure or utilize these
valuable data. In contrast, we propose and experimentally demonstrate a high resolution technique for
X-ray computed tomography (CT) that measures scattered radiation by exploiting computational
ghost imaging (CGI). We show that the resolution of our method can exceed 500 µm, which is
approximately an order of magnitude higher than the typical resolution of X-ray imaging modalities
based on scattered radiation. Our research reveals a promising technique for incorporating scattered
radiation data in CT scans to improve image contrast and resolution while minimizing radiation
exposure for patients. The findings of our study suggest that our technique could represent a
significant advancement in the fields of medical and industrial imaging, with the potential to enhance
the accuracy and safety of diagnostic imaging procedures.

Commercial X-ray scanners utilize the same physical principle that Wil-
helm Roentgen demonstrated in 1895 when he used X-rays to image the
hand of his wife1. The X-rays passing through the object are absorbed to
varying degrees by the different structures, creating an image that shows the
internal composition of the object. Inmedical imaging, for instance, denser
structures such as bones absorbmoreX-rays and appearwhite on the image,
while softer tissues, like muscles and inner organs, absorb fewer X-rays and
appear darker. This very simple concept has proven useful and robust,
making X-rays one of the most valuable medical and industrial imaging
modalities. However, it became apparent soon after X-rays were first used
for imaging that the image quality was significantly degraded in many
practical scenarios where the density variations of the organs were small or
when the volume of the object was significant2–5.WhenX-rays interact with
the electrons in the object, they are not only absorbed but are also scattered,
introducing significant blurring and distortions of the images. To partially
mitigate the impact of scattered radiation on the image quality, grids or
collimators are used, but these tools also increase the radiation dose leading
to a significant increase in the risk of radiation damage6–11. Notwithstanding

the successful applicationof thosedevices, their ability to reduce scattering is
limited and might be insufficient for scenarios where the contrast of the
image is low or when a detailed image of the object is required. Despite
numerous endeavors to improve image quality and reduce radiation dose,
scattering remains a persistent challenge12–22, especially in CT scans since
they target large volumes and low contrasts.

Compton scattering in human tissues is stronger than the absorption
for the photon energy range typically used for CT scans (80–150 keV), as
illustrated in Fig. 123, which shows the absorption (the photoelectric effect)
and theCompton scattering (the incoherent scattering) in cortical bones as a
function of the photon energy of the X-ray beam. This plot clearly shows
that current X-ray imaging techniques leave substantial amount of energy
unused, necessitating higher doses to achieve adequate image quality24,25.

Here we propose and experimentally demonstrate a technique for CT
that measures the scattered X-ray radiation by utilizing a ghost imaging
approach. We combine computational ghost imaging (CGI)26–28 with a
recently developed deep learning algorithm29, and an advanced CT image
reconstruction toolbox30 to reconstruct a high resolution three-dimensional
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(3D) CT image of a part of a largemammal bone.Our results unequivocally
demonstrate the capability of our method to provide a resolution of at least
500 µm with scattered X-ray radiation. This performance surpasses that of
commercially available X-ray imaging modalities based on scattered
raiation31,32, and significantly enhances image contrast compared to tradi-
tional transmission-based X-ray imaging modalities.

We chose to employ CGI, which is a form of single-pixel imaging
method since it has been shown to be more robust to scattering than
standard imaging methods33,34. This is because in CGI the spatial infor-
mation is derived from the spatially modulated beam, which interacts with
the object, rather than from the detector pixels. While X-ray CGI has been
previously demonstrated with single-pixel detectors for collecting
transmitted35–39, fluorescent40, and refracted radiation41, we apply this
technique to incoherent (Compton) scattered X-ray radiation. This
approach is akin to themethodproposedbyA.MKingston et al. for imaging
of scattered neutrons42.

It is worth mentioning that although cameras based on the Compton
effect are available31,32, their resolution is poor due to the tendency of scat-
tered radiation to blur. As a result, they are not suitable formedical imaging,
unlike our proposed method which provides higher resolution and better
image quality.

In CGI, the input beam is spatially modulated to produce intensity
patterns on the object. The signal from the object, which can be the intensity
transmitted, refracted, or scattered, is thendetectedbya single-pixel detector
and registered by our acquisition system. The measurement is repeated for
different patterns and the image is reconstructed by solving an inverse
problem defined by the equation:

Ax ¼ S; ð1Þ

where the mask patterns are represented by the matrix A, for which every
row is a single illumination structure, the vector x is the response function of
the object (either the transmission, the reflection, or scattering), and S is the
detected signal. The reconstruction of the scatter image is done by solving
the equation for the vector x.

To expedite the reconstruction process and minimize measurement
time, we employed a reconstruction algorithm based on the technique of
Ghost Imaging using Deep neural network Constraint (GIDC). The algo-
rithm, for the technique was developed to leverage an untrained, self-
supervised deep neural network (DNN) to generate far-field super-resolu-
tion with visible light29. In the present work we were able to modify GIDC
(Table 1)to work with X-ray scatter radiation. The approach is based on the

concept that aDNNwith randomly initializedweights can recover an image
more accurately by adding a conventional regularization term, such as the
total-variation (TV)43. The minimization of the loss function of GIDC is
crucial in order to obtain a high-quality image. The weights of the DNN are
adjusted in each iteration with the constraint of the pre-determined reg-
ularization parameter. The loss function is reformulated as follows:

Tφ� ¼ argminφ ATφ xð Þ � S
��� ���2 þ τT Tφ xð Þ

h i
; ð2Þ

where Tφ� is the DNN, defined by a set of weights and biases parameters φ.
The objective of GIDC is to find an optimal configuration φ� for the neural
network, which effectively constrains the network output to produce a 1D
sequence eS ¼ ATφ xð Þ, in accordance with the GI image formation physics
as described byEq. (1). This reconstructed sequence should closely resemble
the experimentally acquired bucket signal S, where x represents the response
function of the object. The symbolT represents the TV operator that works
on the reconstructed image while the symbol τ denotes the regularization
parameter. This parameter allows us to determine the degree of sparsity to
enforce on the minimized term. The following procedure provides a two-
dimensional image that contains 16,384 pixels constructed using 3468 sam-
plings. We chose this number of samplings because we observed negligible
improvement of the image quality when the number of samplings exceeded
this value (see Supplementary Note 5 and Supplementary Fig. 6).

To perform a 3D image reconstruction using tomography techniques,
it is essential to obtain projections of the object from various angles. We
successfully accomplish this for both transmission and scatter images (see
Supplementary note 1). In the case of transmission, we captured the images
directly with a flat panel detector. For the scatter images we employed our
CGI technique. We repeated the procedure multiple times, rotating the
object each time, which allowed us to reconstruct 3D images from 28 dif-
ferent angles. This number of angles proved sufficient for our relatively
simple object. For more complex objects, it is likely that more angles will be
required, but this can be achieved as in any standard CT scan.

We implemented the GI with our scattered radiation scheme using the
experimental setup illustrated in Fig. 2. It includes an X-ray source with
parameters tuned to 80 kVp and 2mA. To minimize scattering from the
surrounding environment we employed 500mm long circular collimator
with a radius of 7.5mm(not shown), positioned between the source and the
object. The beam divergence after passing through the collimator was
estimated to be 0.85°. We used a slit (not shown) to reduce the beam size at
the object to 17 �19.5mm2,which is comparable to the size of the object. The
spatial modulation of the beam immediately before reaching the object was
achieved by a mask comprised of absorbing silver features. These features
have transverse dimensions of roughly 100 µm and thickness of about
1500 µm. The distance between the source and the mask is 1300mm and
the object is located 50mmdownstream of themask. The object underwent
360° rotation during the measurements, facilitated by a rotation stage
(not shown).

Fig. 1 | Photon energy dependence of the cross-sections of photo absorption
(orange) and Compton scattering (blue) in cortical bones. The incoherent scat-
tering is stronger than the photoelectric absorption for photon energy range of
80–150 keV.

Table 1 | The parameters used in theGIDCcode (also provided
as Python code Supplementary Fig. 8)

Image width 128px

Image Hight 128px

Sampling Rate 0.211

Batch size 1

Learning rate 0.002

TV strength 1 � 10−3.9

Number of patterns 3468

Number of optimization steps 1501
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The mask patterns are known, randomly distributed binary patterns
with transmission-absorption ratio of 1:1, that are irradiatedonto the object.
High resolutionX-rayGI techniques require changing the incident beamfor
having high contrast and small feature size which can be challenging at high
photon energies, as photon penetration depth increases. To overcome this
challenge, we adopted a technology made for electrical circuits 3D printing
as it can provide high aspect ratio, 100 µm printing resolution with silver
(see Methods section). The scintillation detector is located 50mm from the
object. To demonstrate the reliability of our imaging method, the detector
was mounted at ~90° relative to the input beam since the differential cross
section given by the Klein-Nishina formula at this angle is small44 (low
scattering angle):

dσ
dΩ

¼ 1
2
r2e

λ

λ0

� �2 λ

λ0
þ λ0

λ
� sin2 θð Þ

� �
; ð3Þ

where dσ
dΩ is the differential cross section, λ is the wavelength of incident

X-ray photon, λ’ is the wavelength of scattered X-ray photon, θ is the
scattering angle of the scatteredphotonand r2e is the classical electron radius.

We first calibrated the CT reconstruction algorithm45 by adjusting to
the variables which provide the best-quality 3D CT image, with 28 projec-
tions by utilizing transmission X-ray we acquired with a flat panel detector
(Table 2).Next, we used these variables to reconstruct the 3DCT imagewith
the corresponding projections we acquired from the scattered X-ray
radiation.

To validate our method and to benchmark its efficiency, resolution,
and sensitivity against the standard direct transmission CT reconstruction,
we reconstructed 3D images of a bone using signals obtained from trans-
mission negative images, scattering reconstruction images, and their nor-
malized average.

Results and discussion
In Fig. 3a–l we present the isosurface of the bone from the reconstructed
images using all three methods and compare it to a LiDAR 3D image in
Fig. 3m–p. Due to its resilience to image degradation caused by scattering,
the scatter reconstruction reveals finer details on the surface of the object
when compared to the transmission reconstruction, demonstrating the
superior ability of our method to capture intricate object features. The
theoretical resolution of our method is estimated by the autocorrelation
width of the mask used to generate the patterns and the reconstruction
algorithm46,47 (see Supplementary Note 2 and Supplementary Fig. 2). In our
case, this length is 155 µm. The spatial resolution of the images obtained by
direct imaging with a flat panel detector is determined by the resolution of
the detector, which we estimate to be about 500 µm, reflecting the blurring
by the scintillation screen. The combined reconstruction reveals features
which are blurred in the transmission reconstruction due to scattering. This
suggests anewapproach to eliminate theneed for collimators after theobject
while maintaining high-quality images despite scattering. Adopting this
approach has the potential to significantly reduce radiation exposure as
collimators absorb a substantial amount of radiation, which represents lost
information that could have been collected as demonstrated in our
experiment.

It is important to note that unlike previous works on 3D reconstruc-
tions using single-pixel detectors with visible light48,49, which recovered only
the surface gradients to derive the 3D surface of the object, we, like A. M.
Kingston et al. which achieved GI tomographic reconstruction of trans-
mitted radiation with synchrotron radiation50, reconstructed a 3D volume
that contains information about both the internal parts and the surface of
the object with a tabletop X-ray setup. This enables us to present tomogram
slices from top to bottom of the object as is shown in Fig. 4a–i. We speci-
fically focused on a small hole in the bone, whose size is ~2000 µm on one
end and 1200 µm on the other and presented its cross sections in Fig. 4j, k.
The images and cross sections reveal that the edge of the hole is nearly
imperceptible in the transmission tomogram due to scattering. In contrast,
the scatter tomogram remains resilient to this effect and clearly depicts the
hole. This indicates that our method provides higher resolving power
compared to standard transmission-basedCT.To further explore the ability
of our method to resolve fine details, we evaluated the reconstruction
resolution by measuring the cutoff frequency of the Fourier ring

Table 2 | Computational tomography (CT) reconstruction tool
code parameters (also provided as MATLAB code in Supple-
mentary Fig. 9)

Projection angles 0, 180, 90, 270, 45, 225, 315, 135, 22.5, 202.5, 67.5,
247.5, 112.5, 292.5, 157.5, 337.5, 355, 175, 348, 168,
353, 173, 5, 185, 12, 192, 300, 120

Number of algorithm
iterations

500

Image width 128px

Image Hight 128px

Mode Parallel

Algorithm SART TV

TV lambda 1000

TViter 1000

Fig. 2 | Schematic of the experimental setup. The silver mask modulates the beam,
which irradiates the object (bone) with known random binary speckle patterns. The
scattered X-ray radiation is then collected by a single pixel scintillation detector and

the resulting signals are used to reconstruct a computational image from different
angles as the object is rotated using a rotation stage (not shown).
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correlation50–52 of two different, 3000 samplings reconstuctions (see Sup-
plementary Fig. 7). The cutoff frequency is ~0.001 µm−1 and thus the spatial
resolution is 500 µm (Fig. 4l).We belive that the degredation in resolution is
due to noise from ourmeasuring systemwhichwas caused by ground loops
in the setup.

Figures 3, 4 illustrate the potential advantages of ourmethod, however,
there are still several differences between the 3Dreconstructions obtainedby
transmission and by scattering. These differences are highlighted in the
tomograms of the bone taken from front to back, shown in Fig. 5. One
noticeable difference is that with our method the object seems darker in its
middle section. This is mostly due to self-absorption and self-scattering that
led to a reduction of the signal measured by the detector. Although the
differences result fromthe real physical differences between themechanisms
that govern absorption and scattering, they have to be understood or
reconciled to provide the correct 3D structure of the object. This challenge
can bemitigated by using another detector (or detectors) at a different angle
to compensate for this effect (see Supplementary notes 3, 4 and Supple-
mentary Figs. 3–5).We also note that in the tomogram reconstructed by the

combination of scattering and transmission the self-attenuation is less
pronounced suggesting that the modality can overcome the challenge with
some improvement in the algorithms. A second prominent challenge is
related to the tradeoff between themeasurement time and the image quality.
Since ourmethod relies on scanning, themeasurement time is proportional
to the number of samplings taken. However, to achieve high image quality,
even with clever reconstruction algorithms, the quality of the image is
degraded when the number of samplings ismuch lower than the number of
pixels.

Ourwork suggests that scatter radiation canbeharnessed to createhigh
resolution CT images, either on its own or in conjunction with traditional
transmission information, resulting in a significant improvement in image
quality. The selection of approach depends on the specific details of the
application and constraints of the measurements. For instance, using
scattering-only based CT allows the detector to be mounted at any angle,
which can be advantageous in situations where access to certain locations is
limited. By combining scatter and transmission information, it is likely that
a smaller number of scanning pointswill be required,making this approach

Fig. 3 | Isosurface of the bone from various angles. The isosurface was recon-
structed using data obtained by different imaging modalities: (a–d) transmission,
(e–h) scatter, and (i–l) combination of transmission and scattering. The transmis-
sion isosurface provides a general representation of the structure of the object while
the scatter isosurface offers greater details thanks to its higher resolution and

resilience to scattering noise. The combined isosurface shows the general structure of
the object maintaining high resolution and displaying the transmission image with
additional details. As a guide we added the corresponding 3D LiDAR (laser imaging,
detection, and ranging) scans captured with iPhone pro (m–p).
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more suitable when dose is a primary concern. Furthermore, our technique
has the potential to enhance the image quality of medical CT images by
offering higher capability to resolve small and complex details and lower
radiation dose. This is made possible by the simultaneous collection of
scattered photons from a 360-degree range. As a result, the need for grids
that are currently used in medical X-ray measurements can be eliminated,
simplifying the imaging process and further improving image quality. By

discarding these grids, we can reduce image artifacts and improve the over
all diagnostic accuracy of medical CT imaging.

Methods
Equipment details
The x-ray cone beam source in the experiment was aVJ Technologies P051,
whichwasoperated at a voltage of 80 kVanda current of 2mA.Tocollimate

Fig. 4 | Tomogram (cross-sectional) images of the bone. Tomograms sliced from
top to bottom: (a–c) transmission, (d–f) scatter and (g–i) a combination of both. The
tomograms in each row correspond to the same slice that has been reconstructed
using the respective modality. j, k Presents the cross sections of (b) and (e)
respectively when the green lines represent 10% and 90% of the signal intensity in

each graph. lFourier ring correlation of the (e) tomogramas a function of the Fourier
domain frequency. The cross between the FRC graph and the half-bit graph is
approximately at 0.001 µm−1, which indicates that the resolution of our system is at
least 500 µm.

Fig. 5 | Tomogram (cross-sectional) images of the bone. Tomograms sliced from the front: (a) the transmission, (b) scatter, and (c) a combination of both.
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the beam,we used a 14mmdiameter, 500mm long, 18mmthick lead sheet,
fashioned into a tube shape, with a slit mounted at its end. The silver mask
was custommadeusing a special 3Dprinter byNanoDimensionLtd53 and it
was mounted on two Thorlabs LTS150 stepper motors for precise posi-
tioning.Weused aThorlabsK10CR1 steppermotor rotation stagemounted
on two Thorlabs MTS50-Z8 steppermotors to rotate the object and align it
with respect to the beam. The detector of choice was a Saint Gobain Lan-
thanumBromide scintillation detector pairedwithAS-20 photonmultiplier
tube. The detector is connected to theAmptekDP5Gdigital pulse processor
and a Canberra 3102D high-voltage power supply. The flat panel detector
used for capturing the transmission images of the object is the iRay Tech-
nology NDT0909M.

Mask production and calibration
Themaskwas created using a patentedunique process byNano-dimension,
which utilizes a multi-material multi-layer 3D printer that the company
typically uses for fabricating electrical circuits with silver and polymer. We
designed themask to have 1480 × 1480 pixels with transmission-absorption
ratio of 1:1 and dimensions of 160mm× 160mm× 1.5mm with a feature
size of 108 µm.

To circumvent the potential inhomogeneity in the absorption of the
mask, we measured its transmission using a flat panel detector. The reso-
lution of the images obtained from the transmission data, which we
obtained by our flat panel detector is expected to be ~500 µm.We summed
over all pixels in each measurement to normalize the data. To ensure
accurate alignment with the manufacturing files on the computer, we used
the same low-resolution flat panel detector to capture an image of themask.
We later established a correlation between this image and a low-resolution
version of the manufacturing file, which enabled us to accurately locate the
mask during the experiment.

Deep neural network reconstruction tool parameters
Due to the absence of training data of x-ray scattering for high resolution
images, we utilized self-supervisedDNNalgorithm for the reconstruction of
the GI images. To accomplish this, we utilized the GIDC code, which
provides high performance reconstruction but is only able to reconstruct
images with number of pixels, that is a power of two in each axis. To meet
this requirement, we resized our original image from 184 × 163 pixels to
128 × 128 pixels, resulting in a slight reduction in resolution. Also, GIDC
was originally made for far-field super-resolution reconstructions in visible
light. To adapt it to our use we changed the learning rate and the TV
strength.

Reconstruction computer specifications
We used an Intel core i7-10700 CPU combined with Nvidia Quadro 2200p
GPU and 128 GB of RAM.

Simulation details
Simulations were performed using the Monte-Carlo (MC) simulation code
FLUKA 4-3.154,55 and the Flair 3.2–256 graphic user interface. We imple-
mented our GI system within the code by modeling each laboratory com-
ponent separately. The simulation consists of three elements: radiation
source, object, and detectors (see Supplementary Fig. 1). Formore technical
information about the parameters of each element see Supplementary
Table 1.Adetailedmethodof implementingGI systems viaMCsimulations
can be found in ref. 57.

For this simulation, 2000 realizations were performed, each consisting
of 1million primary particles, to a total of 2 billion particles. The simulation
system consisted of three components:
• Radiation source—In the laboratory setup, the radiation field

impacting the object is primarily defined by the X-ray tube and the
mask. To achieve high resolution CGI we employed masks with
thousands of fine features. However, representing these masks as
physical objects inMCprogramsandchanging them for each sampling
is computationally demanding and time consuming. This is because

MC simulations track each primary photon separately and record the
interactions along its path. To circumvent complexities associatedwith
modeling thousands of masks and their interactions, including self-
absorption, self-scatter, recoil, and energy loss, we adopted a more
efficient approach formodeling the radiation source. In our simulation,
wedefineda radiation source that represents thefield immediately after
its interaction with the masks, positioned 5 cm before reaching the
object. The 80 kVp energy spectrum was obtained with the SPEKTR
3.0 program58 using the TASMICS algorithm. This spectrum was
generated for a Fewell tubewith a tungsten anode and inherent 1.6 mm
Al filtration, without any additional filtration.

• Geometry simulation—We defined our object as a 0.85 cm radius
sphere made of bone. The density and elemental composition of the
bone were defined as the compact bone material from the Adult
Reference Computational Phantoms presented in the ICRP publica-
tion 11059. The Imaging system was set in the air. Dimensions and
material descriptions of each element in the imaging system are pre-
sented in Table 1.

• Detectors—Five detectors were defined, at 00, 450, 900, 1350, and
2700 with regard to the imaging axis. Each detector was set as a
1.7�1.7 cm ideal boundary crossing detector. We used the USRBDX
card in FLUKA that can count the particles crossing a boundary. We
defined a one-way fluence detector counting the total of all passing
photons.

Sample materials
The bone sample is a small part of a cow bone that was bought at a
butcher shop.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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