
ARTICLE OPEN

Learning inverse kinematics using neural computational
primitives on neuromorphic hardware
Jingyue Zhao1✉, Marco Monforte2, Giacomo Indiveri1, Chiara Bartolozzi2 and Elisa Donati1,2

Current low-latency neuromorphic processing systems hold great potential for developing autonomous artificial agents. However,
the variable nature and low precision of the underlying hardware substrate pose severe challenges for robust and reliable
performance. To address these challenges, we adopt hardware-friendly processing strategies based on brain-inspired
computational primitives, such as triplet spike-timing dependent plasticity, basal ganglia-inspired disinhibition, and cooperative-
competitive networks and apply them to motor control. We demonstrate this approach by presenting an example of robust online
motor control using a hardware spiking neural network implemented on a mixed-signal neuromorphic processor, trained to learn
the inverse kinematics of a two-joint robotic arm. The final system is able to perform low-latency control robustly and reliably using
noisy silicon neurons. The spiking neural network, trained to control two joints of the iCub robot arm simulator, performs a
continuous target-reaching task with 97.93% accuracy, 33.96 ms network latency, 102.1 ms system latency, and with an estimated
power consumption of 26.92 μW during inference (control). This work provides insights into how specific computational primitives
used by real neural systems can be applied to neuromorphic computing for solving real-world engineering tasks. It represents a
milestone in the design of end-to-end spiking robotic control systems, relying on event-driven sensory encoding, neuromorphic
processing, and spiking motor control.

npj Robotics (2023) 1:1 ; https://doi.org/10.1038/s44182-023-00001-w

INTRODUCTION
Neuromorphic engineering aims to develop adaptive and efficient
artificial neural processing systems by implementing models of
neural computation and brain-inspired processing mechanisms
with electronic circuits1,2. The emulation of neural and synaptic
dynamics in compact and energy-efficient mixed-signal circuits
supports spike-based information encoding and processing with
fast response and low-power consumption3. Spike-based neuro-
morphic architectures are therefore well suited for embedded low-
power applications, such as autonomous robotics, prosthetics, and
always-on wearable biomedical devices4–8. Within this context, the
research community has developed neuromorphic modules for
sensing9, perception10,11, and decision making12 that are exploited
in robotic applications8,13,14. However, research in neuromorphic
motor control is still lagging behind, hindering the design of a fully
autonomous embodied neuromorphic agent that would feature
ultra-low latency and power consumption. Spiking low-level
control of single joints was first demonstrated in simulation15

using pulse-frequency modulation (PFM), then implemented on
neuromorphic hardware16. Spiking neural network (SNN) on-chip
implementations of the classical proportional-integral-derivative
controller (PID) were then proposed17–19. implemented a spike-
based PID controller using PFM by developing basic spike-
processing modules and interfaces on field programmable gate
array (FPGA), but focused less on the algorithms for coordination
between joints and on its learning. Therefore, the missing piece in
neuromorphic implementations is a high-level controller that
coordinates multiple joints to drive the end-effector to perform
specific tasks, such as target-reaching or trajectory tracking. To this
aim, the inverse kinematics of a robot, that is, the relationship
between joint configurations and corresponding target spatial
coordinates of the end-effector needs to be found.

Analytical methods to solve the inverse kinematics involve
deriving an explicit mathematical model of the robotic system
based on simplified assumptions and parameters, which can differ
from the real system and require iterative calibration. For some
robots (e.g., with high degrees of freedom), deriving a closed-form
solution is complicated or even impossible. Numerical methods
(e.g., using the Jacobian inverse) rely on iterations to find an
approximation of the solution, involving computationally intensive
optimizations. Both the analytical and numerical methods are
limited to known systems and cannot adapt to unknown
situations. With the development of machine learning, learning-
based methods are used to find an approximate mapping
between high-level control parameters (i.e., end-effector positions)
and low-level joint configuration20–22. The advantage of model-
free, data-driven, learning-based methods is their intrinsic
adaptation to the robotic plant, comprising unmodelled non-
idealities that usually require calibration.
Inverse kinematics can be learned by a feedforward SNN

endowed with spike-timing dependent plasticity (STDP) for
moving the end-effector in the desired spatial direction23. Spiking
reinforcement learning enables the SNN to learn the mapping
between muscle lengths and muscle activation required to reach a
fixed target in 2D space24. In ref. 25, an SNN learns to move a
robotic arm in three directions: left-right, up-down, and far-near,
by combining simple motor actions in a hierarchical fashion to
perform complex movements, rather than explicitly learning the
inverse kinematics. However, most of those SNNs are still
implemented in simulation and are not directly transferable onto
neuromorphic hardware. The reason is that network parameters
such as weights and connectivity probabilities are expressed as
floating-point variables that do not meet the limited bit precision
imposed by hardware implementations23,26,27. Moreover, some

1Institute of Neuroinformatics, University of Zurich and ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland. 2Event-Driven Perception for Robotics, Istituto Italiano di
Tecnologia, Via San Quirico 19D, 16163 Genova, Italy. ✉email: jingyue-zhao@foxmail.com

www.nature.com/npjrobot

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s44182-023-00001-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44182-023-00001-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44182-023-00001-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44182-023-00001-w&domain=pdf
https://doi.org/10.1038/s44182-023-00001-w
mailto:jingyue-zhao@foxmail.com
www.nature.com/npjrobot

methods require custom neural models with fine-tuned neural
and synaptic parameters that can hardly be reproduced on
hardware24,26. A recent example28 of using SNN for online learning
of the inverse kinematics on the digital neuromorphic processor
Loihi29 is based on the Neural Engineering Framework (NEF)30. The
control variables (e.g., target and current joint configurations,
target end-effector position and the current distance to it, etc.) are
represented by neuron ensembles, and the weights are modu-
lated by an error-driven learning rule. NEF is also used to
implement force control on the mixed-mode neuromorphic
processor Neurogrid31 with populations of spiking neurons that
translate the desired forces of the end-effector and current joint
angles into torque commands for the joints. A comprehensive
learning-based method using SNNs for solving inverse kine-
matics32 extends28 and compares the online-learning method in
ref. 28 with an offline Stochastic Gradient Descent (SGD)-based
algorithm. The online-learning method shows the advantage of
faster network convergence and more successful-reaching end-
effector positions. The NEF-based methods28,31,32 focus less on
using brain-inspired neural circuits and learning algorithms to
solve the inverse kinematics problem and perform some crucial
non-spiking processing outside the neuromorphic hardware. The
offline training of the simulated architectures before their
conversion to the desired SNN (with a number of parameters
ranging from 5000 to 300,000) may still require large-scale
computing infrastructure and high energy consumption. In
addition, the high firing rate of the SNNs during inference further
increases the power budget. In general, the inference time of the
SNNs in ref. 32 is long (from 400ms to 3.8 s).
Multi-joint control, hence, can be solved or learned using SNNs,

but there is still a need for their deployment on neuromorphic
hardware toward the implementation of end-to-end neuro-
morphic robotic platforms13 with ultra-low latency and power
consumption. To this end, we present an SNN trained using a
mixed-signal analog-digital neuromorphic processor—the
Dynamic Neuromorphic Asynchronous Processors 1 (DYNAP-
SE1)33—which controls two joints of the iCub robot34 arm to
perform target-reaching and trajectory tracking. For the first time,
we trained the on-chip SNN weights with a computer in the loop,
which allows for taking into account the system non-idealities and
implementing any possible learning rule based on spike timings.
The system architecture is based on neural populations that
encode the desired input Cartesian coordinates of the end-
effector and the corresponding joint angles. The relationship
between them is learned by two hidden populations connected
by trainable synapses. To learn the correct mapping, we
introduced a disinhibition mechanism inspired by the basal
ganglia35–37 and recurrent connectivity that selects the closest
possible configuration of the joints among the multiple possible
solutions, based on the current robot state. This work adds to
evidence of the relevance of using neural computational
primitives to solve the complex problem of finding the correct
solution among multiple possible solutions. This was first
demonstrated and implemented on neuromorphic hardware in
the context of false correspondences in stereo vision38,39 and is
now demonstrated in the context of the coordination of multiple
joints in a motor task.
The system has been trained through motor babbling, imposing

joint angles with a random order, and measuring the correspond-
ing Cartesian positions. The training uses the ground truth known
joint angles as the teaching signal. The same supervised learning
procedure could be used in learning by demonstration, where a
human teacher positions the robot and, therefore, the Cartesian
position and joint angles are both known. Motor babbling is an
approach to generate data to train data-driven learning methods
that can solve the inverse kinematics as a regression problem and
find an approximate mapping between high-level control

parameters (e.g., end-effector positions) and low-level joint
configuration20–22,40,41.
Although this work solves a relatively simple problem, it

represents an important milestone for neuromorphic robotics,
towards scaling up to more complex behaviors – that can also
adapt over time and to different conditions—using motor
babbling as a self-supervised learning technique, neural computa-
tional primitives, and meta-learning.

RESULTS
In this work, the correspondence between the iCub’s end-effector
Cartesian position (x, y) and the shoulder pitch and elbow joints
(θ1, θ2) (Fig. 1A) is first learned and then used to drive the end-
effector to reach various target positions (x*, y*) sequentially in 2D
space (Fig. 1B).
The inverse kinematics is learnt through spike-driven synaptic

learning in the form of a weight matrix that connects two hidden
populations that represent the Cartesian coordinates (hiddenCar-
tesian) of the 2D working space of the robot and the joint space
(hiddenJoint). The learnt weight matrix representing the connec-
tions from the presynaptic neurons in hiddenCartesian layer
(vertical axis) to the postsynaptic neurons in hiddenJoint
(horizontal axis) one is shown in Fig. 1C, where each dot
represents the potentiated synapse between the corresponding
pair of (pre, post) neurons. Given a target position—encoded as
one-hot population code of the input x and y populations—the
solver module (i.e., the trained SNN) uses learnt connectivity to
drive the output neurons encoding (θ1, θ2), such that only those
that represent the correct solution are active, as shown in Fig. 1D.
The neurons’ activity in the output populations θ1 and θ2 actuates
the shoulder and elbow joints to move the arm end-effector
continuously. The spikes in the raster plots can look continuous
when the time range of the x-axis is large because the intervals
between the spikes are much smaller compared to the entire time
range in Figs. 1D, 3A and S1.
The resulting solver module shows 97.93% accuracy, 33.96 ms

on-chip network latency, 102.1 ms system latency, and 26.92 μW
on-chip power consumption in the continuous target-reaching
task.
The response time of the controller to produce corrective

actions is a crucial factor for the functioning of the system. It adds
to the robot’s actuation latency, defining a maximum target
update rate for the robot end-effector to follow the target online.

Role of disinhibition during training
Disinhibitory input connections to the two hidden populations
construct selective and stable firing patterns in both the
presynaptic (hiddenCartesian) and postsynaptic (hiddenJoint)
neurons for each training sample, making the noisy silicon
neurons learn the correct inverse kinematics (weight matrix)
robustly over time through STDP. During the inference, both the
disinhibition from the input signal to hiddenCartesian and the
well-trained inter-populations connections are crucial for the
SNN to generate reliable joint commands using noisy neurons
for the control. The neurons’ instantaneous firing rates after 400
ms of stimulation with the teaching signals corresponding to the
target end-effector position (x, y)= (3, 0) are shown in Fig. 2A, B.
The neurons firing rates are tracked using exponentially-
decaying spiking traces (see Eq. (3)) with a time constant of
100 ms. As expected, neurons 3 in x and 0 in y are active. The
former stimulates row 3 with direct excitation, while the latter
disinhibits column 0 of hiddenCartesian. Only y gate neuron 0 is
silenced, so that hiddenCartesian neurons in column 0 are not
inhibited (turned off) by the inactive gate and can fire when
stimulation comes from excitatory synapses. In the meantime, all
the other y gate neurons keep firing to suppress the

J. Zhao et al.

2

npj Robotics (2023) 1

1
2
3
4
5
6
7
8
9
0
()
:,;

corresponding columns in hiddenCartesian, which can hardly fire
even with the input coming from x. A similar disinhibition
process also happens in hiddenJoint where neuron (4,2) encodes
the target joint configuration (θ1, θ2)= (4, 2). The correlation
between the presynaptic neuron (hiddenCartesian neuron (3,0))
and postsynaptic neuron (hiddenJoint neuron (4,2)) can be learnt
through triplet-STDP.
If disinhibition is replaced by direct excitation, the firing

patterns in hiddenCartesian and hiddenJoint will become chaotic,
as in Fig. 2C, D. The chaotic firing patterns in the pre- and
postsynaptic populations drive the network to learn undesired
connections, which in turn leads to more noisy neurons activity
over time. As a result, the learnt weight matrix becomes very noisy
(Fig. 2F) and fails to form the specific connectivity pattern that
encodes the inverse kinematics. This vicious circle can be broken
via disinhibition by creating selective and clean firing activities

during training. Figure 2E shows the potentiated connections
resulting from disinhibition-driven synaptic plasticity.
During training, triplet-STDP supports the absence of potentia-

tion at low frequencies and increased potentiation with frequency,
that cannot be obtained with simple STDP. Both mechanisms
eliminate unwanted synapse growth caused by low-firing noisy
postsynaptic neurons in hiddenJoint.

Neurons activity and joints readout during the control task
The trained SNN with disinhibition drives the end-effector of the
robotic arm to reach the 12 target positions in the trajectory of
Fig. 1B. A Supplementary Video showing the simulated move-
ments of the iCub robot during one trial of the control experiment
is available.

(A) (B)

(C) (D)
Fig. 1 Learning to control a two-joint arm with an on-chip spiking neural network (SNN). A The abstract model of a two-joint arm. The two
hollow blue circles represent the controllable joints and the solid blue circle is the end-effector. B Test trajectory of a continuous target-
reaching task. The blue lines are the boundaries of discrete end-effector space, while the purple dots are the target positions the arm needs to
reach one by one, starting from the bottom-right point. C After training, the learned inverse kinematics can be represented with a classical
connectivity matrix, where the vertical axis shows presynaptic neuron (hiddenCartesian) IDs and the horizontal one shows postsynaptic neuron
(hiddenJoint) IDs. Each orange dot represents one connection between a pair of hiddenCartesian and hiddenJoint neurons. The sparsity of the
connections hints at future possibilities of pruning the network to either make the model more compact or reuse some neurons to increase
the encoding resolution or to perform other tasks. D Neurons activity of the SNN during the control task. The blue spikes are from the input
populations, which encode target end-effector positions (x*, y*) while the green ones generated by the output populations are decoded as
joint commands (θ1, θ2) that are used to drive the joints.

J. Zhao et al.

3

npj Robotics (2023) 1

1
2
3
4
5
6
7
8
9
0
()
:,;

The SNN running on DYNAP-SE1 receives time-varying target
end-effector positions as input stimulation and generates joint
solutions continuously. Neurons activity of the input and output
populations during the control task is shown in the raster plot
Fig. 3A. The spikes of output neurons are read out and decoded
periodically into joint position commands that are sent to the low-
level controllers of the simulator of the iCub robot (iCubSim42),
actuating the shoulder and elbow joints. During the actuation, the
SNN maintains a steady state and keeps the output joint solution
constant until the motion is completely performed. When the
target changes, the network converges to the new solution after
34ms on average (Fig. 3B).
The joint command trajectories decoded from the SNN match

the desired ones, generated using the dataset recorded during
motor babbling, as shown in Fig. 3C. The solver module takes
about 102 ms (see Fig. 3D) to generate a new joint configuration
given a new target input, due to the latency of sequential setup of
the spike generators and communication interface between
DYNAP-SE1 and iCubSim. Fig. 3E compares the desired end-
effector trajectories to those driven by the spiking controller and a
nonlinear optimizer named IpOpt43. IpOpt is a C++ package for
solving nonlinear problems (the inverse kinematics here), which
generates joint configurations given target end-effector positions
in the Cartesian space. Wrapped by an iCub control library API, it
receives as input the desired pose in the Cartesian space, the

initial joints configuration, a preferred joints configuration to
exploit the arm redundancy (e.g., elbow up or down), and a
priority preference on either the position or the orientation of the
end-effector to speed up the computation (limited at a low level
by an error positioning threshold and a maximum number of
iterations for the solver), outputting the desired joints configura-
tion. Under the control of the SNN, the end-effector reaches all
correct Cartesian positions with a latency that depends on the
iCubSim low-level controllers, while IpOpt is unable to reach four
target positions (testing samples 2 to 5) because its control
accuracy fails to fit in the arm space discretization (see Fig. 1B).
When a new desired end-effector position is sent to the

network, both the spatiotemporal patterns in the neural popula-
tions and the resulting joint commands decoded from output
spikes change. Figure 3B and D show the transient behavior of the
SNN during the target transition phase. Disinhibitory connections
from y to hiddenCartesian create selective firing patterns in
hiddenCartesian and thus in hiddenJoint, which generates reliable
joint commands. In Fig. 3B, when the input changes (at 10.051 s),
the x and y populations switch between active neurons (from #1
to #2 and from #3 to #6, respectively), which start inhibiting
neuron #6 and stop inhibiting neuron #3 in the y gate population,
that in turn start inhibiting neuron #11 and stop inhibiting neuron
#22 in the hiddenCartesian population. The new active hiddenCar-
tesian neuron stimulates its postsynaptic hiddenJoint neuron via

Fig. 2 Function of disinhibition in training. A, B and C, D report instantaneous firing rates of the neurons with and without disinhibition
mechanism, respectively, after the learning of a sample where (x, y)= (3, 0), (θ1, θ2)= (4, 2). A, C: Firing rates of x, y, y gate, θ1, θ2, and θ2 gate. Tr
is the instantaneous firing states of the neurons tracked by exponentially-decaying spiking traces. B, D: Firing rates of hiddenCartesian and
hiddenJoint in 2D layout. E Weight development over time during learning of the inverse kinematics with disinhibition mechanism. The
vertical and horizontal axes represent presynaptic (hiddenCartesian) and postsynaptic (hiddenJoint) neuron IDs, respectively. Each orange dot
indicates a connection is constructed between the corresponding pair of hiddenCartesian and hiddenJoint neurons. F Noisy weight matrix
learnt without disinhibition after the first and last training samples, respectively.

J. Zhao et al.

4

npj Robotics (2023) 1

the connections learnt during the training process. The firing
hiddenJoint neuron #30 activates new output neurons in θ1 and θ2
at about 10 s, which generate the new joint commands. The
change of neuron activity from the input to the output layer takes
32ms. The resulting state transition of joint solutions is shown in
Fig. 3D, which takes about 102ms due to the systematic delay
mentioned above.

Latency and accuracy trade-off
To quantify the speed-accuracy trade-off, accuracy, and latency
are measured with different key network parameters. Latency
depends on the speed of propagation of spiking activity across
the different layers of the network. When a new target position
(x, y) is sent as input to the SNN, the network needs time to

converge to the new solution. This is visible in the raster plots, as
the previously active neurons (corresponding to the previous
target position) in the output population stop firing and neurons
corresponding to the new solution (θ1, θ2) become active. In
Fig. 3B, the delay from the input to the output populations takes
13, 16, and 3ms, respectively, layer by layer, among which the
transmission from hiddenCartesian to hiddenJoint consumes the
longest time. The weight of the inter-population connections
between hiddenCartesian and hiddenJoint can speed up the
transition, at the cost of reduced accuracy.
Figure 4A shows the average network latency and accuracy for

different weight values. When the synapses between hiddenCar-
tesian and hiddenJoint populations are weak, it takes more input
spikes—hence more time—to elicit activity in the postsynaptic
neurons. The corresponding lower activation of the hiddenJoint

Fig. 3 Neurons activity and joints readout during control. Shldr shoulder, Elb elbow. A Neurons activity during one control trial. The raster
plot shows the spikes generated by x and y in blue and spikes of θ1 and θ2 in green. The two vertical lines mark the transition phase of the
SNN when the input (x, y) changes (zoomed in B). B Neurons activity during the target transition phase. The vertical axis only shows the ID
labels of the firing or inhibited neurons. The red lines mark the first spike in each layer of the SNN that encodes the new state, indicating the
convergence of that layer. The latency from input to hiddenCartesian, hiddenCartesian to hiddenJoint and hiddenJoint to output layer is 13, 16,
and 3ms, respectively. C Actual and ground truth joint commands during one control experiment. The joint commands (θ1, θ2) (green) are
continuously decoded from the output θ1, θ2 spikes in A. The ground truth joint solutions ðθ�1; θ�2Þ correspond to the desired end-effector
positions (x, y) represented in the input populations (blue). The transition phase of the joint output marked by the two vertical black lines is
zoomed in D. D Decoded and desired joint commands during the target transition. E Desired end-effector positions (x*, y*) (blue) are fed as
input to both the neuromorphic kinematics solver and a classical solver IpOpt during one control trial. Positions (xsnn, ysnn) (green) and (xipt, yipt)
(orange) are the resulting trajectories driven by the spiking controller and IpOpt, respectively.

J. Zhao et al.

5

npj Robotics (2023) 1

neurons, in turn, slows down the activity of the output
populations θ1 and θ2. On the contrary, stronger weights make
the SNN react faster to the input change, but with an accuracy
drop due to increased instability of the Winner-take-all (WTA) (see
Fig. S1). Each of the active neurons in hiddenJoint represents one
of the possible correct joint configurations for a given input. If one
of the two populations θ1 and θ2 only has one firing neuron, and
the other has two stable winners (see testing samples 4, 6, 9, and
11 in Fig. S1), the decoded (θ1, θ2) is correct because both
combinations are correct. However, if in both (θ1 and θ2)
populations there is more than one active neuron, only part of
the active configurations are correct, decreasing the accuracy of
the controller.
The controller can achieve 97.93% of accuracy with a latency of

33.96 ms, where the weight was chosen as the most balanced
setup for the trajectory tracking task (see results in Fig. 3A–E).
Smaller weights yield more stable neurons activity in hiddenJoint
but not higher output accuracy because the transition to input
change is too slow and the decoded joint solutions cannot switch
to the new desired position quickly. With stronger weights, the
controller can achieve a fast average reaction time of 14.44 ms
while maintaining reasonable accuracy (over 80%).
As a comparison to classical robotics, we measured the

computational time for solving the inverse kinematics problem
as done in the iCub Cartesian control module, using the nonlinear
optimization solver IpOpt to generate a new joints configuration
given a desired end-effector position as the input of the
corresponding C++ function. The average latency is 114.57 ms
(99 to 156 ms) which depends on the central processing unit (CPU)
real-time performance of the laptop.
The accuracy of IpOpt cannot be quantified since its ground

truth joint solutions are unknown. However, IpOpt fails to reach
some target end-effector positions (testing samples) in Fig. 3E
because the accuracy of its generated joint solutions is not
enough to guarantee that the end-effector falls into the expected
grid in Fig. 1B. The failed testing samples are No. 2 to 5, which
correspond to the purple dots No. 2 to 5 in Fig. 1B counting from
the bottom-right one to the left, i.e., the left four dots at the
bottom of the trajectory. The y coordinates of the four positions
are close to each other, and the discrete partition along y is
narrow in this area. Therefore, if the generated joint configuration
is not accurate enough, the resulting end-effector position cannot

fall exactly into the expected partition. We are doing this to have a
direct comparison between the SNN-based solver and IpOpt with
the same encoding/discretization scheme of the end-effector
space. Using more neurons can increase the neural coding
resolution, and an improved neural encoding method can better
map the Cartesian space to spiking neurons, making it possible to
directly benchmark spike-based against classical methods without
restrictions. It is true that a low-latency traditional solver could be
engineered; however, we used the best implementation at hand
as a baseline reference, which is currently integrated into the iCub
and is optimized for this platform. We tuned the parameters of
IpOpt to make it as fast as possible and turned off all the other
applications apart from iCubSim running on the computer during
the control experiments.
Also, we compared the spiking controller with the state-of-the-

art (SoA) SNN-based inverse kinematics solvers implemented on
neuromorphic hardware. The inference time (required for
computing convergence) of the SNNs presented in ref. 32

corresponds to the network latency we measured here. In the
best case, the deep SNN with 199,685 parameters, converted from
a trained artificial neural network (ANN) and deployed on Loihi,
needs 400ms to generate the joint solution to reach the target
end-effector position, which is slower than the setup we used for
the target-reaching task (with 33.96 ms average latency) and the
worst-case network latency of 170.37 ms with weak synaptic
strength. The other SNNs in ref. 32 takes 2.6 to 3.8 s for the spiking
activity in the networks to converge.
The system’s accuracy corresponds to the discretization

resolution of 6.4 and 7.5 cm in the most narrow grids in Figs. 1B
and 5C, comparable to the mean error of the learning-based and
SGD-trained SNNs32 (6.3 and 3.8 cm), and can be improved by
adding more neurons. The numbers reported here are only
indicative of the quality of the overall system, as the error between
the desired and final end-effector position also depends on the
robot’s actuation limits and accuracy.

Power consumption
As the power consumption of the DYNAP-SE1 cannot be directly
measured online during operation, we indirectly assess it as the
sum of the power required for different operations relative to

Fig. 4 Latency, accuracy, and power consumption. A Average network latency and accuracy for different weights. The average transition
time of all target changes in Fig. 3A was calculated across five repetitions. We computed the accuracy by comparing the decoded joint
commands with the desired ones in the experiment of Fig. 3C. The network output is correct only if the two vectors are equal at a certain time
point, and the accuracy is the ratio of the right commands to the total ones. B Average power consumption of the SNN during the control task
with standard deviations marked as vertical lines.

J. Zhao et al.

6

npj Robotics (2023) 1

spike generation and communication listed in Table S133:

P ¼
XN
n¼1

rnðEspike þ Eenc þ Ncores Ebr þ Ertð Þ þ Ncam matchEpulseÞ (1)

where Espike, Eenc, Ebr, Ert, and Epulse represent the energy
consumed by a DYNAP-SE1 operation to generate a spike, encode

a spike and append destinations, broadcast events to the same
core, route events to a different core and extend generated pulse,
respectively (see values in Table S1). N is the number of neurons in
the SNN, rn is the firing rate of neuron n, Ncores is the number of
destination cores of the neuron, and Ncam_match is the total
number of postsynaptic neurons that receive the input spikes.

Fig. 5 System architecture and space discretization. A The overall pipeline shows the implemented modules and the communication
system between them. The components on the CPU are non-spiking, while the ones on the FPGA and DYNAP-SE1 are spiking. B End-effector
positions in the original Cartesian space resulting from the applied joint configurations during motor babbling. C Discretisation of the end-
effector space: the coordinates of the original end-effector positions in B are normalized, and principal component analysis (PCA) is applied to
find a new plane that maximizes the variance of the position coordinates to split the dots as further from each other as possible. The blue lines
are borderlines found using N-quantiles along the new x and y dimensions that divide the PCA arm space into discrete partitions.

J. Zhao et al.

7

npj Robotics (2023) 1

The power consumption of the SNN and each network layer
during the training and testing phases are reported in Table S2.
The average power dissipation of the network during the training
phase (3.46 μW) is lower than during the control task (26.92 μW)
because (1) the cooling down phase used during training, which
decreases the mean firing rates, constitutes half of the training
procedure; (2) the inhibitory neurons hiddenJoint_inh are not used
during training.
The inhibitory neurons hiddenJoint_inh of the WTA added

during the testing phase contribute over 62% of the total energy
consumption due to a large number of postsynaptic connections
(to 64 neurons in hiddenJoint). As the power consumption of the
network depends on the overall spiking activity of the neurons, it
is affected by the weights between hiddenCartesian and
hiddenJoint, as shown in Fig. 4B. During testing, this effect is
amplified by the hiddenJoint_inh population, as its dynamics
follows hiddenJoint.
We are unable to measure the power consumption of the full

chip due to the constraint of the DYNAP-SE1 processor and the
available measurement device. We, therefore, estimated the
power consumption of the chip using the total number of events
produced by the neural populations in the model and their power
budget. For larger SNNs, the power consumption of the chip
would scale mainly with this figure, while other sources of power
consumption on chip would not increase significantly. In the
current prototype set-up, the interfacing FPGA and the algorithm
running on the computer take much more power than the SNN on
the chip. However, this component would decrease substantially
in an optimized end-to-end neuromorphic control system. In
addition, while it is true that the overall power consumption of the
robot also depends on the power used by the actuation, the
contribution to the power budget given by the processing power
cannot be ignored, especially considering future scaled-up
systems. Currently, most of the processing is performed on CPU
and graphics processing unit (GPU) racks for space and power
limitations. Optimizing computation (at all levels) will certainly
improve the overall energy consumption figures. This applies to
the iCub, and to most robotic platforms.
Unfortunately, it is not possible to compare the power

consumption of our set-up with other SNN-based inverse
kinematics solvers implemented on neuromorphic hardware
proposed in the literature28,31,32, as those figures of merit are
not reported. For a qualitative comparison, we can only use the
reported firing rate, as a proxy of the energy used by the SNN, as
in neuromorphic chips, power usually scales with the overall firing
activity of the networks.
The net global firing rate of the SNN running on DYNAP-SE1

during the inference phase is about 1.4 Hz (184 neurons, of which
16% are active with a mean firing rate of about 52 Hz). We derived
a similar metric for the networks deployed on the Loihi set-ups32.
The two networks running on Loihi32 comprise four and five
neural populations each. In the “best-case” scenario, assuming the
mean activity of a single neuron is the reported figure of 1 kHz
and assuming there is at least one neuron active in each of the 4/5
populations, the minimum activity would be roughly 4/5 kHz. The
reason for the large difference in mean firing rates between our
approach (about 52 Hz/neuron) and the Loihi-based ones (about
1 kHz/neuron) lies in the fact that we developed neural
architectures that are inspired by their biological counterparts,
which have been optimized by evolution to minimize power
consumption, while in the Loihi-based SNNs, the authors argue
that the neurons require a high spiking rate, in order to
approximate ANN performance, when converting ANN to SNN.

DISCUSSION
In this work, we trained an SNN on DYNAP-SE1 with a computer in
the loop to learn the inverse kinematics of the iCub robot in a

simulated environment, constraining the movement to the
shoulder pitch and the elbow. The SNN features a disinhibition
mechanism inspired by the one found in basal ganglia’s neural
circuits, which eliminates the noisy firing patterns in the neural
populations with multiple input sources. The selective activation
of specific neurons is crucial to both the event-driven STDP
learning process and task execution. The trained SNN is used as
the solver module to coordinate the shoulder pitch and the elbow
joints to drive the end-effector (in our case, the palm of the hand)
to reach 12 different positions continuously. In the limited
conditions imposed by the neural coding used in the proposed
system, the nonlinear optimization solver IpOpt embedded in the
iCub control module for inverse kinematics achieves less accuracy
than the spiking controller (all target end-effector positions are
reached), that also shows lower latency and power consumption.
The entire learning procedure is ultra-low power and only takes
approximately 51.2 s for 64 training samples. As a proof- of-
concept, we trained a small but scalable spiking controller, which
marks a significant step for neuromorphic robotics toward more
complex and adaptive behaviors.
To scale up the SNN beyond the proof-of-concept two degrees

of freedom demonstrator presented in this manuscript, more
neurons can be used in each population to increase the task
space, and more neural populations and larger connectivity
matrices can be used to scale up the end-effector space from 2D
to 3D and to increase the joint configuration space, including
more degrees of freedom. Also, more space-efficient encoding
schemes44 can be used to ease the quadratic growth of the
hidden populations due to the increasing size of the related input/
output populations, at the cost of potentially slower network
reaction.
Furthermore, real-world neuromorphic robotics applications

would benefit from scalable and flexible neuromorphic proces-
sors, with more neurons and larger and more flexible input and
output connectivity: an increased number of neurons could
minimize the discretization error from encoding continuous
analog variables using a limited number of individual neurons; a
more flexible network topology, e.g., more input synapses and
higher weight resolution, would increase the diversity of
implementable SNNs to meet the requirements of the application.
A user-friendly ecosystem including both the hardware and
software infrastructure for neuromorphic algorithm developers is
crucial for moving beyond proof-of-concept demonstrators: spike-
based software libraries, toolboxes, and middleware for commu-
nication, processing, and analysis are lagging behind the
requirements of emerging neuromorphic applications. Conse-
quently, the performance (i.e., latency, throughput, power
consumption, etc.) of the experimental neuromorphic setup
suffers from redundant self-designed interfaces in the pipeline.
The implementation of these interfaces can be challenging for
individual researchers due to the time-consuming development
process with even inadequate performance compared to those
optimized by field experts. Based on this observation, building
blocks for spiking robotic architectures with modularity, reusa-
bility, and plug-and-play features would benefit the deployment
of robotic systems integrated with various neuromorphic sensors,
computing substrates, and actuation modules. In particular,
important blocks for real-time closed-loop motor control are fast
input and output interfaces to speed up the sensorimotor loop of
real-time motor control.
Finally, to scale up the implementation of the inverse

kinematics model proposed here, to a fully spiking pipeline, the
high-level controller can be interfaced with event-driven sensors
and low-level controllers of single joints17,18: in the target-reaching
task, an event camera45 can be used to capture and encode the
desired end-effector position in spike trains sent directly to the
input populations in the SNN, and spiking tactile sensors46–48

could be used for force feedback. The solver module SNN can be

J. Zhao et al.

8

npj Robotics (2023) 1

interfaced with low-level spiking controllers17,18 and PFM
drivers15, creating an end-to-end spiking pipeline that does not
require to waste of energy and time to convert signals from and to
clocked representations13. End-to-end spiking systems would also
reduce the power consumption required to transfer data between
different systems. On-chip learning would further reduce power
consumption during the learning phase by removing the need for
a computer in the loop. This can be supported by the integration
of memristive devices, that have been shown to support triplet-
STDP rules49,50, and that allow scaling up the proof-of-concept
two-joints control described here to higher dimensionality
problems. This approach will come at the cost of higher device
mismatch, which can be overcome using brain-inspired methods
for achieving robust computation in heterogeneous mixed-signal
neuromorphic processing systems51,52, at the cost of increasing
the number of neurons, and power.
Besides the latency due to the system configuration that mostly

depends on data conversion and transfer (from around 100 to
170ms), there is an intrinsic latency due to the on-chip SNN
convergence time (from 14.44 to 170.37 ms) that depends on the
total drive of the network from the input and on the recurrent
connectivity.
Since the accuracy in generating joint angles is mainly affected

by the multiple winners in the output hidden population caused
by the one-to-more connections from the input hidden popula-
tion, a second run of training can be performed to do connection
pruning based on the learnt inverse kinematics. More task-specific
datasets (e.g., target trajectories instead of random motor
babbling) can be collected to make the synapses between the
hidden populations more selective to choose the optimal solution
for the task out of all the possibilities. Also, a correlation between
θ1, θ2 neurons in the output layer can be established to avoid
invalid combinations by adding inhibitory connections across
populations.
Latency, accuracy, and power also depend on the SNN

configuration. These figures of merit mainly depend on the
strength of synaptic connections between the hidden layers, so
strong connections lead to high spiking rates and fast switching
behavior of the network, hence lower latency, higher power
consumption, and lower accuracy. The weights can be configured
according to the features and requirements of different robotic
systems and tasks. Learning to automatically adjust the weights
on the fly can flexibly tune the SNN behavior and the latency/
accuracy/power trade-off.
It is difficult to make a comprehensive quantified comparison

with the SoA because (1) the benchmark task—e.g., a target-
reaching task with the same DoF, target end-effector trajectories,
robot kinematics, systematic errors, and even the same robotic
platform - for the comparison of different neuromorphic motor
controllers, is missing. Consequently, the selected robotic platform
and the defined task have a significant impact on the presented
results; (2) the metrics used to assess controller performance are
not standardized. Comparison between the target and actual end-
effector trajectories depicted in the figures is a typical measure-
ment. However, the trajectory difference is either not quantified or
done with various methods. Even with the same metric (e.g.,
RMSE), the values are highly affected by the robot (e.g., execution
time) and the task (e.g., point-to-point distance), not only by the
controller itself. Furthermore, latency and power usage, two
crucial measures of neuromorphic controller performance, are
rarely quantified or mentioned; (3) there are very few hardware-
implemented spiking controllers to compare, and even if we
consider the simulated ones, the issues listed above would
still exist.
Therefore, we can only compare the available metrics reported

in the literature32 even if it solves the inverse kinematics for
another robot, in a different task. We found that our SNN shows
better performance in terms of network latency. Since power

consumption is not reported in the literature, we resort to relying
on the overall firing rate, as a proxy for computation load and
power consumption. Based on this, the SNN proposed in this
paper may have better power efficiency, with an average firing
rate of a few Hz, if compared to a few kHz of the Loihi
implementation. In terms of learning capabilities, online systems
support on-the-fly adaptation (e.g., to new environmental or
geometrical constraints or tasks). The approach proposed in this
manuscript is also less computationally expensive, as it adopts bio-
plausible spike-based local learning rules in an event-driven
fashion instead of SGD and backpropagation. Therefore, it can be
replaced with event-based FPGA processing modules and on-chip
learning circuits to further minimize power consumption. In
addition, we compare the spiking controller with a classical
inverse kinematics solver (IpOpt) in the same target-reaching task
on the same robot and show that the SNN-based controller
achieves comparable latency and control performance. Other
solvers53 report latency in the order of 0.1 ms, but are based on
tailoring the solver to specific robotic platforms, where assump-
tions can be made to simplify the system by using model-based
approaches, that however, do not generalize to all robots.
Reproducibility and robustness of the work are important

aspects. The device mismatch of DYNAP-SE1 due to its analog
nature is thoroughly measured and quantified in ref. 52, which also
proposes corresponding neural processing strategies for robust
computation, given the hardware variability. Most of the strategies
are adopted in the SNN proposed in this work, e.g., using
population codes, recurrence and self-excitation, soft WTA
networks, spike-based learning and plasticity, etc. Moreover, the
training procedure is robust because the neural circuit exploited in
the proposed system creates a bio-plausible disinhibition mechan-
ism, which produces selective firing patterns of only a single pair
of desired pre-post neurons simultaneously during training and
triggers only the target neuron from the input side during
inference. The inference error is not caused by the hardware
mismatch but by the limited encoding resolution, which can be
reduced using more neurons.

MATERIALS AND METHODS
In this work, the shoulder pitch and elbow joints of the iCub are
controlled in simulation to drive the end-effector to reach target
positions in 2D space. A simplified model is shown in Fig. 1A. The
joint angles q= (θ1, θ2) set the end-effector to the Cartesian
position x= (x, y) following the forward (or direct) kinematics
relationship x= f(q). Conversely, to move the end-effector to a
target position (x*, y*), a solver module should generate the
necessary joint angles ðθ�1; θ�2Þ by solving the inverse kinematics
relationship q= f−1(x). The latter can be solved analytically when
the robot model and parameters are precisely known, numerically
in the presence of limited errors in the model, or learnt through
neural networks. In this work, an SNN is trained on a
neuromorphic processor to learn the inverse kinematics and use
it as the solver module to control the joints and drive the end-
effector to the desired Cartesian positions.
Figure 5A shows the pipeline of the devised motor control

system. As a testing environment, we resorted to iCubSim, DYNAP-
SE1, and a computer in the loop for the training. The software
modules on the laptop (including iCubSim) and on DYNAP-SE1
communicate via a Spartan-6 XC6SLX25 FPGA and a C++ event-
driven library54, providing support for the integration of robotic
modules with event-driven sensing and computing platforms. As
the iCub robot relies on mainstream digital logic, an interface layer
(on FPGA) is needed to encode Cartesian coordinates into input
spike trains and decode output spike trains into digital joint values
sent to motors.
The desired position (x*, y*) is discretized into one-hot

population codes, where each neuron represents a sample of

J. Zhao et al.

9

npj Robotics (2023) 1

the Cartesian space. To encode a desired position on the CPU, the
neurons are stimulated with a Gaussian profile centered on (x*, y*).
The mean firing rates of the neurons are sent to the FPGA, where
they are converted into Poisson spike trains and fed into the SNN.
The solver module, running on DYNAP-SE1, is a trained SNN that

maps the inverse kinematics, continuously calculating the joint’s
configuration. The joint angles ðθ�1; θ�2Þ corresponding to the
desired Cartesian position are encoded by the neurons with the
highest firing rate. The spikes of the output neurons in the SNN
are streamed out from the DYNAP-SE1 chips via the FPGA. The
instantaneous firing rates of the output neurons are converted
into digital values (on CPU) and sent to the low-level motor
controller of each motor to drive the end-effector to the target
position.

Population coding for encoding analog variables
To interface, the SNN mapping of the inverse kinematics with the
non-spiking analog representation used in the robot, the Cartesian
position and the joint angles are represented by dynamical neural
populations. The joint angles are uniformly discretized following
Eq. (2):

i ¼ θ� θmin

θmax � θmin
´ ðN � 1Þ

� �
(2)

where N is the size of the population, θmin and θmax are the
minimum and maximum angles the joint can reach, and i is the
neuron index. The angle can be decoded from the index of the
maximally activated neuron using the same equation.
To train the network, the manipulability space of the end-

effector is sampled in random order through motor babbling55, by
applying different joint angles (θ1, θ2) (across the joint space) to
the arm. The generated Cartesian positions are non-uniformly
distributed (Fig. 5B) due to the combination of rotations around
the two axes and the different lengths of the arm’s links. As a
result, unlike in Eq. (2), the mapping from Cartesian coordinates to
neuron index cannot be a uniform distribution. Because of the
error introduced by the discretization (highlighted box in Fig. 5C),
multiple positions fall in each partition and, given the non-uniform
distribution, some regions are populated by more positions
(resulting in denser regions). Therefore, we need to tailor the size
of partitions to the density of the sampling. To do so, non-uniform
Cartesian space discretization is obtained by applying normal-
ization, principal component analysis (PCA), and N-quantiles
division to the original sampled Cartesian coordinates resulting
from the uniform discretization of the joint space (Fig. 5C). PCA
rotates the x and y dimensions and finds a new 2D plane that
maximizes the variance of the coordinates (thus the distribution of
the dots is more sparse). The new end-effector coordinates in the
PCA plane are then divided along x and y dimensions into N equal
partitions (with 1/N data points in each partition), respectively,
using N-quantiles, which corresponds to N neurons in two neural
populations. The discretization of the arm space is marked by the
blue lines along the x and y axes in Fig. 5C. Non-uniform
discretization reduces the discretization error, and the error can be
further minimized by adding more neurons.

Spiking neural network as inverse kinematics solver
The solver module SNN is shown in Fig. 6A, both during training
and inference. The neural populations encoding the Cartesian
coordinates (x, y) feed the hidden layer hiddenCartesian represent-
ing the Cartesian space. Each neuron in populations x and y is
connected with excitatory synapses to one row and one column,
respectively. This results in the activation of all the neurons in the
row and column, with higher activation of the neuron that
corresponds to the input but introduces noise that disrupts the
learning. To suppress the activation of neurons that do not exactly

match the (x, y) input during training, in hiddenCartesian,
excitatory synapses are replaced by disinhibitory connections
from y to hiddenCartesian, through a layer of gating neurons (y
gate layer).
The neural circuits found in basal ganglia (Fig. 6B) inspired the

disinhibition structure in the proposed network (Fig. 6C). Basal
ganglia contribute to the learning and selection of actions via
disinhibition, to control skeletal and saccadic eye movements35–37.
To suppress involuntary saccadic eye movements, the substantia
nigra pars reticulata (SNr) neurons fire at 50–100 Hz, stimulated by
the sustained activity in the subthalamic nucleus (STN) neurons,
constantly inhibiting pre-saccadic neurons in the superior
colliculus (SC). This inhibition is removed by another inhibition
from the caudate nucleus (CD) to the SNr, which results in the
disinhibition of the SC37. Similarly to the SC, the hiddenCartesian
layer receives multiple excitatory inputs that elicit excitatory
activity, and disinhibition is used to selectively activate the correct
neurons. To emulate the continuous drive of SNr by STN neurons,
the y gate neurons receive a constant input current. As CD inhibits
SNr, y modulates y gate through one-to-one connections, and
each y gate inhibits a column of neurons in hiddenCartesian. When
the input signal from the Poisson spike generators stimulates the
input populations, the y neuron inhibits its y gate neuron. Since
this single y gate neuron is inhibited, the corresponding column of
hiddenCartesian neurons are disinhibited and get the chance to
fire. However, only the neuron at the crossing point of the row -
stimulated by the x population and the disinhibited column—can
fire. The activity of the hiddenCartesian population, therefore,
represents the desired end-effector position in the Cartesian
plane.
The transition from one target end-effector position to another

also benefits from the disinhibition mechanism. There are two
pathways in basal ganglia (see Fig. 6D). The direct pathway (right)
creates the selective inhibition of the SNr neurons, which releases
the SC neurons and initiates movements, while the indirect (left)
one leads to less selective facilitation of SNr which inhibits the SC
neurons and suppresses movements37. These two pathways
dominate sequentially to produce the switching of behavior from
preparation (suppression) to execution (initiation). Similarly, in our
network (Fig. 6E), the constant input current to the y gate neurons
plays the role of the preparation (indirect) pathway, while the
inhibition from y to y gate corresponds to the execution (direct)
pathway. During task execution, when switching from one target
(x, y) to another, the old (x, y) input signal is removed, leading the
preparation pathway to be dominant due to the constant input
current. Then the new input is given by first stimulating y neurons
to apply the selective disinhibition and then activating x to trigger
hiddenCartesian neurons. The slightly earlier stimulation to y opens
the gate for the target hiddenCartesian neuron by silencing its y
gate neuron. This disinhibition makes the selective hiddenCarte-
sian neuron ready to receive activation from x, i.e., initiates the
network state for generating a new movement. And then x
stimulation kicks in and triggers the target hiddenCartesian
neuron, which fully translates the network to the execution phase.
During the training phase (Fig. 6A), similar excitatory and

disinhibitory connections are created from θ1 and θ2 to the hidden
population hiddenJoint so that the active hiddenJoint neuron encodes
the desired output state (θ1, θ2), sent as a teaching signal. The inverse
kinematics is learnt in the plastic connections from hiddenCartesian
to hiddenJoint, through triplet-STDP56. Selective firing patterns in
hiddenCartesian and hiddenJoint via the biologically plausible
disinhibition mechanism are crucial to the training performance. At
inference time, the activity of the hiddenCartesian population drives
the correct neurons in the hiddenJoint population, which are then
decoded as θ1 and θ2 from the output populations (Fig. 6A). The
neurons’ activity in θ1 and θ2 is continuously decoded as joint angles
to drive the motors using 1-hot population decoding (Eq. (2)).

J. Zhao et al.

10

npj Robotics (2023) 1

Due to the discretization of the arm space, different end-
effector positions (x, y) correspond to the same discretized joint
angles (θ1, θ2) (partition in Fig. 5C). During training, the synapses
corresponding to these multiple solutions are learnt, and a WTA
network is used at inference to select a single joints configuration
from the multiple possible solutions. WTA is implemented with a
global inhibitory population with an excitatory vs. inhibitory
neuron ratio of 4:157.
Each input, output, and gate populations comprise N= 8, each

hidden population has N2 neurons, and N2

4 inhibitory neurons are
used to create the WTA network in hiddenJoint. In total, 176 and
184 neurons are used for the training and control networks,
respectively.

Learning using triplet-STDP
Learning is implemented using the minimal version of the triplet-
STDP algorithm56,58, derived as models of learning observed in
visual cortex59 and hippocampus cultures60. The weight between
a presynaptic and a postsynaptic neuron is updated using three
exponentially-decaying traces: presynaptic trace r1(t), postsynaptic
traces o1(t) and o2(t) (see Fig. 7), updated at each pre or post-

spiking times respectively:
dr1ðtÞ
dt ¼ r1ðtÞ

τpre
; if t ¼ tpre; then r1 ! 1

do1ðtÞ
dt ¼ o1ðtÞ

τpost1
; if t ¼ tpost1; then o1 ! 1

do2ðtÞ
dt ¼ o2ðtÞ

τpost2
; if t ¼ tpost2; then o2 ! 1:

(3)

where τpre, τpost1, and τpost2 are the time constants of the traces.
A presynaptic spike at time tpre (the blue dotted line in Fig. 7)

triggers the LTD of the weight:

ΔwðtÞ ¼ �A�o1ðtÞwðtÞμpre
wðtÞ ! wðtÞ þ ΔwðtÞ; if t ¼ tpre:

(4)

where A− is the amplitude of the weight decrease whenever there
is a post-pre pair of spikes, and μpre sets the weight dependence
to the current weight. Similarly, a postsynaptic spike at time tpost
(the red dotted line in Fig. 7) triggers the LTP of the weight:

ΔwðtÞ ¼ Aþr1ðtÞo2ðt � εÞðwmax � wðtÞÞμpost
wðtÞ ! wðtÞ þ ΔwðtÞ; if t ¼ tpost:

(5)

where A+ is the amplitude of the triplet potentiation term (i.e.,
1-pre-2-post term) whenever there is a pre-post pair of spikes, ε is
a very small positive constant to sample o2 before its reset at time

Fig. 6 Network architecture. A The SNN as inverse kinematics solver. The circles represent neurons in color coding that blue, orange, yellow,
and orange stand for the input layer (including x, y, and y gate), hidden layer hiddenCartesian and hiddenJoint and output layer (including θ1, θ2,
and θ2 gate, respectively. The solid circles indicate firing neurons, while the empty ones are inactive. B Adapted from ref. 37. In basal ganglia,
the caudate nucleus (CD) neurons selectively inhibit the spontaneously firing substantia nigra pars reticulata (SNr) neurons, which suppresses
the inhibition from SNr to some superior colliculus (SC) neurons. Consequently, only the disinhibited SC neurons can be activated by stimulus
from other brain areas to generate saccadic eye movements. C In the proposed network, the selected y neuron disinhibits hiddenCartesian
neurons via y gate so that the target hiddenCartesian neuron can be triggered by the stimulation of x to generate arm movements. D Two
pathways in preparation and execution phases in basal ganglia. The indirect pathway (left) suppresses involuntary movements, while the
direct one (right) disinhibits selective SC to generate voluntary motions. The indirect and direct pathways dominate sequentially during the
preparation and execution phases; E Emulating biology, active y gate inhibits hiddenCartesian to creating the preparation phase, while y
disinhibits hiddenCartesian to form specific firing patterns for action selection and execution.

J. Zhao et al.

11

npj Robotics (2023) 1

tpost, μpost determines the weight dependence, and wmax clips the
maximum weight of the plastic synapse.
The triplet-STDP learning rules are implemented with a

computer in the loop using an event-driven framework that
streams out the spikes of pre- and postsynaptic neural populations
at run-time, calculates the required traces (Eq. (3)) and triggers
LTD (Eq. (4)) and LTP (Eq. (5)) weight updates at pre- and
postsynaptic spiking times, respectively.
The spikes of pre and postsynaptic neurons, streamed from the

chip to the CPU, are used to compute the LTD and LTP
traceEvents, respectively. The floating-point weights are updated
at run-time driven by the generated LTP and LTD traceEvents, by
modifying the weight matrix stored by the triplet-STDP algorithm
running on the CPU. After each training sample, the analog
weights are converted into binary weights that are applied to
DYNAP-SE1 to adjust the connections at run-time during training.
The weight is binary as it can only have two states: either
depressed, i.e., the pre and postsynaptic neurons are non-
connected, or potentiated, i.e., the pre and postsynaptic neurons
are connected and their weight is determined by a global
parameter, to meet the hardware constraints. The new binary
weight matrix generated after a new training sample will be
compared to the current one on DYNAP-SE1 and only the different
connections will be updated on the chip. The detailed imple-
mentation is described in Section Event-driven Implementation of
Triplet-STDP.
The training data was generated by selecting all possible N2

joint angles (θ1, θ2) of the shoulder and elbow joints of the left arm
of iCubSim, corresponding to N2 end-effector positions (x, y) as
shown in Fig. 5B, C. During training, the N2 training samples are
fed in random order (motor babbling) into the network. Each
sample lasts for 400 ms, then the floating weight matrix obtained
with the triplet-STDP rule is converted into discrete (binary here)
weights to comply with the chip constraints. Before training, all
the initial floating-point weights are set to winit (see Table S3).
These analog weights are updated by the triplet-STDP rules, and
only the ones that are potentiated to a certain level (stronger than
wthr in Table S3) will be applied to the DYNAP-SE1 chip after each
training sample.
The weight discretization process happens in three steps: (i)

thresholding: all floating weights are subtracted by a threshold
value wthr (see Table S3) so that the weights potentiated by
weakly firing (noisy) neurons are filtered out; (ii) binarisation: all

non-negative values are set to 1, while the others are set to 0.
Since all the remaining floating weights are equally important in
the connectivity pattern representing the inverse kinematics, they
are converted to the same discrete magnitude regardless of the
analog value. This conversion punishes the overgrowing synapses
and strengthens the weak ones to decrease the effect of mismatch
across neural activation levels during the learning process and
favors homogeneity in the network to remove biases in the
selection of the control solution (more details in Section Weight
Discretisation); (iii) Fusion: the weight matrices learnt after samples
i and i+ 1 are merged into one so that new connections are learnt
and the old ones are ensured to survive. In most cases (96.25%),
the previous two steps have guaranteed that the weakly
potentiated synapses in the earlier training samples will not fade
away with more training data afterward. With fusion, the accuracy
increases to 99.69% and can be further maximized by a second
run of the training using the same dataset to strengthen the target
connections encoding the inverse kinematics.
A new training sample is injected into the network after a

400ms interval to cool down the network activity, and the same
procedure is repeated for all the N2 samples. STDP and training
parameters are shown in Table S3.
Here, we are not aiming at a faithful replica of how biological

systems solve the inverse kinematic problem. Rather, we are using
neural computational primitives to solve an engineering task. One
of these primitives is indeed pruning, which happens in our
implementation via weight discretization during training. Since we
train the weight matrix on the CPU with computer-in-the-loop, the
all-to-all connections are only maintained in the software weight
matrix, and the weights will be thresholded and binarised in order
to apply them on hardware after each training sample. This weight
discretization procedure only keeps the strong synapses learnt in
the weight matrix. Therefore, after training, we only retain the
sparse connections learnt in the weight matrix (see Fig. 1C)
applied to the neuromorphic hardware, so that neurons that do
not have sufficiently strong synapses with other neurons could be
re-allocated to other tasks. When moving to on-chip learning,
pruning would lead to the optimization of neuromorphic chip
resources, but a technological solution and the infrastructure to
do so should be developed.

Inference: to control a robotic arm
The trained network is used to control the two-joint arm to
complete a continuous target-reaching task. Fig. 1B shows 12 end-
effector positions in the PCA space, forming a target trajectory
starting from the right-bottom point. For each testing sample, the
desired end-effector position (x, y) is encoded into spikes which
stimulate the x and y populations of Fig. 6A(II). The firing neurons
in x and y activate the corresponding hiddenCartesian neuron, and
then action selection happens from hiddenCartesian to hiddenJoint
via the inter-population connections, which represents the inverse
kinematics. These trained synapses connect the end-effector
space to the joint space. If multiple hiddenJoint neurons fire, the
WTA in hiddenJoint will select a single winner neuron, which will
then activate the corresponding neurons in θ1 and θ2, represent-
ing the joint command.
Joint configurations are calculated continuously by the SNN and

read out whenever the hiddenJoint neurons fire. The decoded joint
commands are sent to iCubSim to drive the shoulder and elbow
joints, as in Fig. 8. However, the actuation speed of iCubSim
cannot keep up with frequent command inputs because it takes
0.3 ms to 1.8 s for a joint to move from one position to another
precisely. To reduce the number of joint movements, once
iCubSim receives a new joint configuration ðθ�1; θ�2Þ, the current
joint positions (θ1, θ2) from the encoder will be compared with the
target ones. If the current angles are close enough to the target
ones, the joint configuration will not be applied to the robot

Fig. 7 Triplet-STDP traces. The solid black lines are the spikes
generated by presynaptic and postsynaptic neurons which trigger
long-term depression (LTD) (in blue) and long-term potentiation
(LTP) (in red) processes, respectively. Spike times of trace r1 (i.e., tpre)
and the corresponding o1 values are needed by weight update in
LTD, while trace values of r1 and o2 are read out at the firing times
tpost of o2 for LTP.

J. Zhao et al.

12

npj Robotics (2023) 1

because the joints have already reached the desired positions.
Otherwise, the joint command ðθ�1; θ�2Þ will be used to drive the
two joints. The Euclidean metric is used to check if the desired and
current joint vectors are close enough. If the Euclidean distance is
larger than a threshold (0.5∘ in this work), the joints will be moved
to the new positions.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author, J.Z., upon reasonable request.

CODE AVAILABILITY
All software programs used in the presentation of the article are freely available upon
request in a GitLab repository. Access to DYNAP-SE1 will be made available through
remote connection upon request as well.

Received: 31 October 2022; Accepted: 6 March 2023;

REFERENCES
1. Mead, C. How we created neuromorphic engineering. Nat. Electron. 3, 434–435

(2020).
2. Christensen, D. V. et al. 2022 roadmap on neuromorphic computing and engi-

neering. Neuromorp. Comput. Eng. 2, 022501(2022).
3. Chicca, E., Stefanini, F., Bartolozzi, C. & Indiveri, G. Neuromorphic electronic cir-

cuits for building autonomous cognitive systems. Proc. IEEE 102, 1367–1388
(2014).

4. Rahimiazghadi, M. et al. Hardware implementation of deep network accelerators
towards healthcare and biomedical applications. IEEE Transa. Biomed. Circuits Syst.
14, 1138–1159 (2020).

5. Ma, Y. et al. Emg-based gestures classification using a mixed-signal neuromorphic
processing system. IEEE J. Emerg. Select. Topics Circuits Syst. 10, 578–587 (2020).

6. Delbruck, T. & Lang, M. Robotic goalie with 3 ms reaction time at 4% cpu load
using event-based dynamic vision sensor. Front. Neurosci. 7, 223 (2013).

7. Bartolozzi, C. et al. Embedded neuromorphic vision for humanoid robots. In CVPR
2011 Workshops 129–135 (IEEE, 2011).

8. Sandamirskaya, Y., Kaboli, M., Conradt, J. & Celikel, T. Neuromorphic computing
hardware and neural architectures for robotics. Sci. Robot. 7, eabl8419 (2022).

9. Liu, S.-C. & Delbruck, T. Neuromorphic sensory systems. Curr. Opin. Neurobiol. 20,
288–295 (2010).

10. Risi, N., Aimar, A., Donati, E., Solinas, S. & Indiveri, G. A spike-based neuromorphic
architecture of stereo vision. Front. Neurorobot. 14, 93 (2020).

11. Kreiser, R., Renner, A., Sandamirskaya, Y. & Pienroj, P. Pose estimation and map
formation with spiking neural networks: towards neuromorphic slam. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
2159–2166 (IEEE, 2018).

12. Liang, D. & Indiveri, G. A neuromorphic computational primitive for robust
context-dependent decision making and context-dependent stochastic compu-
tation. IEEE Trans. Circuits Syst. II: Express Briefs 66, 843–847 (2019).

13. Bartolozzi, C., Indiveri, G. & Donati, E. Embodied neuromorphic intelligence. Nat.
Commun. 13, 1–14 (2022).

14. Ma, S. et al. Neuromorphic computing chip with spatiotemporal elasticity for
multi-intelligent-tasking robots. Sci. Robot. 7, eabk2948 (2022).

15. Perez-Peña, F., Leñero-Bardallo, J. A., Linares-Barranco, A. & Chicca, E. Towards
bioinspired close-loop local motor control: a simulated approach supporting
neuromorphic implementations. In 2017 IEEE International Symposium on Circuits
and Systems (ISCAS) 1–4 (IEEE, 2017).

16. Donati, E., Perez-Peña, F., Bartolozzi, C., Indiveri, G. & Chicca, E. Open-loop neu-
romorphic controller implemented on vlsi devices. In 2018 7th IEEE International
Conference on Biomedical Robotics and Biomechatronics (Biorob) 827–832 (IEEE,
2018).

17. Stagsted, R. K. et al. Event-based pid controller fully realized in neuromorphic
hardware: a one dof study. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) 10939–10944 (IEEE, 2020).

18. Zhao, J. et al. Closed-loop spiking control on a neuromorphic processor imple-
mented on the icub. IEEE J. Emerg. Select. Topics Circuits Syst. 10, 546–556 (2020).

19. Linares-Barranco, A., Perez-Peña, F., Jimenez-Fernandez, A. & Chicca, E. ED-Biorob:
a neuromorphic robotic arm with fpga-based infrastructure for bio-inspired
spiking motor controllers. Front. Neurorobot. 14, 590163 (2020).

20. Csiszar, A., Eilers, J. & Verl, A. On solving the inverse kinematics problem using
neural networks. In 2017 24th International Conference on Mechatronics and
Machine Vision in Practice (M2VIP) 1–6 (IEEE, 2017).

21. Demby’s, J., Gao, Y. & DeSouza, G. N. A study on solving the inverse kinematics of
serial robots using artificial neural network and fuzzy neural network. In 2019 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE) 1–6 (IEEE, 2019).

22. Gholami, A., Homayouni, T., Ehsani, R. & Sun, J.-Q. Inverse kinematic control of a
delta robot using neural networks in real-time. Robotics 10, 115 (2021).

23. Bouganis, A. & Shanahan, M. Training a spiking neural network to control a 4-dof
robotic arm based on spike timing-dependent plasticity. In The 2010 International
Joint Conference on Neural Networks (IJCNN) 1–8 (IEEE, 2010).

24. Dura-Bernal, S. et al. Cortical spiking network interfaced with virtual muscu-
loskeletal arm and robotic arm. Front. Neurorobot. 9, 13 (2015).

25. Tieck, J. C. V., Steffen, L., Kaiser, J., Roennau, A. & Dillmann, R. Controlling a robot
arm for target reaching without planning using spiking neurons. In 2018 IEEE 17th
International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC)
111–116 (IEEE, 2018).

26. Chadderdon, G. L., Neymotin, S. A., Kerr, C. C. & Lytton, W. W. Reinforcement
learning of targeted movement in a spiking neuronal model of motor cortex.
PLoS ONE 7, e47251(2012).

27. Tieck, J. et al. Towards grasping with spiking neural networks for anthro-
pomorphic robot hands. In International Conference on Artificial Neural Networks
43–51 (Springer, 2017).

28. Zaidel, Y., Shalumov, A., Volinski, A., Supic, L. & Ezra Tsur, E. Neuromorphic nef-
based inverse kinematics and pid control. Front. Neurorobot. 15, 631159. (2021).

29. Davies, M. et al. Loihi: a neuromorphic manycore processor with on-chip learning.
IEEE Micro 38, 82–99 (2018).

30. Eliasmith, C. How to Build a Brain: A Neural Architecture for Biological Cognition
(Oxford Univ. Press, 2013).

31. Menon, S., Fok, S., Neckar, A., Khatib, O. & Boahen, K. Controlling articulated
robots in task-space with spiking silicon neurons. In 5th IEEE RAS/EMBS Interna-
tional Conference on Biomedical Robotics and Biomechatronics 181–186 (IEEE,
2014).

32. Volinski, A. et al. Data-driven artificial and spiking neural networks for inverse
kinematics in neurorobotics. Patterns 3, 100391 (2022).

33. Moradi, S., Qiao, N., Stefanini, F. & Indiveri, G. A scalable multicore architecture
with heterogeneous memory structures for dynamic neuromorphic asynchro-
nous processors (dynaps). IEEE Trans. Biomed. Circuits Syst. 12, 106–122 (2017).

34. Natale, L., Bartolozzi, C., Pucci, D., Wykowska, A. & Metta, G. icub: the not-yet-
finished story of building a robot child. Sci. Robot. 2, eaaq1026 (2017).

35. Chevalier, G. & Deniau, J. M. Disinhibition as a basic process in the expression of
striatal functions. Trends Neurosci. 13, 277–280 (1990).

36. Groenewegen, H. J. The basal ganglia and motor control. Neural Plast. 10,
107–120 (2003).

37. Hikosaka, O., Takikawa, Y. & Kawagoe, R. Role of the basal ganglia in the control of
purposive saccadic eye movements. Physiol. Rev. 80, 953–978 (2000).

38. Marr, D. & Poggio, T. Cooperative computation of stereo disparity: a cooperative
algorithm is derived for extracting disparity information from stereo image pairs.
Science 194, 283–287 (1976).

39. Osswald, M., Ieng, S.-H., Benosman, R. & Indiveri, G. A spiking neural network
model of 3d perception for event-based neuromorphic stereo vision systems. Sci.
Rep. 7, 1–12 (2017).

Fig. 8 Control pipeline. The SNN computed joint solution ðθ�1; θ�2Þ is
compared with the current joint state of iCubSim to see whether the
new command should be used to drive the robot joints to new
angles. If the Euclidean distance between the current and command
joint configuration is within a threshold (i.e., they are close enough),
the command will not be executed.

J. Zhao et al.

13

npj Robotics (2023) 1

40. Athulya, P. et al. A computer vision approach for the inverse kinematics of 2 dof
manipulators using neural network. In 2020 IEEE Recent Advances in Intelligent
Computational Systems (RAICS) 80–85 (IEEE, 2020).

41. El-Sherbiny, A., Elhosseini, M. A. & Haikal, A. Y. A comparative study of soft
computing methods to solve inverse kinematics problem. Ain Shams Eng. J. 9,
2535–2548 (2018).

42. Tikhanoff, V. et al. The icub humanoid robot simulator. In IROS Workshop on Robot
Simulators (2012).

43. Wächter, A. & Biegler, L. T. On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Math. Program. 106,
25–57 (2006).

44. Renner, A., Sandamirskaya, Y., Sommer, F. & Frady, E. P. Sparse vector binding on
spiking neuromorphic hardware using synaptic delays. In Proceedings of the
International Conference on Neuromorphic Systems 2022 1–5 (Association for
Computing Machinery, 2022).

45. Gallego, G. et al. Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell.
44, 154–180 (2020).

46. Caviglia, S., Pinna, L., Valle, M. & Bartolozzi, C. Spike-based readout of posfet
tactile sensors. IEEE Trans. Circuits Syst. I Regul. Pap. 64, 1421–1431 (2016).

47. Tan, H. et al. Tactile sensory coding and learning with bio-inspired optoelectronic
spiking afferent nerves. Nat. Commun. 11, 1–9 (2020).

48. Birkoben, T., Winterfeld, H., Fichtner, S., Petraru, A. & Kohlstedt, H. A spiking
and adapting tactile sensor for neuromorphic applications. Sci. Rep. 10, 1–11
(2020).

49. Cai, W., Ellinger, F. & Tetzlaff, R. Neuronal synapse as a memristor: Modeling pair-
and triplet-based stdp rule. IEEE Trans. Biomed. Circuits Syst. 9, 87–95 (2014).

50. Yang, R. et al. Synaptic suppression triplet-stdp learning rule realized in second-
order memristors. Adv. Funct. Mater. 28, 1704455 (2018).

51. Bill, J. et al. Compensating inhomogeneities of neuromorphic vlsi devices via
short-term synaptic plasticity. Front. Comput. Neurosci. 4, 129 (2010).

52. Zendrikov, D., Solinas, S. & Indiveri, G. Brain-inspired methods for achieving
robust computation in heterogeneous mixed-signal neuromorphic proces-
sing systems. Preprint at bioRxiv https://doi.org/10.1101/2022.10.26.513846
(2022).

53. Hartl-Nesic, C. & Meiringer, M. Computational performance of the forward and
inverse kinematics of an anthropomorphic robot arm. In Proceedings of the Joint
ARW & OAGM Workshop 2019 115–116 (2019).

54. Glover, A., Vasco, V., Iacono, M. & Bartolozzi, C. The event-driven software library
for yarp-with algorithms and icub applications. Front. Robot. AI 4 (2018).

55. Caligiore, D. et al. Using motor babbling and hebb rules for modeling the
development of reaching with obstacles and grasping. In International Conference
on Cognitive Systems 22–23 (Citeseer, 2008).

56. Pfister, J.-P. & Gerstner, W. Triplets of spikes in a model of spike timing-
dependent plasticity. J. Neurosci. 26, 9673–9682 (2006).

57. Gabbott, P. & Somogyi, P. Quantitative distribution of gaba-immunoreactive
neurons in the visual cortex (area 17) of the cat. Exp. Brain Res. 61, 323–331
(1986).

58. Diehl, P. U. & Cook, M. Learning and inferring relations in cortical networks.
Preprint at arXiv:1608.08267 (2016).

59. Sjöström, P. J., Turrigiano, G. G. & Nelson, S. B. Rate, timing, and cooperativity
jointly determine cortical synaptic plasticity. Neuron 32, 1149–1164 (2001).

60. Wang, H.-X., Gerkin, R. C., Nauen, D. W. & Bi, G.-Q. Coactivation and timing-
dependent integration of synaptic potentiation and depression. Nat. Neurosci. 8,
187–193 (2005).

ACKNOWLEDGEMENTS
The authors would like to acknowledge Carsten Nielsen, Nicoletta Risi, the 2019
Capocaccia Neuromorphic Workshop, and all its participants for fruitful discussions.
This work was supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 Research and Innovation Program Grant Agreement
No. 724295 (NeuroAgents).

AUTHOR CONTRIBUTIONS
J.Z. and E.D. conceived the idea. J.Z. implemented the SNN and the learning
framework on the neuromorphic processor with discussions with C.B., G.I., and E.D.
M.M. collected the training data for the SNN and helped J.Z. to realize the
communication and control modules of the robot and perform control experiments
over the robotic arm. J.Z. conducted experimental results analysis and performance
evaluation of the spiking controller with the help of G.I. J.Z., E.D., and C.B. wrote the
manuscript draft, and all authors reviewed, edited, and agreed with the final form of
the manuscript. E.D. provided the overall supervision of the work.

COMPETING INTERESTS
C.B. is the Associate Editor of NPJ Robotics, she has not participated in any decision
about the peer-review and acceptance of the manuscript. The remaining authors
declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s44182-023-00001-w.

Correspondence and requests for materials should be addressed to Jingyue Zhao.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

J. Zhao et al.

14

npj Robotics (2023) 1

https://doi.org/10.1101/2022.10.26.513846
https://doi.org/10.1038/s44182-023-00001-w
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Learning inverse kinematics using neural computational primitives on neuromorphic hardware
	Introduction
	Results
	Role of disinhibition during training
	Neurons activity and joints readout during the control task
	Latency and accuracy trade-off
	Power consumption

	Discussion
	Materials and methods
	Population coding for encoding analog variables
	Spiking neural network as inverse kinematics solver
	Learning using triplet-STDP
	Inference: to control a robotic arm
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION

