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Whether in the realms of computer vision, robotics, or environmental monitoring, the ability to monitor
and follow specific targets amidst intricate surroundings is essential for numerous applications.
However, achieving rapid and efficient target tracking remains a challenge. Here we propose an optical
implementation for rapid tracking with negligible digital post-processing, leveraging an all-optical
information processing. This work combines a diffractive-based optical nerual network with a layered
liquid crystal electrical addressing architecture, synergizing the parallel processing capabilities
inherent in light propagation with liquid crystal dynamic adaptation mechanism. Through a one-time
effort training, the trained network enable accurate prediction of the desired arrangement of liquid
crystal molecules as confirmed through numerical blind testing. Then we establish an experimental
camera architecture that synergistically combines an electrically-tuned functioned liquid crystal layer
with materialized optical neural network. With integrating the architecture into optical imaging path of a
detector plane, this optical computing camera offers a data-driven diffractive guidance, enabling the

identification of target within complex backgrounds, highlighting its high-level vision task

implementation and problem-solving capabilities.

Tracking targets of interest (Tol) and capturing their detailed features
have been longstanding challenges across various fields'™, including
action recognition®*>'*", biomedical optics”****', automatic driving"’,
astrometry™'’, and remote sensing®'"'"*. The ability to efficiently track and
obtain clear images of Tol using detector systems is paramount in these
domains. Many image processing techniques have been developed to
address essential issues such as feature extraction, filtering, and seg-
mentation. Typically, electronic-based algorithms process both the raw
image data and prior statistical information of Tol, guiding optical
correction.

A classic strategy involves designing handcrafted features followed by
shallow optimized architectures to extract target characteristics from input
information, thereby facilitating detection”’. However, routine performance
can easily be hindered by the construction of complex ensembles that
involve multiple similar local structures and high-level confusions. With the
rapid development of deep learning, learning-based frameworks have
emerged as a powerful tool for establishing black box mappings between Tol

features and labels through data-driven massive parallel training®'*'>'.

This mapping process guides optical correction, enabling accurate detec-
tion. Despite this advancement, traditional tracking methods relying on
computationally intensive algorithms are ill-suited for real-time and large-
scale deployment. Although some efforts have been made to speed up the
inference by employing lightweight neural network models™*, these fra-
meworks rely on electrical processes such as convolution and recurrent
operations, which are still computationally intensive. Different from the
above digital operations, optical processes can provide ultra-fast inference
speed. However, it is generally overlooked how to track Tol via an all-optical
architecture.

Some recent advancements have verified that it is feasible to design
optical computing architectures with distinct characteristics such as low
latency, power efficiency, and parallel computing capabilities. These
architectures assist or enhance machine learning hardware design™ ",
including silicon-based Mech-Zender programmable nano-photon
processing” and deep spatial diffraction computing learning-based
frameworks”. Researchers have actively explored interdisciplinary fusion,
such as spatial mode sorting”, binary classification™, and high-dynamic
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encoded mask imaging”, to harness potential benefits. Nonetheless,
implementing these techniques in high-level vision tasks remains a
challenge.

This paper presents a method for tracking Tols with negligible digital
post-processing. Our approach combines a lightwave-based deep diffractive
prediction with a layered liquid crystal (LC) electrical addressing archi-
tecture, offering a promising alternative that combines the parallel proces-
sing of light propagation with the robust fitting and generalization
capabilities of deep neural networks. The inspiration for approach stems
from the ability of deep learning architectures to optimize the weights of
multiple hidden layers, which is analogous to optimizing micro-nano
structures in transparent optical media.

An LC-based camera is assembled to validate the approach, comprising
a functioned LC layer, a primary lens, and a detection plane. A dataset of
1613 sample scenes is collected for both training and blind testing of a
3-layer transmission phase surface using an electronic computer, where the
training dataset consisted of 1452 samples, the testing dataset consisted of
161 samples. Both single-channel training (SCT) and multi-channel train-
ing (MCT) methods are employed in a gradient backpropagation optimi-
zation process to evaluate the potential impact of the proposed design. In
numerical blind testing, a trained 3-layer phase surface achieves over 92.5%
prediction accuracy in switching the mode of the functioned LC layer for
Tol tracking, even in the presence of incomplete or defocused targets.
Experimental fabrication of diffractive phase surfaces is carried out using
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mask-less grayscale exposure, followed by integration into an electrically
tunable LC layer. By inserting this integration into the camera’s optical path,
Tol hidden in a complex background can be electrically addressed, resulting
in precise imaging on the detection plane. With introducing noise-injection
during online training and applying physical compensation, experimental
blind prediction accuracies of 61.4% are achieved, where higher precision
processing and integrated molding will greatly improve its accuracy.

Our approach exhibits substantial potential for various applications in
surveillance, robotics, and biomedicine fields. By designing data-driven
diffractive guidance based on optical neural network, avenues emerge for
developing all-optical learning-based processors tailored to high-level vision
tasks. These systems demonstrate remarkable processing speeds and boast
exceptional energy efficiency, thereby revolutionizing the analysis of
extensive datasets. Moreover, they enable applications that are previously
unattainable using conventional digital methodologies.

Methods

Data-driven diffractive guidance principle

An overview of a proposed data-driven Tol tracking architecture is illu-
strated in Fig. 1. Scenes captured by the designed LC-based camera are
utilized for training a 3-layer optical neural network in Fig. 1a. This training
process establishes a fundamental mapping between the input scenes con-
taining the hidden Tol and an appropriate electrical reconfiguration of the
LC molecules. An error backpropagation process is employed based on a
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Fig. 1 | Overview of the physics-informed deep learning liquid crystal (LC)
camera architecture. a Training and predicting principle of the proposed target
tracking model. b Trained phase distributions of optical neural networks using 1452
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original scenes. ¢ Three-dimensional construction of optical computing with
alternating current (AC) signal feedback for target tracking.
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gradient descent strategy to switch the physical state of the LC layer and
capture the desired Tol. The optimized deep diffractive phase surfaces are
then used to enable all-optical inference through layer-to-layer phase
modulation”, which is a collaboration by multilayer diffraction to vote for
the best answer, so we call it deep diffractive voting. This process predicts the
optimal reorientation of the LC molecules, facilitating the efficient manip-
ulation of target lightwaves to track the intended Tol.

To create the desired initial alignment of liquid crystal directors, we use
a configuration where a circular-patterned aluminum electrode and a planar
indium tin oxide (ITO) electrode are sandwiched together. In detail, it refers
to the establishment of a nematic alignment of rod-shaped liquid crystal
molecules within the liquid crystal layer. This initial alignment is achieved
through the sandwich-like structure, creating either a nematic orientation of
the liquid crystal molecules. This initial arrangement is crucial as it directly
influences the response of liquid crystal molecules to external factors like
electric fields, which, in turn, impacts the functionality and performance of
the LC device. The LC materials are aligned and anchored on one smooth
endface of each electrode. This setup allows us to produce modulated
lightwaves that reflect the distribution of LC molecules within the LC layer.
1613 multi-object scenes are meticulously arranged by varying back-
grounds, introducing jamming objects and adjusting the Tol location. These
scenes are captured directly by the constructed LC-based camera, serving as
the training and testing dataset. The functioned LC medium is positioned
physically between the primary lens and the imaging plane of the camera’s
attached detector array, adhering to the aforementioned configuration.

To enhance the robustness of the training model, deliberate efforts are
made to include challenging scene samples. These samples encompass a
wide range of occlusion and defocusing scenarios. This study chooses the
yellow engineering cars as Tols for numerical testing and experimental
processing. In extended applications, a broader training set can be provided
to achieve more kinds of target recognition and tracking. It serves as the
primary object in the collected samples, offering necessary spatial features
and detailed textures to facilitate the learning process of the data-driven
model. Unfamiliar objects and unknown background elements are also
incorporated to enhance the reliability of blind testing performances. Initial
sampling is performed to establish seven discrete states (i.e., the seven AC
signal levels) that advanced the LC molecule rearrangement, corresponding
to seven equivalent phase distributions of the LC layer, enabling variable
modulation of the incident beam. In the training stage, light-intensity dis-
tributions labeled according to the most concentrated energy points, e.g., the
Ds in Fig. 1a, representing the LC molecule arrangement modes.

Different LC molecule arrangement could be switched by manipulat-
ing the spatial electric field in the LC layer. AC signal voltages, namely V ; to
V1, are applied to control the wavefront modes characterized by point
spread functions (PSFs). As indicated in the sub-figure, these PSFs are
closely associated with the seven half-spherical electric fields stimulated in
the LC micro-cavity. Furthermore, the position of the hidden Tol within a
complex background is correlated with a specific state of the LC layer
through manual calibration of labels in the training set. Each wavefront
modulation corresponded to a distinct state of the functioned LC layer,
aligning with the longitudinal locations of the capturing operation for the
LC-based camera, which in turn correlated to Tol position in the input
scenes. The collected and calibrated dataset is used for optimal phase dis-
tribution in a diffraction propagation paradigm. A multi-channel training
(MCT) approach based on broad-spectrum ensemble learning™ is per-
formed in addition to a single-channel training (SCT) approach.
Throughout the training process, both error backpropagation using a mean
absolute error loss function and gradient descent in a deep learning fra-
mework is employed to update the phase distribution of these diffractive
phase surfaces.

After a one-time training stage, the optimized phase surfaces are pre-
sented in Fig. 1b. Figure 1c depicts a three-dimensional schematic diagram
of the proposed data-driven diffractive guidance module. This module
consists of a tightly integrated functional LC layer with homogeneous
alignment and the trained diffractive layers, forming a layered visible

transparent medium with unique micro-nanostructures that alter the
direction of energy flux in propagating lightwaves. It is important to
empbhasize that, although the LC layers and diffractive surfaces are inte-
grated, the primary optical computation and the forecasting of optimal
reorientation are achieved via the diffractive phase surfaces. The LC layers
serve as integral components subject to precise electrical control for the
refinement of the wavefront. A polarized input enables the LClayer to have a
higher modulation efficiency. By adjusting the parameters of these micro-
nanostructures, the distribution of the transmitted beam can be manipu-
lated, akin to optimizing the weights of hidden layers in a neural network.
After a negligible signal extraction, the output light field utilizes a simple AC
feedback loop to guide the mode switching of LC layer. Compared to an all-
optical realization of a conventional neural network configuration, the
diffractive-based module offers a more cost-effective and simplified optical
architecture. Optical interference and diffraction phenomena enable mul-
tiple computations to occur simultaneously, which is particularly advan-
tageous for deep learning tasks. The diffractive prediction module’s depth
allows for the learning of increasingly intricate optical patterns. By training a
deep network, we empower the system to model and recognize intricate and
nuanced Tol features.

In the proposed architecture, incident lightwaves carrying information
about the Tols location are initially focused by the primary lens, which is
used for lightwave compression and imaging in Tol tracking from complex
background, before entering the data-driven transparent mediums. Layer-
by-layer phase-only modulation occurs as the lightwaves pass through the
structured optical plane. This process yields diffractive voting lightfields,
which guide selecting an appropriate voltage level to adjust the LC molecule
arrangement for Tol tracking. By designing and integrating the trainable
deep diffractive layers with the electrically controlled LC layer, the proposed
architecture enables efficient Tol tracking by combining rapid lightwave
propagation with deep networks’ powerful fitting and generalization
capabilities.

Data acquisition and phase surface training
For facilitating the training of the deep diffractive phase surfaces, a dedicated
LC-based camera is constructed for data collection, calibration, and con-
tinuous testing of the dataset required during the phase optimization pro-
cess, as depicted in Fig. 2. The camera incorporates a functional LC layer
between the primary lens and the detector, which is located at a distance of
8 mm from imaging plane, establishing an LC-based imaging system. This
setup is connected to an AC generator using conductive tape. The scenes
captured by the camera are divided into seven layered spatial areas, denoted
by the marker set {eo, R, Ry, R3, Ry, Rs, Rg, Ry}, based on the clarity of the
images obtained under different voltage loading levels. The voltage level
directly corresponds to the physical state of the functional LC layer. For
instance, an AC voltage of approximately 25.4Vrms induces an appropriate
LC molecule reorientation or rearrangement, resulting in a desired refrac-
tive index distribution and relatively clear imaging in the spatial region of
[R3,R4]. The signal voltage level correspond to the electric field distribution
across the LC layer. To achieve this distribution, we have designed a
sandwich structure for the LC layer, along with patterned electrodes. By
adjusting the voltage applied to the electrodes, we can effectively switch and
control the electric field distribution within the LC layer. The specific details
of the electric field distribution switching are visually represented in the
Supplementary Note 3. A complementary metal oxide semiconductor
(CMOS) camera fixed with a 3D-printed UV photosensitive resin is placed
at a consistent distance of approximately 8.4 mm from the functional LC
layer. This ensures clear detection from R; to infinity in the initial state.
Please note that we only performed spatial segmentation in the depth
direction to track the Tols region to verify the rationality of the proposed
data-driven diffractive guidance method. In fact, the x-y plane segmentation
can also be established according to the large-scale dataset as well as the PSFs
spatial variation about the LC layer.

Each captured scene is divided into seven parts based on the Tols
position, forming training pairs with corresponding calibration labels in an
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Fig. 2 | Acquisition of training data and liquid crystal (LC) layer electrical calibration for target addressing. a A liquid crystal camera collects training scenes by adjusting
the target of interest (Tol) position and background. b Based on the location of the target, several labels are assigned to each optical image respectively.

electronic computer. Approximately 200 digital images are maintained for
each component to ensure a uniform training process. In total, 1613 digital
images are utilized, with 1452 images allocated to the training set and 161 to
the testing set. These images are employed for online optimization and
assessment of the 3-layer deep diffractive phase surface. After preliminary
evaluation, 1452 samples are sufficient to avoid overfitting of the training
model. To minimize oscillation during gradient backpropagation optimi-
zation, the adaptive moment estimation (Adam) optimizer™ is utilized with
a learning rate of 107, incorporating momentum estimation and dynamic
learning rate decay. The trainable deep diffractive propagation model is built
using Python 3.75 and the TensorFlow deep-learning framework (ver-
sion r2.40).

SCT and MCT methods are employed in the training stage to form a
controlled experiment. Specifically, three wavelengths of [460 nm, 550 nm,
640 nm] are selected, corresponding to the peak responses of the actual
CMOS color response curves. These wavelengths exhibit a relatively high
Quantum Efficiency (Q-E) conversion efficiency of [79.3%, 92.5%, 90.1%]
for ensemble learning in MCT*. SCT is only using incident light at 550 nm.
The beam diffraction propagation model and the main parameters of the
diffractive surfaces remain consistent across both methods.

In the numerical diffraction model, we adopt a Fourier-based repre-
sentation of the Rayleigh-Sommerfeld scalar diffraction formula to
approximate the free-space propagation of lightwaves in the 3-layer phase-
only modulation process. The layered neural network is configured with
dimensions of 800 x 800, ensuring a sampling interval of approximately
5 pum and a layer spacing of roughly 2 cm. This parameter setup considers
the maximal half-cone diffraction angle of the fully connected model
formed by the secondary lightwaves, ensuring optimal phase utilization
efficiency and robust model generalization capability. On the other hand,
higher resolution will reduce experimental accuracy due to the exponential
increase in processing difficulty. Additionally, edge padding is implemented
during the diffractive transformation and convolution operations to mini-
mize edge calculation errors.

To emulate realistic conditions, we have incorporated misalignment
errors ranging from 0.5 to 2% of side length and height errors from 5 to 8%
of phase steps. These errors simulate the precision limitations of typical
processing and mask-less grayscale exposure. Additionally, Gaussian and
Poisson noise with hyperparameters ¢ and A set to 0.001 has also been
introduced to simulate dark current noise. The model will have better robust

performance under various conditions by utilizing noise-injection in
training process. Furthermore, in the absence of featured information about
the Tol for other wavelengths, SCT is more prone to prediction errors than
MCT. We conduct a preliminary verification for the above deduction by
testing set. Under different layer configurations (2-layer, 3-layer, and 4-
layer), MCT achieved average accuracies of 81.2%, 92.5%, and 87.9%,
respectively. Similarly, SCT achieved average accuracies of 71.6%, 76.5%,
and 72.3% with five rounds of retraining from the same initial state. Based
on these results, we have selected the 3-layer diffractive surface as the focus
of our study.

Results and discussion

Numerical assessment of Tol tracking

In this section, we meticulously assess the inference operation of the deep
diffractive phase surfaces across a divided range of Tol locations. The
optimized phase surfaces are obtained using both SCT and MCT. Their
performance is evaluated in detail, as depicted in Fig. 3. We provide a
comprehensive overview of the evaluation process through numerical
optical inference results, showcased in Fig. 3a. The first column is the image
on the CMOS with just the lens and the LC layer in place where columns 2-4
are numerical results of what the CMOS will see if the trained deep dif-
fractive layers are in place. We draw conclusions in column 5 based on the
energy distribution observed in the inference results of column 4.

Figure 3b presents a numerical representation of the spatial distribu-
tions stimulated by a specific signal voltage applied across the LC layer
alongside several typical LC molecule arrangement patterns obtained
through deep diffractive predictions. It refers to different patterns in which
the LC molecules are distributed within the LC layer. Each of these patterns
corresponds to a specific working focal length or target capture depth within
the LC layer. The proposed optical system employs these various distribu-
tion modes to selectively achieve different working focal lengths or depths of
field, enabling the tracking of Tol. These predictions correspond to input
scenes where the Tol is located in different regions labeled as [RgR;],
[R3,R4], [Ro,R3], and [R;,Ry]. To assess the blind testing performance, we
provide main simulation results from various scenario samples with mul-
tiple disturbances. These results showcase the identification of specific Tol,
denoted by white lines in the input samples. The input scenes are then
transformed into characterized light-intensity distributions containing
essential information about the Tol position for decision-making purposes.
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Fig. 3 | Evaluation of various scenario samples corresponding to diverse target of
interest positions for assessing the trained diffractive phase morphology simu-
lation’s inference performance. a Input optical images modulate and transform
layer by layer into an output lightfield, predicting a corresponding liquid crystal
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molecule arrangement based on single-channel training (SCT) and multi-channel
training (MCT). b Typical liquid crystal molecule distributing patterns across var-
ious molecule arrangement modes.

This transformation is achieved through lightwave propagation based on
Rayleigh-Sommerfeld diffraction and phase modulation.

Careful analysis is conducted on seven detecting sub-regions, corre-
sponding to the output light intensity distribution over each viewing surface,
to shape a normalized energy distribution. This aids in predicting a suitable
signal voltage that leads to a layered LC molecule rearrangement aligned
with the desired cascaded deep diffractive surface. The most energetically
favorable region among all areas provides a set of predicted signal voltages to
be applied across the functioned LC layer. Subsequently, these voltages
stimulate LC molecules to undergo orderly reorientation based on the
electric field simulated between electrode plates, using a set of appropriate
root-mean-square (rms) voltages. These voltages are indicated as
0Vrms@[>,R;], 17.2Vrms@[Re,R;], 254Vrms@[R3,R,], 28.1Vrms@
[R5,R3], and 35Vrms@[R,R,].

A typical process can be summarized as follows: First, a lightfield
containing the Tol in the lower right region [Rg,R;] undergoes conversion
into a predicted light intensity distribution. This conversion is achieved
through cascaded and controlled diffraction phase modulation, employing a
standard angular spectrum model. The energy distribution formed from
this process allows for extracting a predicted signal voltage of 17.2Vrms.
Even when the Tol is obscured and segmented by a complex background, a
correct distribution of LC molecules can still be shaped through data-driven
robust predictions obtained from the deep diffractive process. This is illu-
strated in the second subfigure of the fourth column in Fig. 3b. The
numerical spatial electric field stimulated by the signal voltage of 17.2Vrms
results in the formation of typical distribution based on the deep diffractive
prediction. Here, “K,,” represents the trained mapping relationship between
the Tol position and the rearrangement of layered LC molecules, which is
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closely linked to the stimulated electric field morphology within the LC
layer. The parameters K,([ReR;]), Kn([Rs,R4]), Kn([RpRs]), and
Kim([R1,R,]) specifically indicate the corresponding LC molecule distribu-
tion patterns determined by the electric field profile. Thumbnail images
further illustrate more detailed deflection angles of the LC director, where
different director arrangements correspond to other modes of LC reor-
ientation, displaying slight discontinuity.

In summary, the LC-based camera efficiently tracks the position of the
Tol in real time by generating, switching, and adjusting the phase dis-
tribution through the functioned LC layer based on adaptive predictions of
LC molecule rearrangement morphology from a set of learning-based deep
diffractive phase surfaces. Both training strategies mentioned above
numerical result in accurate predictions for the actual position of the Tol,
enabling the imaging system to track it, as depicted in Fig. 3.

Fabrication and characterization

For experimental verification viability of the proposed data-driven dif-
fractive guidance, several diffractive elements, including a trained 3-layer
SCT-based phase surface and a 3-layer MCT-based phase surface, are fab-
ricated by a mask-less grayscale exposure. A total of 16 phase levels are
achieved finally in a single UV-exposure operation, as shown in Fig. 4.

Elaborately, a 0.5 mm-thick fused silica wafer is utilized as a substrate in
our fabrication process. The substrates are first ultrasonically cleaned by
deionized water. And next, a film of positive photoresist (AZ1518, Micro
Chemicals) is spin-coated over the surface of the substrate utilizing a spin
processor at 3000 rpm for 40 s, then heated at 115 °C for 90 s. The refractive
index of the formed AZ1518 film is finely measured using a Spectroscopic
Ellipsometry Analyzer (Semilab SE-2000). The actual refractive index data
of 1.7302@460 nm, 1.7091@550 nm, 1.6989@632.8 nm, 1.6983@640 nm,
and 1.6824@980 nm are acquired. All trained heightmaps are then con-
verted into a set of 800x800 BMP grayscale images having a 5 pm pixel
spacing, which are then imported into a mask-less lithography machine
(Heidelberg DWL66 + ), as shown in Fig. 4a. Finally, the designed patterns
are transferred from the initial photomask into the photoresist under a
single UV exposure with a central wavelength of 375 nm.

The chemical properties of the photoresist in the exposed region will
undergo a remarkable change during continuously rendering it removable
in the base developer (MF-319) for 35 seconds. The total fabrication depth
with 16 phase levels is ~2000 nm. Accordingly, each phase level in our design
has a depth of ~125 nm. Our final depth error is confined to an accuracy
range of +15nm. Here we present microscope images of the fabricated
phase surfaces, as shown in Fig. 4b, d. The detailed functional micro-nano-
structures are successfully acquired by comparing the numerical phase
distribution shown in Fig. 4c and the actual diffractive surface shown in
Fig. 4d according to a common optical microscope characterization.

These fabricated diffractive phase surfaces, featuring a square aperture
of approximately 4 mm side length, are mounted onto a metal groove, as
depicted in Fig. 4h. The metal surface is treated with matte spray paint to
mitigate boundary reflections, creating an approximate boundary absorp-
tion condition. The point spread function of the deep diffractive phase
surfaces corresponding to SCT and MCT is determined by measuring the
optical response of a collimated white beam. Figure 4e, f displays the
obtained point spread functions, with a hexagon marking the position of
seven feature detection points. An experimental architecture for Tol
tracking is illustrated in Fig. 4g. It comprises several vital modules, including
the functioned LC layer, the deep diffractive phase surfaces, and the imaging
and detector components. The diffraction channel is left uncovered to
provide a clear view of the internal structures. Still, a metal absorption
boundary is wrapped around it in experiments to reduce stray beams during
propagation. In practice, a spectroscope is used to separate the incident
beam for optical calculation and imaging respectively, thus achieving all-
optical linkage.

Figure 5 shows the fabrication and characterization of the functioned
LClayer. In Fig. 5a, the fabricated LClayer is visually presented. A polyimide
layer is spin-coated onto the endfaces of a circular-patterned aluminum

electrode and a planar ITO electrode to achieve the desired performance.
The polyimide layer is prebaked at 80 °C for 10 min, then cured at 230 °C for
30 min. These cured polyimide layers serve as initial alignment and
anchoring coatings for the LC material (E44, n, = 1.7904 and n, = 1.5277),
which are rubbed anti-parallel to achieve a homogeneous alignment of LC
molecules””. The adhesive mixed with 20 um diameter glass microspheres
are also spread on the sides of the glass substrate. These microspheres act as
spacers, separating the two substrates and supporting the intended micro-
cavity shape. The fabricated LC layers are loaded with an AC signal using
conductive tapes pre-connected to their patterned aluminum and ITO
electrodes, where the aperture of the LC layer is the same as in Fig. 1, to
ensure the training data is more in line with the actual scene. In the Sup-
plementary Note 4, we include a schematic diagram of the aluminum
electrode, along with its dimensions, to enhance the visual representation
and comprehensibility of this element in the experimental setup. The
alignment and anchoring of the liquid crystal molecules in this study are
achieved using a planar alignment. This alignment is realized by adding an
anisotropic alignment layer between the liquid crystal and the electrodes,
which takes advantage of the anchoring effect on the liquid crystal’s surface.
The material used for the alignment layer is polyimide, and the method
involved frictional rubbing of the polyimide coating with cotton cloth.
Through this process, microgrooves are formed on the surface of the
polyimide coating, enabling the liquid crystal’s director vectors to align
parallel to the direction of these grooves. Additionally, during the frictional
rubbing process, the polyimide material generated polymer chains. The
intermolecular forces between the liquid crystal and the polymer chains
contributed to an increased anchoring energy. This planar alignment
method with the polyimide alignment layer allowed the liquid crystal
molecules to align in parallel, in accordance with the predefined direction,
and enabled the desired phase modulation properties and functionality of
the liquid crystal layer.

The optical response of the functioned LC layer, including the point
spread functions (PSFs), is measured using a collimated white beam, a linear
polarizer, and a x10 microscope objective. Figure 5b illustrates a mild
compressed lightfield mode of LC layer using an AC signal of 5
KHz@20Vrms. By adjusting the output of the AC generator, the focal length
corresponding to the incident beam compression mode is varied at different
driving voltages, as depicted in Fig. 5c. LC layer performs an adjustable focal
length that can vary within the range of 4.3 to 8.1 mm. The thumbnails in the
figure display specific LC modes characterized by their point source
response, corresponding to applied signal voltages of 13Vrms, 15.2Vrms,
22.6Vrms, 32.9Vrms, and 35Vrms. These thumbnails provide a detailed
view of the LC modes shaped by incident wavefront modulation. Hence, the
trained deep diffractive phase surfaces can be utilized to switch the mode of
the functioned LC layer. This allows for efficient capturing of the Tol by
providing a modulated light intensity distribution based on a predicted AC
driving signal voltage.

Experimental evaluation of Tol tracking

In this section, we present the experimental all-optical predictive perfor-
mances of the proposed Tol tracking method, which employs an optical
layout consisting of a functioned LC layer, 3-layer deep diffractive phase
surfaces, imaging and detecting components, as depicted in Fig. 4g. The
visible scene information is initially captured by a primary lens and recorded
by a high-resolution CMOS camera.

In Fig. 6, we present experimental confirmation of learning-based
diffractive guidance for LC molecule alignment, leading to a compre-
hensive rendering of the Tol. Figure 6a-h showcases the input scenes and
their corresponding output distributions. Figure 6i visually represents
the LC mode switching. Finally, the resulting confusion matrices are
depicted in Fig. 6j. We employ two typical scenes (sub-figures (a) and (b))
as untrained samples. The Tol is located in [R,, R3] and [R¢, R;] regions.
Additionally, several model toys, serving as distractors with similar colors
or shapes, are placed around the targeted Tol to increase the task’s
difficulty.
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Based on the proposed architecture approach, the tracking and
recognition of the Tol rely on the LC layer’s switching to an appropriate
molecule arrangement state. The output results based on SCT and MCT, as
depicted in sub-figures (c) to (e) and (d) to (f), respectively, showcase the
lightwave intensity distributions. High intensity points are marked in these
sub-figures to demonstrate the all-optical inference accuracy. These results
guide the operation of mode switching of the LC layer. The energy dis-
tribution percentage (EDP), which is defined as the energy percentage of the
high intensity point in the total energy of detector array, of concentration
points in the output intensity distribution, shown in sub-figures (c) and (e),

Fig. 4 | Fabrication and characterization of the trained physics-informed phase
surfaces of optical neural network. a, b Display the phase distributions for the first
layer of optical neural network. Employ a white frame to extract matching regions in
(c) and (d) for scrutinizing their detailed features. The point spread functions of the

is presented in the thumbnails of sub-figures (g) and (h). A higher EDP
generally ensures a reliable optical prediction result while remaining dis-
tinguishable from dark current noise during the photoelectronic detection
step. The primary reason for the visual contrast between scenes in Fig. 3a
and Fig. 6a, b is that they represent different stages of the experimentation.
Figure 3a corresponds to the numerical input, where we can control para-
meters for illustrative purposes. In contrast, Fig. 6a, b represents the actual
experimental input. During experiments, it is often necessary to introduce a
stronger background illumination to enhance the contrast of the optical
network’s predicted light field. This can lead to a perceived difference in the

(f)

Diffractive
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Deep diffractive
phase surfaces

-

single-channel training and multi-channel training method are depicted in (e) and
(f). g IMlustrates the designed liquid crystal (LC) camera driven by alternating current
(AC) signal employed for tracking the target of interest (Tol) selected, where a
detailed data-driven diffractive guidance is demonstrated in (h).

Fig. 5 | Fabrication and characterization of the
functioned liquid crystal layer. a Depicts a
custom-designed liquid crystal layer featuring a
circular-patterned aluminum electrode and a
planar indium tin oxide electrode. The optical
response, i.e. the point spread function (PSF), of
liquid crystal layer to collimated white beams
with a basic set of parameters of 5 kHz frequency
and 20 Vrms AC signal, is presented in (b). As
the driving signal voltage varies, a mode
switching according to an optical response of the
liquid crystal layer is demonstrated in (c).

d

]

w
[%2]
o

[ =

]
2

—
?
>
=
N

o~ g4 ©.

(c) 9

oE3l-~

g \
=7 1 \\
Q \
o \
c \
S \
7] \
5 61 /2\‘
8 \
o \
L 54 ‘\\
\\\ ’,O’
O/
4-— T T T T T
10 15 20 25 30 35

Driving Voltage (Vims)

Communications Engineering| (2024)3:46



https://doi.org/10.1038/s44172-024-00191-7

Article

Input scenes

Output distributions

array

Prediction accuracy: 44.8%

1 1 0 0
25.
» 2 1 1 0
o
Qo 20
833 48 1 2 0
S o 1|7 BN 2 2 15
B0
(8]
g 5 0 4 3 6 11 4 2 10
6|2 o 2 5 8 9 4 )
d
7 0 0 1 3 7 9 10
H 0
| N =2 B B =
Tol-in-(a o W] True label
(@) Mode switching of { - us |abels
J \ Prediction accuracy: 61.4%
y LC layer p/ 30
4 /, 1 0
SCT/IMCT lreziiry 2
o2 0
~—— D
o 20
e e— —  «E 0
Tol in (b) Lost st T 2 15
| = "(_')'
;. S B 2 10
y Iy 8
| : la (T 5 ‘o opgrl 1 1 2 4 6 BN 3
5
@ 2 7 0 (1] 2 2 6 7 3]
0

Fig. 6 | Experimental confirmation of the data-driven diffractive guidance for
shaping a desired liquid crystal (LC) molecule alignment in comprehensive
rendering of the target of interest (Tol). Testing scene shown in (a) and (b) are
related to actual prediction outputs shown in (c-f) according to single-channel
training (SCT) and multi-channel training (MCT) method, where those in (g) and

True labels

(h) depict the energy distribution percentage (EDP) of the concentration points in
output intensity distributions. i Typical depiction of the functioned liquid crystal
layer switched for scenes (a) and (b). j Confusion matrices correspond to single-
channel training and multi-channel training method.

visual representation. In the Supplementary Note 1 and Supplementary
Movie 1, we adjust the intensity and angle of the background illumination to
weaken this illusion.

Figure 6i comprehensively depicts the mode switching process for
scenes (a) and (b). The initial alignment mode of the LC layer is guided by
the diffractive operation of the 3-layer phase surface, enabling lightwave-
based inference and effective adaptation of the Tol’s movement. For scene
(a), both SCT and MCT accurately predict the necessary LC molecule
alignment to regulate the wavefront propagation towards the photosensitive
plane of the LC-based camera, resulting in a comprehensive rendering of the
Tol’s details. In scene (b), using additional color information by MCT
enhances the stability of Tol tracking performance.

Figure 6j presents two comprehensive confusion matrices, corre-
sponding to SCT and MCT, obtained through a testing process involving 30
distinct samples in 7 detection depths. Each confusion matrix is structured
asa 7 x 7 matrix, aligning with the number of categories in the classification
task. The rows in the matrix represent the model’s predictions, while the
columns represent the true labels. Each cell in the matrix represents the
relationship between the predicted outcomes and the true labels. Our
findings indicate that optical predictions are more prone to errors in adja-
cent regions of the objective space resulting from the similar blurring of the
Tol. Notably, our proposed methodologies have demonstrated experi-
mental performance, achieving over 61.4% prediction accuracy for high-

level vision task predictions, as evidenced by the comprehensive experi-
mental results. Furthermore, We also provide a comparative analysis of the
prediction time and accuracy for proposed method and conventional digital
neural network in Supplementary Note 2. The performance reported in
Fig. 6j represents the accuracy achieved under specific conditions and may
not necessarily reflect the performance limit of the proposed configuration.
The achievable performance can be influenced by various factors, including
the complexity of the Tols, the quality of the training dataset, and the errors
in physical processing. It can be expected that higher experimental accuracy
can be achieved using higher precision layer arrangements, such as two-
photon direct write printing. Achieving optimal results and pushing the
boundaries of this configuration will require advancements in both man-
ufacturing accuracy and the sophistication of optical propagation models.
All in all, these outcomes exemplify the effectiveness of our approach in
delivering robust and reliable predictions, even in the presence of com-
plexities introduced by adjacent regions and the inherent blurring.

Conclusions

In conclusion, we have introduced a approach for tracking Targets of
Interest (ToI) with negligible digital post-processing. Our method combines
a deep-learning-based diffractive prediction with a functioned LC-layer
addressing architecture. This approach offers several advantages, including
high-speed manipulation of target lightwave propagation and spatial
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distribution and robust fitting and generalization capabilities of deep optical
neural networks. The experimental validation of our proposed functional
layout demonstrates its potential for rapid and intelligent capturing of real-
world scenarios. The designed target detection architecture and the featured
information processing approach represent a step forward in developing all-
optical, learning-based target processors for high-level vision tasks. Overall,
our work opens up possibilities for efficient and intelligent tracking of Tol,
showcasing the potential of all-optical approaches in addressing complex
vision tasks.

Data availability
Data underlying the results presented in this paper are not publicly available
but may be obtained from the authors upon reasonable request.

Code availability

All custom code used in this work, including that used to train and test the
framework, can be obtained from the following publicly accessible
resource’®.
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