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Tactile perception: a biomimetic whisker-based method for
clinical gastrointestinal diseases screening
Zeyu Wang1, Frank P.-W. Lo1✉, Yunran Huang2, Junhong Chen1, James Calo1, Wei Chen3 and Benny Lo1✉

Early screening for gastrointestinal diseases is of vital importance for reducing mortality through introducing early intervention. In
this paper, a biomimetic artificial whisker-based hardware system with artificial intelligence-enabled self-learning capability is
proposed for endoluminal diagnosis. The proposed method provides an end-to-end screening strategy based on tactile information
to extract the structural and textural details of the tissues in the lumen, enabling objective screening and reducing the inter-
endoscopist variability. Benchmark performance analysis of the proposed was conducted to assess the electrical characteristics and
core functions. To validate the feasibility of the proposed for endoluminal diagnosis, an ex-vivo study was conducted to detect
some common tissue structures and our method shows promising results with the test accuracy up to 94.44% with 0.9167 kappa.
This previously unexplored tactile-based method could potentially enhance or complement the current endoluminal diagnosis.
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INTRODUCTION
The prevalence of gastrointestinal diseases, manifesting as many
broad and complex symptoms such as diarrhea, gastrointestinal
bleeding, malabsorption, malnutrition, and even neurologic
dysfunction, is one major health challenge and a socioeconomic
burden for present-day society1. These diseases are characterized
by remarkable regional, age, and gender differences2,3. Alar-
mingly, among these diseases, gastrointestinal cancers account for
approximately one-third of worldwide cancer morbidity and
mortality4,5. Early screening for gastrointestinal diseases to provide
in-time intervention is of vital importance in reducing mortality
and improving life expectancy.
The conventional screening method for gastrointestinal disease

is endoscopy6,where clinicians use the elongated flexible endo-
scope with an embedded camera to inspect the gastrointestinal
tracts for diagnosis of mucosal diseases. Such minimally invasive
method is already used extensively in hospitals, since the
inspection is achieved via a natural orifice, no incision is required
and the patient can often be discharged the same day after the
procedure. Although the endoscopic procedure is aligned with the
clinical practice, the vision-based inspection may often be
challenging, given the limitations of the optical sensors, poor
lighting conditions, and extreme confined working environments
in gastrointestinal tract. The darkness, glare, reflection, bleeding
from biopsy, blur, and defocus can all impair the imaging quality,
even lead to miss diagnosis7. Wireless capsule endoscopy has
attracted much interest due to its unintrusive image capturing
ability. The miniaturized camera capsule can be swallowed by the
patient, and which will then pass through the digestive tract
naturally, capture the images along the tract, and transmit the
images wirelessly to a clinician’s console for diagnosis. This
promising method has been widely adopted as a screening tool
due to its ease of use, non-intrusive nature and relatively low cost.
However, conventional endoscopy is still required to perform
detailed diagnosis after capsule endoscopy, since the capsule is
also greatly hindered by its low-quality miniaturized camera,

lighting conditions, and the complex and highly dynamic luminal
environment in the gastrointestinal tract. Some emerging endo-
scopy technologies, like Chromoendoscopy (CE)8, can enhance the
histopathological diagnosis of tissues, whereas, the need in using
a biocompatible dye agent hinders their widespread use.
Computerized virtual chromoendoscopy (CVC), as alternative
image enhancement technology of the CE, uses multiple optical
channels to record the spatial and multispectral information of the
target simultaneously, such as the flexible spectral imaging color
enhancement system (FICE, Fujinon, Tokyo, Japan). However,
some studies indicate that FICE does not improve detection rates
of colonic polyps when compared with either convention white
light endoscope and CE9–11. Meanwhile, such technologies have
the same limitations as per the other vision-based methods.
All above mentioned methods are used for inspection providing

diagnostic information to the clinicians, and the clinical decisions
are made by the clinicians. The inter-endoscopist variability has a
considerable effect on the outcome12, which leads to the need of
objective screening rather than the current subjective observation
by experienced clinicians. Moreover, in current clinical practice,
the tactile sensory modality is one of the modalities which has not
been applied yet. This absence, on one hand, has limited the
ability of clinicians in identifying small polyps and any tissue
structural and stiffness abnormalities due to invasive adenocarci-
noma or other diseases, which often cannot be identified via
endoscopic cameras. On the other hand, although many optical-
based methods are already widely used in surgeries, none of these
methods can provide the sense of the touch for performing
minimally invasive surgery or other fine operations13,14 and
getting efficient and veritable force feedback.
Recent research in the sensory mechanism of rat whiskers has

shown the potential of such mechanism in various applications to
complement the limitation of vision-based methods and provide
tactile sensory feedback15–17. Because of poor eyesight, rats can
only rely on their whiskers to obtain tactile information of their
surrounding environment enabling them to navigate in complete
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darkness and confined areas. This tactile sensing process is analog
to human fingertips, by which we interact with nearby objects to
capture the textural and structural information about the objects.
We rely on such tactile sensing to complement our vision system
allowing us to sense the hardness, shape and roughness of
objects, and which form the feedback for us to control, manipulate
or interact with nearby objects. In fact, clinicians often rely on their
tactile sensing ability to perform diagnosis on patients; for
instance, palpation is commonly used in physical examination.
As a form of novel tactile sensory modality, recent research has
shown that artificial whiskers can perform remarkably in texture
discrimination and distance perception tasks18,19, which sheds
light on their potential application in the clinical gastrointestinal
diseases screening, since the surface texture and topology
changings are often highly correlated to specific pathological
changes, such as polyps, bacterial infection, ulcerative colitis,
tumors, etc.
Inspired by the sensory mechanism of the rat whisker, in this

paper, a biomimetic artificial whisker-based hardware system with
artificial intelligence-enabled self-learning capability is proposed
aiming for gastrointestinal screening applications. Its texture
recognition and distance perception capabilities based on this
novel tactile modality could complement to vision-based method,
and enable the whisker to sense polyps, mucosal disease and
other abnormalities on the gastrointestinal wall, even in situations
where the optical device cannot work well, for instance, in a
completely dark environment or un-illuminated areas in the
lumen. In the traditional vison-based endoscopy, where the image
is captured by the embedded camera often on the tip of the
endoscope, and images are then transmitted back to the
computer for processing and displaying on the screen for clinical
diagnosis. In the proposed method, the raw data acquired by the
whisker-based hardware system can be directly fed into an end-
to-end deep learning network without the need for extracting
handcrafted features. This allows for automated analysis and
identification of potential abnormalities, such as diseases related
stiffness changes of soft lumen tissues. By adopting this learning
network, the burden of data interpretation on clinicians and the
inter-endoscopist variability due to differences in diagnostic
experience can be reduced, enabling standardized objective
assessments. Compared to conventional machine learning meth-
ods20,21, this highly efficient end-to-end data analysis method

eliminates the time-consuming and laborious feature engineering
process required in traditional signal processing methods, thereby
reducing the complexity of data processing.
Benchmark tests were conducted to assess the electrical

characteristic and core functions of the whisker-based system,
which included texture discrimination, distance perception, and
stiffness characterization. Besides, to explore the clinical applica-
tion potentials, in a pilot study, an ex-vivo sample was used to
assess the ability of the proposed method in distinguishing some
common tissue structures, partly related to pathological changes,
which are normal tissue, ulcerative colitis, and ulcerative cancer.
After the iterative training of the end-to-end model, the test
accuracy can reach 100% for some trials, and 5-fold cross
validation demonstrates 94.44% averaged accuracy among the
datasets, showing the potential of the proposed method as a new
sensing modality for disease screening. In addition, the optimiza-
tion results of the algorithm have shown that even the deep
learning network with relatively small number of layers can still
achieve a high detection accuracy, which means relatively low
computational power would be required and these results provide
a strong theoretical basis for edge computing to perform real time
diagnosis. In other words, this low computational resource
required characteristic indicates that the proposed can be
implemented as a submodule of a surgical robot system without
introducing considerable complexity in system integration to
enable tactile feedback for surgical instruments and supporting
the development of autonomic robotic surgeries. This emerging
tactile perception-based screening method could be a promising
complement to the conventional vison-based endoscopy and
could also form a low-cost alternative early screening mechanism
for people living in low and middle-income countries.

RESULTS
Conceptual design
Figure 1 shows the conceptual design of the proposed method. In
a gastrointestinal examination, the proposed whisker-based
hardware system can be inserted into the intestinal tract via a
nature orifice, and then identify tissue pathological abnormalities
due to specific diseases along the lumen. Similar to rat whiskers,
the proposed will allow the endoscopic system to sense the
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Fig. 1 The conceptual design of the proposed artificial whisker-based method inspired by rat whiskers offers a promising approach for
GI disease screening. A, B Illustrate the working mechanism of rat whiskers when they travel through a lightless pipe-like environment.
C A simulated intestinal tract with pathological changes. D, E Demonstrate the proof-of-concept design of the proposed artificial whisker
system, and the clinical screening routine with the proposed system. Here, we focus on a single channel subsystem, which could also assist
clinical diagnosis.
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surrounding tissues and to navigate through the elongated lumen
of the gastrointestinal tract. When the whisker contacts the
surrounding tissues in the lumen, different response signals, which
correspond to pathological information, can be captured by the
whisker. Based on the signal responses, together with the
proposed algorithms, the structure and contour of the abnormal
tissues could be diagnosed and extracted separately for assisting
clinical decisions.
To achieve this, a high-performance whisker-based hardware

system and analysis algorithms are required for precise sensing
and high-level interpretation to support clinical decisions. The
whisker-based system is designed for encoding pathological
information into electrical signals, and these raw electrical signals
will then be converted into high-fidelity digitalized signals
through multi-stages amplification, filtering, and analog-to-
digital conversion processes. Then, these digitalized signals can
be transmitted to a personal computer (PC) or workstation via a
wireless or tethered communication link for further interpretation.
Utilizing fine-tuned analysis algorithms for translating the raw
signals into clinical decisions, this novel method has great
potential in providing an end-to-end screening capability from
perception, analysis to diagnosis with no or minimum human
intervention and which minimizes inter-endoscopist variability.
Given that the design parameters of the proposed have direct
impact on the final performance, modeling analysis for working
mechanism of rat whisker is crucial for optimizing the following
design and implementation.

Modeling and design parameter optimization
Much research in biology and neurosciences22 has proven that the
sensing capability of whiskers mainly relies on follicles, in which
the whisker is rooted. As shown in Supplementary Fig. S1, the
anatomical structure of the follicles consists of several mechan-
oreceptors, which encodes several parameters, such as curvature,

taper, elasticity, texture, and distance, into the generated electrical
signals. Typically, a standard bionic design simulates the function
of the follicles by designing different transduction solutions with a
fixed whisker made of multifarious materials; however, the
different working mechanisms of an artificial whisker-based
system will have direct impacts on the targeted tasks and
contribute to different responses and performances. In general,
there are two types of working mechanisms including the static
model and the dynamic model as shown in Fig. 2A–D, which refer
to behaviors of the whisker during the sensing period.
Normally, according to the theory of mechanics of materials23,

the artificial whisker can be modeled as a cantilever beam24–26

with a free end under the both static and dynamic conditions,
which satisfies the Bernoulli-Euler equation. In the static model, as
shown in Fig. 2A, analytical solution in the material and methods
section demonstrates that the distance parameter d can be
estimated by capturing the values of deflection angle θ and x from
several different observation points in a single experiment, and
such values can be measured by placing several sensors along the
beam. However, one of the major limitations is the localization
accuracy. Two sensors should be placed relatively close to each
other along the neutral axis in order to improve system
integration and reduce system volume. Such design will limit
the ability of the sensors in measuring the deflection angle
changes on which the system relies to work properly. Assume that
the sensors are fabricated at x1= 10mm, x2= 20mm, which are
the reasonable values taking the manufacturing technology into
consideration, the simulation results shown in the Fig. 2B depict
that under the condition of any predefined θ1, the variations of θ2,
namely, Δθ2, tend to be zero degree as the increase of the
detection distance. Due to the limitation of sensitivity, resolution,
and inherent noise level of the sensor, these small deformations
are hard to capture, and could even lead to stochastic sensing
outputs with small range despite the variation of the distances d.
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Fig. 2 The modeling analysis of an artificial whisker-based system, including static and dynamic models, which provides insights into its
working mechanism. A The static model of the whisker system. Generally, the artificial whisker can be modeled as a cantilever beam with a
free end, which satisfies the Bernoulli-Euler equation. The static indicates the fixture is fixed during the sensing stage. B An analytical solution
of the localization accuracy problem in the static model. This design will lead to indistinguishable flexion angle changes on which the system
relies to complete distance perception as the distance between the whisker and the target increases. C A motor-driven dynamic model of
whisker system, which can provide more robust sensing capability while at the cost of large volume and difficult to be highly integrated.
D A variant dynamic model utilizing external movement force to drive it, featured by higher integration and robustness.
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From the perspective of the electronics, the system response
caused by distance variation is indistinguishable and fused with
the response caused by system noise, which leads to system
malfunction ultimately. In addition, a single robust detection
should be conducted when the system is in a static and stable
state, which limits the quick screening potentials in the proposed
application scenario. In summary, the multiple sensor deployment,
sensing accuracy, system noise control, and relative low detection
speed limit the utilization of a static sensing model.
In recent research, it has been shown that active whisking or

any external movement plays an important role in rats’ space
perception capability27. The whisking and forward/backward
movement extend the dynamic range of the sensing capability,
and provide a more robust sensory modality. A typical example of
a dynamic model is shown in the Fig. 2C. The common strategy is
a motor-driven solution in dynamic models. In this case, the beam
is fixed at a fixture base which is connected to a motor to provide
the rotation force, namely, rotation torque. According to the
analytical solution in the material and method section, although
the size of fixture introduces a more complicated relationship to
parameters of interested, inevitably, the model is capable of
providing adequate relevant information to estimate the distance
with only one sensor which can measure torque. Although the
angle α is not a predefined value, it depends on the termination
point of the fixture where the whisker is inserted, and the target
object to be detected. Hence, a series of pre-collected signals
could be used to calibrate the sensor. Moreover, based on an
assumption, that the beam connected to the actuator is at the
center of rotation to simplify the calculation, a more succinct
analytical solution could be obtained, and the influence caused by
the angle α can be eliminated, which means the detection
feasibility and effectiveness are promoted dramatically if the
measurement is within an allowable error range. Except for
boosted robustness in terms of the dynamic model, a single
detection can be conducted with several trials by adjusting the
rotation torque to generate different responses, which leads to
more reliable detection.
The dynamic model will yield a more robust sensing comparing

to a static model, however, in our design, for the proposed to be
integrated into clinical diagnostic devices as an add-on sub-
module, motor-driven solution is not an appropriate approach
given its size and biocompatibility issues. In our design, an
external-driven movement approach is adopted, which is a variant
of the active rotated dynamic model. Our analytical calculation has
also shown that this external-driven model has comparable
performance compared with the rotated one, and one observation
point along the beam is sufficient to provide distance information;
however, the calculation is more complicated, and which could
induce extensive workload for the central processing unit (CPU) of
the system and reduce the accuracy. To optimize this novel
sensing modality and make it simpler and more robust in the
clinical GI disease screening, we mitigate the dependence on
absolute positioning accuracy in experiments, while emphasize
the sequential information in a single continuous whisking
movement, which corresponds to the idea of distance perception
rather than accurate localization. Based on this idea, a deep
learning algorithm is developed for nonlinear parametric mapping
in terms of the output signal and the parameters of interest, such
as textural information, hardness, and distance estimation, in this
way, to translate the output into the relevant information to assist
clinical diagnosis. To acquire this sequential scanning information,
the proposed whisker-based system should be characterized by
rapid response capability and large dynamic range, and which
guarantee high-fidelity structural and textural detection.

System design and implementation
Based on the modeling analysis, a dynamic model-based whisker-
based system with low noise level, rapid response capability, and
large dynamic range is needed. As such, the system consisting of a
whisker-based sensor and signal conditioning circuit is designed
and developed.
As aforementioned, a whisker-based sensor generally consists

of a signal transduction solution that mimics the follicles, and a
whisker, both of these are the prerequisite for achieving high-level
bionics. Many signal transduction solutions have been proposed
to simulate the function of follicles, which range from electret
microphones28, and strain gauges18,29, to hall-effect sensors
array30–32. Due to the different sensory principles, these signal
transduction solutions have their own unique advantages, as well
as limitations. For instance, the electret microphones solution is
sensitive to deformation of whisker during the contact, whereas
the system volume is too large to be integrated into a system,
such as those for minimally invasive surgical applications. A similar
problem also exists in the hall-effect sensor. The hall-effect
magnetic sensor array, which normally includes two pairs of
orthogonally placed sensor chips, converts the deformation angles
of the whisker (where an external permanent magnet is attached)
into magnetic flux measurements. Conversely, the strain gauges
overcome this problem to some extent. Based on the piezo-
resistive effect, strain gauges can effectively transform mechanical
deformation and vibrations into small resistance variations. In this
case, it is a common practice to use a full bridge configuration of
the Wheatstone bridge to achieve temperature compensation33

and provide enhanced linear response capability. (More details
regarding the application fields, transduction solutions, and
characteristics of whisker works in existing research can be found
in Supplementary Table S1 of the Supplementary Material). In our
design, the signal transduction solution is developed based on a
Polyvinylidene fluoride (PVDF) film transducer. The PVDF transdu-
cer, categorized as a type of piezoelectric sensor, is a semi-
crystalline polymer that operates based on the piezoelectric effect.
This effect is characterized by the generation of an electric charge
proportional to the stress applied when the film is subjected to
vibrations or deformation, resulting from polarization of the
molecules in the polymer. PVDF transducers possess remarkable
features, such as low output capacitance, rapid response
capability, wide frequency response range, high mechanical
strength, and stable chemical properties, making them widely
adopted in both research and industrial applications. However, the
generated signal of the PVDF film transducer is ultra-weak charge
quantity variation with high impedance. A pre-processing circuit
which mainly consists of a charge amplifier, hence, is designed for
impedance matching, as well as converting the original charge
signal into a voltage signal for signal conditioning. Figure 3A
illustrates the equivalent circuit design of the PVDF film transducer
with the charge amplifier schematic. The analytical solution
demonstrates that the selection of the Cf requires a compromise
between signal amplification and signal accuracy. In this design, to
extract the detailed textural and structural information, the signal
accuracy and a wide frequency response range are of higher
priority, thus, a relatively large Cf capacitor is selected. To
compensate for the limitation of the insufficient amplification
gain, a high-precision signal conditioning circuit is proposed with
24-bits analog-to-digital conversion resolution.
Apart from the PVDF film transducer and the pre-processing

circuit, a whisker is needed for constructing a biomimetic whisker-
based sensor. The design of the whisker varies considerably, with
solutions ranging from stainless steel wires18, specially molded
composite34, to real rat whiskers35. In this work, a guitar string,
which typically consists of a thin core with wire wrapped around it,
is adopted as a whisker. The main advantages of this material are
high dynamic response and strong flexibility. Figure 3B and
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Fig. 3 The design of the proposed hardware system for artificial whisker-based sensing, which comprises a whisker-based sensor, signal
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Supplementary Fig. S3B show the prototype of the entire whisker-
based sensor. The assembly process of the prototype relates to the
soldering and encapsulation steps. The pre-processing printed
circuit board (denoted as 3) is designed for the signal forward and
backward transmission, which is soldered onto the post-stage
signal conditioning circuit board, which is introduced in the
following section, through signal sockets at the lower edge. On
the upper side of the module 3, a PVDF film sensor (denoted as 2),
from TE Connectivity®, is also soldered onto it through the
electrode pins of the PVDF, which provides a part of the adhesion
strength. Furthermore, a whisker is glued and fixed on the surface
of the PVDF film to ensure that the whisker can be freely
deformed.
The generated signal of the whisker-based sensor is ultra-weak

analog voltage signals, which requires further processing for
capturing and analysis. As shown in the Fig. 3E and Supplemen-
tary Fig. S3C, a post-stage signal conditioning circuit is developed
for this purpose. Generally, the signal conditioning circuit can be
built with discrete components, however, by utilizing an analog
front end (AFE) technology and a microcontroller unit (MCU), as
well as compact peripheral passive and active components, the
signal-to-noise ratio can be enhanced remarkably36. Specifically,
the analog response signal is fed into an anti-aliasing circuit at first
to remove the out-of-band noises. Subsequently, the output signal
is routed into an analog-front-end subsystem to complete signal
re-routing, multi-stage amplification, analog-to-digital conversion,
and low-pass filtering processes. In this way, the original
deformation signal is converted into digitalized waveform signal
for context interpretation. A 24-bits high-precision ADC is
designed to mitigate the limitation of the insufficient amplification
gain as well as providing sufficient resolution for sensing the fine
textural and structural details. All the signal processing mechan-
ism mentioned before are controlled by the MCU. Figure 3D
shows a workflow of the embedded control algorithm. Through
the serial peripheral interface (SPI), the MCU provides the needed
functions of timing control, data transmission, instruction control,
etc. Moreover, by combining programmable logical components,
the parameters of the signal conditioning circuit can be
reconfigured, such as gain, sampling rate, and channel re-
routing. In addition, 3D printing technology is used for the
packaging of the whisker-based system. The structure of the
proposed signal conditioning circuit is shown in Fig. 3C and

Supplementary Fig. S3A. The prototype adopts a stacking
architecture. From top to bottom, there are 3D printing top cover
(denoted as 1), PCB board of the signal conditioning circuit
(denoted as 2), Li-ion battery (denoted as 3), and the 3D printing
base cover (denoted as 4). The Li-ion battery module is soldered
onto the socket of the signal conditioning circuit, and the same
connection method is used to integrate the whisker-based sensor
with the signal conditioning circuit. Furthermore, a water-proof
glue is applied to glue and seal the prototype, which ensures the
prototype can work in environment with high humidity and even
submerged in water.

Benchmark experiment 1: the inherent noise evaluation
The electrical performance of the proposed whisker-based system
is the basis for acquiring high-fidelity signals, which are the main
focuses of the following experiments, such as texture discrimina-
tion, etc. Firstly, the inherent noise test, as a crucial electrical
performance index, is conducted to assess the thermal effects on
the system. As the results shown in the modeling analysis, low
noise level is critical for robust precise sensing and performance of
the proposed method. The inherent noise level can also limit the
signal-to-noise ratio and bandwidth of the proposed system, both
of which will directly affect the dynamic performance of the
proposed system. Typically, the noise is caused by the internal
voltage noise and current noise and is highly related to
temperature fluctuation. In this test, the input channels are
shorted to the common-mode voltage, and the temperature is
ranged from 0 °C to100 °C with a step of 10 °C. For each
temperature test point, 5 trials were conducted that contain
50,000 consecutive conversion points for each with a sampling
rate of 250 Hz. The root means square (RMS) of the output noise
signal given below is used to assess the average noise level, where
vi and N represent the single conversion point of digitalized
output signals and the number of conversion points respectively.
In addition, peak-to-peak noise (Vpp) is another index to assess
the noise distribution.

vrmsof noise ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Xn
i¼1

v2i

s

Experimental results, as shown in Fig. 4A, reveal that the inherent
noise is relatively stable in the working temperature range
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Fig. 4 The proposed hardware system exhibits enhanced precision and robustness attributed to its low inherent noise characteristics
and low thermal dissipation. A The boxplot results of the inherent noise evaluation with temperature changes. B The peak-to-peak noise
(Vpp) and RMS noise distribution of noise evaluation task. C Visualization of thermal dissipation issue over 0, 3, 6, and 9 h of operation for the
proposed whisker system, captured using a commercial infrared imaging device (Fluke® TiX580 Infrared Camera). The numbers at the center
of the infrared figures indicate temperature readings in Fahrenheit at the respective measurement points.
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(10–50 °C) with a maximum of 0.75uVrms and 6.16 uVpp.
However, the noise increases with temperature, which matches
the expectation, since electronic thermal noise increases as the
temperature rises37. More details of the noise waveforms can be
found in the Supplementary Fig. S4 in Supplementary Material.
The test results indicate that the magnitude of the inherent noise
is negligible and will have minimal effect on the signal quality.
Meanwhile, a power dissipation issue, which is normally in the
form of thermal generation, should also be taken into considera-
tion as high-temperature could cause tissue burns and scalds. A
commercial infrared imaging device (Fluke® TiX580 Infrared
Camera) is used to evaluate the thermal distribution of the
system. Figure 4B shows the test results, and the background
temperature is used as a reference. The test results demonstrate
that the whisker temperature rises, caused by thermal dissipation
of long-term operation, less than 3.1 °C during the 9 h of
continuous usage tests, and which shows that the proposed
system can be used safely in surgical applications.

Benchmark experiments 2: core function evaluation
In the last section, the whisker-based system performance is
evaluated from the perspective of electrical characteristics. To
evaluate the potential of using the proposed system for surgical
applications, a comprehensive test protocol is designed to assess
the task-related performance, including texture, distance, stiffness,
and shape features sensing. In the real world, the perception and
navigation capability of the rat whisker obviously relies on its
advanced central nervous system to decode and translate the raw
signal into the one it can understand, even with the presence of
other sensory modalities like the vision simultaneously. Although
it is not clear how these processes are conducted, the different
signal features could still be inspected and extracted from the
signal collected by the proposed system according to the
detection principles of the PVDF-based sensory solution. Supple-
mentary Table S2 summarizes the detection principles for
different sensory dimensions. By comparing the signal from the
perspective of time domain, frequency domain, and time-
frequency domain, the texture discrimination, distance percep-
tion, stiffness characteristics, and shape recognition can be
validated.
Since the proposed whisker-based system works as a variant of

the rotational dynamic model, an external actuator is required to
drive the whisker and enable it to sweep across an object. To
achieve accurate control, a 3D printer is utilized as an
experimental platform, as shown in Supplementary Fig. S5, to
provide this actuation. A 3D printer typically consists of
subsystems such as Frame, Print bed, Extruder, Stepper motors,
Control board, among others. The print bed provides precise
movement in the Z-axis, while the Stepper motors provide precise
movement in the XY-axis. During experiments, we attached the
whisker-based system to the Stepper motors module and placed
the object to be tested on the print bed. By controlling the
software interface, the proposed system can be driven with high
precision. In addition, given that the whisker is analog to the
tactile sensing of the human fingertips, the sweeping speed will
directly affect the response signal. Empirically, a higher sampling
rate with slow movement speed results in a precise response with
more details; however, the control parameters setting shall be
adjusted according to the corresponding tasks to highlight some
waveform characteristics. The detailed settings are described in
the following sections.

Texture discrimination. Texture characterizes the consistency of
the micro structural elements of a surface. Textural feature can be
distinguished by the signal waveforms, frequency components,
and time-frequency distribution from signal captured by the
proposed system. Three types of materials were chosen in the

experiment including an adhesive tape with a smooth surface,
sandpaper, and a soft fabric cloth, all of which are shown in
Supplementary Fig. S6. During the test, the height between the
object surface and the whisker base was set to be about 56mm.
At the first batch of trials, the movement speed was set to
3000mm/min, and the whisker just used less than 1 s to sweep
over the surface of the object, so that there is no obvious
difference in the output signal among those materials. This is
reasonable based on the assumption that the whisker sensing is
similar to the sensing of human fingertip, which means a short
duration of interaction is not enough to acquire sufficient
information. A series of comparative analysis experiments were
conducted and which indicated that a relatively low movement
speed can acquire more abundant textural information, and here,
the test results with 300mm/min movement speed are shown in
Fig. 5.
Specifically, the initial output baseline signal of the proposed

system is 2450mV, which corresponds to the static condition.
When the whisker is approaching the target object, several small
vibrations will be induced by external movements and which
generate some noise superposing onto the baseline. Subse-
quently, the signal will rise up starting at the first contact between
the whisker and the object. When the deformation reaches the
maximum value, which corresponds to the state where the
whisker tip is completely on the surface of the object, the signal
amplitude will then start to decrease in the sweeping stage. The
last stage occurs when the whisker leaves the object surface, a
very significant oscillation signal will be generated due to the
stored elastic potential energy, and this release point signal
indicates the end of this interaction between the proposed system
and the target objects. From Fig. 5, a prominent difference in the
time domain waveforms among these three types of output
signals can be found in the sweeping stages, which correspond to
the declining curves. The smoother the surface will lead to
smoother output signal. Furthermore, since the fabrics have
different warp and weft lines, the whisker changed its forward
track occasionally during the sweeping stage, which corresponds
to the ‘w’ shape in the output signal as shown in Fig. 5C. In
addition, the corresponding frequency domain and time-
frequency distribution also support the same conclusion. It is
worth mentioning that even though the difference between the
materials can be verified, there is high consistency among the
categories as shown in Supplementary Fig. S6, which was the
responses of backward movement in the textural discrimination
tasks.

Distance perception. In the distance perception task, the control
variable is the distance between the target object and the base of
the whisker. The movement speed was set to 1500mm/min since
the textural information is not the focus in this experiment, and
test height was set to 48–57mm with a step value of 1 mm. For
each distance setting, 3 trials were conducted. Figure 6 shows a
test sequence with different test heights. The test results have
shown that the release point oscillation signals show a highly
linear relationship with the height parameter. Based on the release
point oscillation signals extracted by a peak detection algorithm,
first-order polynomials and cubic polynomials can fit these
features smoothly, and statistic indexes, as shown in Table 1,
such as Sum of Square due to Error (SSE), Coefficient of
determination (r-square), Root Mean Square Error (RMSE), and
adjusted Coefficient of determination (adjusted r-square), are
commonly used to assess the fitting performance. The results
demonstrate that the polynomials fit the oscillation signal very
well. In addition, from the perspective of the velocity signals,
which is defined as the derivation of the original signals, this linear
relationship is also maintained with the polynomial functions. The
slightly fitting difference between the original signals and the
velocity signals is negligible according to the statistical indexes.
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Stiffness characterization. In general, different tissues have
different stiffness, and tissue stiffness is another biomarker
commonly used for health assessment, since some diseases, such
as cancer, could affect tissue elasticity and stiffness. Given the
tactile sensing capability of the proposed, the stiffness character-
ization ability of the whisker-based system was evaluated. During
the test, ex-vivo samples (i.e., soft tissue and bone) were used for
the stiffness test, which is shown in Supplementary Fig. S7. By
adjusting the height of the print bed to keep the distance
between the object and whisker base equally, different responses
were obtained using the proposed system, which are shown in
Fig. 7A, B. Similar to the distance perception task, the value of the
release point is significantly different for soft tissue and bone,
while the first fundamental frequency point is almost the same.
This fundamental frequency highly depends on the material or
inherent mechanical characters of the whisker, which will be
discussed in the discussion section.

Shape recognition. In the texture discrimination task, the sensing
focused on the sweeping stages and for the other two tasks
mentioned before, the whisker leaving point signal was the main
focus for sensing the characteristics. In contrast, in recognizing
shapes, the entire interaction duration (i.e., from the first contact
to the object, to the sweeping across the surface of the object, as
well as the point when the whisker leaves the object) shall be
measured; thus, shape recognition task is a relatively more
comprehensive assessment. During the test, three objects were
designed and fabricated using a 3D printer with round, flat, and

bevel surface as shown in Supplementary Fig. S8. Time domain
waveform can be used to classify these objects from the whisker
sensing signals as shown in Fig. 7C–E. Specially, the signal
generated from a round surface is relatively symmetric, which
gradually reaches the maximum amplitude, and decreases for a
short period, followed by a sharp drop. Flat surface has a long
decent process, since the whisker would take longer to sweep
through the surface of the model. The signal collected from a
bevel surface show a rapid shift from the rising trend to a sharp
drop, since the leaving point was right after the whisker was
maximally deformed.

Pilot study towards clinical application
To assess the clinical application potentials of the proposed
method, a pilot study, (i.e. abnormal tissue screening) was
conducted after the benchmark performance tests of the
proposed whisker-based system. A phantom (Model: FC-GHGH,
Guangzhou LanDie Teaching Model Co., Ltd.,) was used for the
abnormal tissue screening task as shown in Fig. 8A and
Supplementary Fig. S9. Three typical biological tissues, which
include normal tissue, ulcerative colitis, and ulcerative rectal
cancer, were the screening targets. Although the phantom is far
from a real intestinal tract, the pathological anomalies have their
own unique and consistent topologies and surface structures.
Hence, this proof-of-concept experiment is indicative for evaluat-
ing the feasibility of this novel method. During the experiments,
the phantom was fixed on the workbench, and the whisker-based

A B C

Fig. 5 Texture discrimination capabilities are demonstrated by notable differences in the sweeping stage across the time domain,
frequency domain, and time-frequency domain perspectives. A The responses of smooth surface. From the top to bottom are the results of
the signal waveforms, frequency components, and time-frequency distributions respectively when the proposed system sweeps across the
surface of the target material. The arrangement of the rest (B, C) is the same. B The responses of sandpaper. C The responses of soft fabric
cloth.
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system swept across the surface of the phantom in hand-held
states, which aim to simulate the real screening procedure where
the system is assumed to be operated by clinicians or robotic
systems, instead of an ultra-stable actuator that moves along its
pre-defined trajectory. A total of 120 trials were conducted for
each type of biological tissue, and each trial contained a complete
screening sequence from system’s first contact to leave the object
surface.
The algorithm is crucial to translate the raw signal into relevant

information for clinical diagnosis. First, the raw signal collected by
the whisker-based system is zero-mean and normalized to the
range of (−1, +1) to scale the features into the same range, which
is needed for a deep-learning training to converge and the
network to be optimized. Subsequently, a deep neural network
consisting of 4 stacked convolutional neural network (CNN)38

layers and 2 layers of long short-term memory (LSTM) was
designed for the classification tasks, which is shown in Fig. 8D.
1-dimensional CNN layers were used for feature extraction,
meanwhile, batch normalization, maxpooling, and dropout
techniques were also adopted to reduce the feature dimension

and improve the generalizability of the network. Compared with
traditional recurrent neural networks (RNNs)39, LSTM overcomes
the short-term memory effect of RNNs and is capable of learning
signal patterns from long-time series. This long-time series
learning capability is achieved by using the gate control
mechanism40.
The 5-fold cross-validation method is used in assessing the

algorithm’s performance, which means 96 samples from a total of
120 samples are used as the training set, while the rest is used as
the test set in each fold. The t-SNE41 visualization as shown in
Fig. 8B indicates that the original signal distribution is chaotic.
However, after 65 epochs of training, the test accuracy can reach
100% for some trials, and the averaged accuracy in entire
database can reach 94.44% with 0.9167 kappa. Moreover, to
design the proposed to be an add-on submodule for a clinical
device, the computational complexity is another important issue.
Deep learning algorithms often require large amounts of memory
and consume a lot of computing resources, compromise between
the accuracy and computational complexity should be considered.
In our experiments, an ablation study is conducted to assess this
issue. By reducing several layers from current algorithms, different
classification accuracies and other performance indexes can be
obtained, which is shown in Table 2. The results demonstrate that
even the network is simplified into a single linear layer, and it still
can get an averaged accuracy of 85.83%, while the algorithm just
keeps around 1000 parameters involved in calculation. This
ablation study indicates that this novel tactile modality-based
method could be a promising method for clinical diseases
screening without much dependency on specific algorithms. In
the future, a large-scale database can be built through extensive
clinical experiments to train the deep learning algorithms, and a
fast-screening procedure based on this new sensing modality
could be developed and even integrated into surgical robots or

A

B C D

Height Changes Stepper motor is 

used as an actuator

Fig. 6 The strong correlation between the detection distance and response signals validates the distance perception capability of the
whisker-based hardware system. A The experimental setup during the task. The proposed system is mounted on the 3D printer, and the
distance is controlled precisely by a dynamic heated bed. B The response signal generated by the proposed system with different controlled
distances. The upper waveform shows the raw signal while the bottom one is the velocity derived from the raw signal. C The polynomial
fitting results for distance estimation based on release point signals. D The polynomial fitting results for distance estimation based on velocity
signals.

Table 1. The statistical fit indexes (SSE, R-Square, RMSE, Adjusted R-
Square) for assessing the fitting of distance perception task using peak
point and velocity signals.

Source Fit order SSE R-square RMSE Adjusted R-square

Peak 1 44350.0 0.9881 66.596 0.9869

3 986.6 0.9997 11.105 0.9996

Velocity 1 1567.2 0.9887 12.518 0.9875

3 676.0 0.9951 9.1926 0.9933
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endoscope systems with enhanced disease detection ability,
higher accuracy, and improved robustness.

DISCUSSION
A novel artificial whisker-based method is proposed for GI
diseases screening. The design concept of the proposed method
is relatively straightforward, but the extensive studies and
experiments were conducted to refine the design and develop
the early prototype. The results of the experiments have shown
the feasibility and robustness of the proposed method. However,
some potential issues ranging from the design to the experiment
are discussed as follows.

Whisker characteristic
Different lengths, materials, diameters, and geometry structures
will affect the response of the whisker-based system. During the
preliminary experiments, the results indicated that the signals
generated by the whisker with the same material but with
different diameters would yield different results at the first
fundamental frequency point as shown in Supplementary Fig.
S10. Further investigation should be performed in the future, such
as response consistency among the different whiskers. Meanwhile,
the impact of the whisker characteristics (i.e. material, length,
diameter, etc.) to the targeted classification tasks, i.e. disease
screening, should be assessed to find the optimal design. In
addition, the whisker material should be biocompatible, robust,
and non-degradable by intestinal fluid and electrolytes in the
intestinal tract.

The whisker geometry distribution
In this proof-of-concept design, a single whisker-based system was
fabricated and assessed for potential applications. As expected, to
provide a detailed screening of the gastric tract, the system shall
be extended into a multi-whiskers system. However, the optimal
geometric distribution of the whiskers is still yet to be determined.
Radial distribution as shown in Fig. 1, along the arc shell of a
medical device, such as endoscope, or as shown in Supplementary
Fig. S11 on the part of the device are some viable options.

Motion speed
A whisker sensor is a type of tactile sensor, and its sensory
mechanism is similar to fingertips. This means that different
sweeping speeds will result in different responses. In other words,
the faster the sensor moves, the less detail it can capture, which is
similar to a conventional scanner. This phenomenon is caused by
the limitation of the sampling rate of the nerve endings on the
fingertip, as well as the processing speed of the nerve center.
However, by adjusting the sampling rate of the whisker-based
system, it can achieve a faster screening with reasonable detection
accuracy. Moreover, the sampling rate should be refined and
balanced between the sweeping speed and power consumption
with respect to the targeted task. For instance, if the system is
aimed for distance perception tasks, the sensing should be
focused on the maximum deformation signal, rather than the
signal details.

Abnormal tissue screening
During the abnormal tissue screening task, a phantom was used in
the experiment. As mentioned, the phantom is still quite different
from a real intestinal tract, but as pathological tissue abnormalities
have quite obvious differences in topologies and surface
structures, the proposed system should be able to distinguish
and identify the abnormal tissues as shown in evaluation results.
In the future, large datasets should be collected to train deep
learning models would enable rapid and precise screening
allowing the proposed to be translated for clinical use.

Method optimization
To introduce this novel method into clinical practice, the proposed
shall be optimized for the targeted applications. First of all, the
size of the whisker-based system should be miniaturized and
designed to be compatible with existing surgical equipment, such
as endoscopes and surgical robotics. It means that this system
could be integrated as a subsystem of the current medical devices
to assist diagnosis and treatment. Meanwhile, it is essential to
integrate multiple whisker sensor units in one system to enable
accurate screening, and which could potentially map the intestinal
tract into a 3D structure for better visualization and analysis. In
addition, the system shall be safe, waterproofed, EMC

A B C D E

Fig. 7 The data visualization demonstrates the stiffness characterization and shape recognition capabilities across the time domain,
frequency domain, and time-frequency domain perspectives. For each column, the results are arranged in the order of signal waveforms,
frequency components, and time-frequency distributions respectively from the top to bottom. A The response of the soft tissue during the
stiffness characterization task. B The response of the bone during the stiffness characterization task. C–E The response of round, flat, and bevel
shapes respectively during the shape recognition task. The objects used for tests with different shapes are designed and fabricated by 3D
printer technology.
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(Electromagnetic compatibility) and ESD (electrostatic discharges)
compliant and biocompatible for it to be used in surgery.

CONCLUSION
In this paper, a biomimetic whisker-based method is proposed for
gastrointestinal diseases screening. By combing hardware design
and end-to-end deep learning algorithms, this tactile perception-
based method shows great potential in extracting the structural
and textural information of the GI tract, which could potentially
enhance or complement the current vision-based endoluminal
diagnosis. The highly reconfigurable and integrated hardware
design, coupled with the low computational power requirements
of the algorithm, implies that this method could be incorporated
as a standalone add-on subsystem with current endoscopic
robotic surgery platforms, and potentially form a new screening

Table 2. Performance differences with different network structures.

MODEL 421
(4 STACKED

CNN, 2 LSTM,
AND 1 LINEAR

LAYERS)

401
(4 STACKED

CNN, 0 LSTM,
AND 1 LINEAR

LAYERS)

201
(2 STACKED

CNN, 0 LSTM,
AND 1 LINEAR

LAYERS)

001
(0 STACKED

CNN, 0 LSTM,
AND 1 LINEAR

LAYERS)

Accuracy 0.94442 0.92776 0.90278 0.85830

Kappa 0.91667 0.89167 0.85417 0.78750

Macro F1 0.94465 0.92847 0.90308 0.85686

Micro F1 0.94444 0.92778 0.90278 0.85833

Weighted F1 0.94465 0.92847 0.90308 0.85686

Parameters 314147 17379 13155 1053

Data collection and pre-processing

Deep learning algorithm design

Clinical decision making

Data Distribution: t-SNE visualization

Disease 1

Disease 2

Disease 3

Normal

Cancer

Colitis

-1 1

-1 1

-1 1

A B

C

D

E F G H

Conv1d

BatchNorm1d ReLU

Maxpool1d Dropout

Fig. 8 Outcomes of the proposed method in the pilot study for assisting clinical application. A–C are the workflow of the pilot study.
A Data collection and pre-processing stage. The raw signal collected by the whisker system will be filtered, zero-centralized, and normalized.
B Deep learning algorithm design, which is used for translating the raw signal into diagnostic outcomes. The proposed end-to-end algorithm
consists of 4 stacked CNN layers, 2 layers of LSTM layers, and a linear layer. C Clinical decision-making stage, which interprets the probability
distribution from the output of the B to the clinical decision. D The distribution of original response signals obtained from the proposed
system is visualized using the t-SNE algorithm. E–H Confusion matrixes of different network structures, which correspond to 421, 401, 201, and
001 model listed in Table 2.
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routine based on enhanced algorithms trained with a large-scale
database. Further investigation on the physical and mechanical
properties of the whisker and the design of multichannel
hardware systems could facilitate the optimization of the method.
In addition, a strain gauge-based transduction solution is a
promising candidate to complement the current PVDF-based
solution, particularly with respect to providing static sensing
capability.

METHODS
Analysis of the static model
In the equivalent static model as shown in Fig. 2A, a concentrated
force is applied to beam at the position of d along the x axis with
an amplitude of P in the downward direction.
According to the elastic beam theory23, the beam equations

listed below can be derived:

EIy000 ¼ �Pu x � dð Þ þ C1

Where y is the deflection of the neutral axis of the beam (i.e., the
whisker in the artificial whisker-based hardware system). x is an
observation point, which corresponds to the deformation point to
be measured. d is the distance from the fixed point of the beam to
the point where the force is applied, and C1 is a coefficient to be
determined. E is Young’s modulus of elasticity of the beam
material, which characterizes the stiffness of the material. I is the
cross-sectional area momentum of inertia, which is defined as
below, where r and V are the vertical distance from the prime
element to the rotating axis, and the integral range, which is the
entire rigid body, respectively.

I ¼
ZZZ

V
r2dm

In other words, EI is a constant that characterizes the beam
inherent features. In addition, the function u is a step function, as
shown below:

uðtÞ ¼ 1 t > 0

0 t � 0

�
After multiple integration,

EIy00 ¼ �P x � dð Þu x � dð Þ þ C1x þ C2

EIy0 ¼ �P x � dð Þ2u x � dð Þ
2

þ C1x2

2
þ C2x þ C3

EIy ¼ �P x � dð Þ3u x � dð Þ
6

þ C1x3

6
þ C2x2

2
þ C3x þ C4

Utilizing the boundary conditions listed below:

yjx¼0 ¼ 0

EIy0jx¼0 ¼ 0

EIy00jx¼L ¼ 0

EIy000jx¼L ¼ 0

8>>><
>>>:
The coefficients can be obtained as: C1= P, C2=−dP, C3= C4= 0.
Therefore, the formula above can be rewritten as:

EIy0 ¼ EI
dy
dx

¼ EI tan θ ¼ P
2
x2 � Pdx; x � d

where the θ is the deflection angle or bending angle at the point x
along the neutral axis.
As shown in the formulas, the distance parameter d can be

estimated by retrieving the observation values of θ and x from
several different observation points in an experimental trial, which
can be achieved by placing several sensors along the beam.

Assume that a pair of sensor data is (x1,θ1) and (x2,θ2), then, the
estimated force P is:

P ¼ 2EI
x1 tan θ2 � x2 tan θ1

x21x2 � x22x1

And therefore, the analytical solution of distance d is:

d ¼
tan θ2
tan θ1

x21 � x22
2ðtan θ2tan θ1

x1 � x2Þ
As the detection distance increases, the ratio of the deflection
angle of two separated sensing point is approaching to a constant
value, which can be found from:

lim
d!

tan θ2
tan θ1

¼ 0:5x22 � dx2
0:5x21 � dx1

� x2
x1

¼ ξ

Combined with the formulation of d, it indicates that the distance
d is a relative stable value wherever the object is located. From the
perspective of the electronics, the system response caused by
distance variation is indistinguishable and fused with the response
caused by system noise, which leads to system malfunction
ultimately.

Analysis of the dynamic model and our strategy
In the dynamic model, the basic elastic beam theory still works;
however, different boundary conditions should be taken into
consideration. By inserting the boundary condition listed below,

yjx¼0 ¼ 0

EIy00jx¼0 ¼ �τ

EIy00jx¼L ¼ 0

EIy00jx¼L ¼ 0

yjx¼d ¼ 0

EIy00jx¼d ¼ 0

A set of new coefficients can be deduced:

C1 ¼ τ

d
; C2 ¼ �τ; C3 ¼ τd

3
; C4 ¼ 0; P ¼ τ

d
Therefore, a modified equation is:

EIy0 ¼ EI
dy
dx

¼ EI tan θ0 ¼ τ

2d
x2 � τx þ 1

3
τd; x � d

where τ is a torque generated by the self-rotated motor at the
observation point x, and θ0 is an updated deflection angle.
In a practical model, which takes the physical volume of a

fixture into consideration, we define an angular shift α formed by
rotation as shown in Fig. 2C, which is a deviation of the fixture
base from the initial position of the neutral axis between the
object and the rotation axis. In addition, β is the angle of the
observation point relative to the initial neutral axis, namely, the
horizontal axis. According to the deduction of the similar triangles
as shown in Fig. 2C, equation above can be reformulated as:

EI tanðβþ αÞ ¼ τ

2d
x2 � τx þ 1

3
τd

Due to the external angular deviation α introduced by physical
volume of the fixture, a new pair of sensor data can be set as
ðx1 ¼ 0; β1Þ and ðx2 ¼ x; β2Þ, then, by inserting them into the
formula above and canceling the torque τ, the new formula is:

tan β2 þ αð Þ
tan β1 þ αð Þ ¼

3x2

2d2
� 3x

d
þ 1

Given that β1 is the angle at the fixture base, this external drive
angular shift can be monitored and retrieved from a digitalized
actuator itself. Meanwhile, the deflection angular can be measured
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by sensor is then θsens ¼ β1 � β2, which means only one sensor is
required to provide adequate information to estimate the
distance-coupled index.
As a form of simplified version of the practical model

mentioned above, namely, the ideal model as shown in
Supplementary Fig. S2, α is set to zero. In this case, the physical
volume of fixture is ignored and the whisker is assumed to be
placed at the rotation center, which simplifies the deduction and
application in real word dramatically. Combing the condition of a
sensor placed at the base of the beam, which means x1= 0, the
equation can be simplified as:

EI tan βþ αð Þ ¼ EI tan β ¼ 1
3
τd

d ¼ 3EI tan β
τ

� 3EIβ
τ

ðsmall deformationÞ

Our strategy is an external-driven movement approach, which is
a variant of the rotated active whisking. In this case, the equation
can be re-formulated as:

EI tanðα� βÞ ¼ τ

2d
x2 � τx þ 1

3
τd

The above illustrates that the distance-coupled information can
be extracted from two separate observation points along the
beam; however, the calculation is complicated and is also induced
significant load onto the CPU of the system. Here only one sensor
fixed along the whisker is used for deformation sensing, and a
deep learning algorithm F with nonlinear mapping capabilities is
adopted for nonlinear parameterization in terms of the output
signal and the parameters of interest, such as textural information,
hardness, and distance estimation.

vo ¼ Fðd x; tð ÞÞ

Inclusion criteria of transduction solutions
The main advantages of PVDF-based transduction are summarized
as below:

● Low output capacitance, which makes it easy to match with
the output circuit.

● Wide frequency response range, large dynamic range, high
electromechanical conversion sensitivity.

● High mechanical strength, excellent toughness and flexibility,
and robust impact resistance, which make it suitable for flat
and integrated design of a system with low fracture
probability.

● Stable chemical properties, high corrosion resistance, low
water absorption, no toxic substances release, which make it
suitable for implantable devices and in-vivo diagnosis.

Pre-processing circuit design
A pre-processing circuit which mainly consists of a charge
amplifier is designed for converting the original charge signal
into a voltage signal. Supplementary Table S3 lists the parameter
details of the equivalent circuit as shown in Fig. 3A, which mainly
consists of a network of the capacitors and resistors.
Specifically, uo refers to the output voltage of the operational

amplifier (OPA). According to the Kirchhoff law, the current i can
be calculated as:

i ¼ ui
R
þ ui

1
jwC

þ ðAþ 1Þ ui
Zf

where the ui and A refer to the input voltage and the open-loop
amplification gain of the OPA, respectively. In addition, the R, C,

and the Zf are the equivalent complex impedance, which can be
calculated as below:

R ¼ RPVDFkRi ¼ 1
1

RPVDF
þ 1

Ri

C ¼ CPVDFkCckCi ¼ CPVDF þ Cc þ Ci

Zf ¼ RfkCf ¼ 1
jwCf þ 1

Rf

Given that,

i ¼ dQ
dt

the output voltage uo can be rewritten as:

uo ¼ �A � jwQ
1

RPVDF
þ 1

Ri
þ jw CPVDF þ Cc þ Cið Þ þ ðAþ 1ÞðjwCf þ 1

Rf
Þ

Given the value range of some component parameters, such as
the value of A ranges from 104 to 106, and the Ri, as well as RPVDF, is
approximately higher than 106, the result can be given:

Aþ 1
Rf

� 1
RPVDF

þ 1
Ri

ðAþ 1ÞjwCf � jw CPVDF þ Cc þ Cið Þ
Therefore,

uo � �A � jwQ
ðAþ 1ÞðjwCf þ 1

Rf
Þ

Normally, the feedback resistor Rf is used for providing the DC
path with a value higher than 106 Ohms. Combining the frequency
response range of the OPA, which is given below:

f L ¼ 1
2πCf Rf

The output of the voltage can be calculated as:

uo � �Q
Cf

Data transmission protocol
A wireless data transmission protocol is designed and developed for
capturing the sensor data remotely (hence, potentially for implan-
table application), while the RS-485/232 communication capability is
also maintained for the tethered design (i.e. for endoscopic
applications), and which could be switched by choosing a predefined
option in the software. The data frame is shown in Supplementary
Fig. S12, which consists of header, number of channels, sampling rate,
payload sections, CRC, and the end indicators.
Specifically, the number of the channel is set to 0x01, which is a

preset value for identification purposes and for extending to a
future multi-channels system. The sampling rate can be adjusted
via SPI communication protocol from 250 Hz to 2 KHz. The payload
is the interested deformation signal with the size of 3 bytes. The
Cyclic Redundancy Check (CRC) is deployed for error checking,
and the generating polynomial of the CRC is given below:

G xð Þ ¼ x8 þ x5 þ x4 þ 1

Deep learning algorithm
Convolution neural network (CNN) has been a popular approach
for finding the optimal features for machine learning problems as
shown in Supplementary Fig. S13A. By convoluting the input
signals with artificial synaptic weights, it translates the original
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signal into high-dimensional and abstract feature vectors, which
could be adopted as the basis for context awareness. As for the
LSTM, normally, the input gate, forget gate, and output gate are
core components in LSTM, all of which determine the flow and
throughput of the data by the activation functions σ(*), for
instance, the sigmoid function. As shown in the Supplementary
Fig. S13B, the gate functions gf ; gi ; go is defined as,

gf ¼ Sigmoid wf ht�1; xt½ � þ bfð Þ

gi ¼ Sigmoid wi ht�1; xt½ � þ bið Þ

go ¼ Sigmoid wo ht�1; xt½ � þ boð Þ
where the ht�1; xt correspond to the state vector of the hidden
layers of the artificial neural network and the input data,
respectively. Different from the ht vector, which is related to the
output vector, ct state vector is another internal state vector that is
utilized as output under the control of the gate function go . The
definition of the ct;ht are shown as:

ct ¼ giect þ gf ct�1 ¼ gi tanh wc ht�1; xt½ � þ bcð Þ½ � þ gf ct�1

ht ¼ go tanhðctÞ
This gate control mechanism and dual state vectors design

enable LSTM to have long-term memory capability, and are not
prone to the gradient diffusion problem.
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