Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disentangling direct and indirect genetic effects from partners and offspring on maternal depression using trio-GCTA

Abstract

Maternal depressive symptoms are highly prevalent and can negatively impact affected individuals and family members. Understanding etiological influences on maternal depression, such as genetic liability, is key to inform treatment and prevention efforts. Here we quantified direct and indirect genetic effects (that is, when genetic variants in other individuals influence risk of maternal depression through the environment) from partners and offspring on maternal depressive symptoms at multiple time points using genome-wide complex trait analysis with parent–offspring trios. We used data from the Norwegian Mother, Father and Child cohort study, including up to 21,000 genotyped parent–offspring trios. Models with indirect genetic effects had best fit at three out of five time points (3, 5 and 8 years after birth). The variance in maternal depressive symptoms explained by direct genetic effects ranged from 5% to 14%, whereas indirect genetic effects explained 0–14% of variance across time points. Heritable traits in family members contribute to maternal depressive symptoms through the environment at several time points after birth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual model of mother-, partner- and child-driven effects on maternal depression.
Fig. 2: Estimates of direct and indirect genetic effects at separate time points.

Similar content being viewed by others

Data availability

MoBa data can be accessed by application to the Regional Committee for Medical and Health 494 Research Ethics in Norway and MoBa (https://www.fhi.no/en/ch/studies/moba/for-forskere-artikler/research-and-data-access/). The consent given by the participants does not open for storage of data on an individual level in repositories or journals.

Code availability

The code used in this study is available upon request from the first author. Example code for fitting variance-component models structured according to relationship matrices with VCModels.jl is provided at: https://github.com/espenmei/VCModels.jl.

References

  1. Gavin, N. I. et al. Perinatal depression: a systematic review of prevalence and incidence. Obstet. Gynecol. 106, 1071–1083 (2005).

    Article  PubMed  Google Scholar 

  2. O’Hara, M. W. & McCabe, J. E. Postpartum depression: current status and future directions. Annu. Rev. Clin. Psychol. 9, 379–407 (2013).

    Article  PubMed  Google Scholar 

  3. O’Hara, M. W. & Swain, A. M. Rates and risk of postpartum depression—a meta-analysis. Int. Rev. Psychiatry 8, 37–54 (1996).

    Article  Google Scholar 

  4. Horwitz, S. M., Briggs-Gowan, M. J., Storfer-Isser, A. & Carter, A. S. Prevalence, correlates, and persistence of maternal depression. J. Womens Health 16, 678–691 (2007).

    Article  Google Scholar 

  5. Horwitz, S. M., Briggs-Gowan, M. J., Storfer-Isser, A. & Carter, A. S. Persistence of maternal depressive symptoms throughout the early years of childhood. J. Womens Health 18, 637–645 (2009).

    Article  Google Scholar 

  6. Gjerde, L. C. et al. Maternal perinatal and concurrent depressive symptoms and child behavior problems: a sibling comparison study. J. Child Psychol. Psychiatry 58, 779–786 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gjerde, L. C. et al. Associations between maternal depressive symptoms and risk for offspring early-life psychopathology: the role of genetic and non-genetic mechanisms. Psychol. Med. 51, 441–449 (2021).

    Article  PubMed  Google Scholar 

  8. Field, T. Postpartum depression effects on early interactions, parenting, and safety practices: a review. Infant Behav. Dev. 33, 1–6 (2010).

    Article  PubMed  Google Scholar 

  9. Letourneau, N. L. et al. Postpartum depression is a family affair: addressing the impact on mothers, fathers, and children. Issues Ment. Health Nurs. 33, 445–457 (2012).

    Article  PubMed  Google Scholar 

  10. Lovejoy, M. C., Graczyk, P. A., O’Hare, E. & Neuman, G. Maternal depression and parenting behavior: a meta-analytic review. Clin. Psychol. Rev. 20, 561–592 (2000).

    Article  PubMed  Google Scholar 

  11. Guintivano, J., Manuck, T. & Meltzer-Brody, S. Predictors of postpartum depression: a comprehensive review of the last decade of evidence. Clin. Obstet. Gynecol. 61, 591–603 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Polderman, T. J. C. et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 47, 702–709 (2015).

    Article  PubMed  Google Scholar 

  13. Sullivan, P. F., Neale, M. C. & Kendler, K. S. Genetic epidemiology of major depression: review and meta-analysis. Am. J. Psychiatry 157, 1552–1562 (2000).

    Article  PubMed  Google Scholar 

  14. Samuelsen, K., Ystrom, E., Gjerde, L. C. & Eilertsen, E. M. Kind of blue—an evaluation of etiologies for prenatal versus postnatal depression symptoms. J. Affect. Disord. 335, 305–312 (2023).

    Article  PubMed  Google Scholar 

  15. Treloar, S. A., Martin, N. G., Bucholz, K. K., Madden, P. A. F. & Heath, A. C. Genetic influences on post-natal depressive symptoms: findings from an Australian twin sample. Psychol. Med. 29, 645–654 (1999).

    Article  PubMed  Google Scholar 

  16. Viktorin, A. et al. Heritability of perinatal depression and genetic overlap With nonperinatal depression. Am. J. Psychiatry 173, 158–165 (2016).

    Article  PubMed  Google Scholar 

  17. Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Levey, D. F. et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat. Neurosci. 24, 954–963 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pilkington, P. D., Milne, L. C., Cairns, K. E., Lewis, J. & Whelan, T. A. Modifiable partner factors associated with perinatal depression and anxiety: a systematic review and meta-analysis. J. Affect. Disord. 178, 165–180 (2015).

    Article  PubMed  Google Scholar 

  21. Werner, E., Miller, M., Osborne, L. M., Kuzava, S. & Monk, C. Preventing postpartum depression: review and recommendations. Arch. Womens Ment. Health 18, 41–60 (2015).

    Article  PubMed  Google Scholar 

  22. Austin, M.-P., Hadzi-Pavlovic, D., Leader, L., Saint, K. & Parker, G. Maternal trait anxiety, depression and life event stress in pregnancy: relationships with infant temperament. Early Hum. Dev. 81, 183–190 (2005).

    Article  PubMed  Google Scholar 

  23. Beck, C. T. Predictors of postpartum depression: an update. Nurs. Res. 50, 275–285 (2001).

    Article  PubMed  Google Scholar 

  24. Britton, J. R. Infant temperament and maternal anxiety and depressed mood in the early postpartum period. Women Health 51, 55–71 (2011).

    Article  PubMed  Google Scholar 

  25. McGrath, J. M., Records, K. & Rice, M. Maternal depression and infant temperament characteristics. Infant Behav. Dev. 31, 71–80 (2008).

    Article  PubMed  Google Scholar 

  26. Ahmadzadeh, Y. I. et al. Anxiety in the family: a genetically informed analysis of transactional associations between mother, father and child anxiety symptoms. J. Child Psychol. Psychiatry 60, 1269–1277 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. McAdams, T. A. et al. The relationship between parental depressive symptoms and offspring psychopathology: evidence from a children-of-twins study and an adoption study. Psychol. Med. 45, 2583–2594 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Landolt, M. A., Ystrom, E., Stene-Larsen, K., Holmstrøm, H. & Vollrath, M. E. Exploring causal pathways of child behavior and maternal mental health in families with a child with congenital heart disease: a longitudinal study. Psychol. Med. 44, 3421–3433 (2014).

    Article  PubMed  Google Scholar 

  29. Ystrom, H., Nilsen, W., Hysing, M., Sivertsen, B. & Ystrom, E. Sleep problems in preschoolers and maternal depressive symptoms: an evaluation of mother- and child-driven effects. Dev. Psychol. 53, 2261–2272 (2017).

    Article  PubMed  Google Scholar 

  30. Kong, A. et al. The nature of nurture: effects of parental genotypes. Science 359, 424–428 (2018).

    Article  PubMed  Google Scholar 

  31. McAdam, A. G., Garant, D. & Wilson, A. J. in Quantitative Genetics in the Wild 84–103 (Oxford Univ. Press, 2014).

  32. Young, A. I., Benonisdottir, S., Przeworski, M. & Kong, A. Deconstructing the sources of genotype–phenotype associations in humans. Science 365, 1396–1400 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fearon, R. M. P. et al. Child-evoked maternal negativity from 9 to 27 months: evidence of gene–environment correlation and its moderation by marital distress. Dev. Psychopathol. 27, 1251–1265 (2015).

    Article  PubMed  Google Scholar 

  34. Ge, X. et al. The developmental interface between nature and nurture: a mutual influence model of child antisocial behavior and parent behaviors. Dev. Psychol. 32, 574–589 (1996).

    Article  Google Scholar 

  35. Cheesman, R. et al. How important are parents in the development of child anxiety and depression? A genomic analysis of parent-offspring trios in the Norwegian Mother Father and Child cohort study (MoBa). BMC Med. 18, 1–11 (2020).

    Article  Google Scholar 

  36. Eilertsen, E. M. et al. On the importance of parenting in externalizing disorders: an evaluation of indirect genetic effects in families. J. Child Psychol. Psychiatry 63, 1186–1195 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Howe, L. J. et al. Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects. Nat. Genet. 54, 581–592 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Eilertsen, E. M. et al. Direct and indirect effects of maternal, paternal, and offspring genotypes: trio-GCTA. Behav. Genet. 51, 154–161 (2021).

    Article  PubMed  Google Scholar 

  39. Yang, J. et al. Common SNPs explain a large proportion of heritability for human height. Nat. Genet. 42, 565–569 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yang, J., Zeng, J., Goddard, M. E., Wray, N. R. & Visscher, P. M. Concepts, estimation and interpretation of SNP-based heritability. Nat. Genet. 49, 1304–1310 (2017).

    Article  PubMed  Google Scholar 

  42. Magnus, P. et al. Cohort profile update: the Norwegian Mother and Child cohort study (MoBa). Int. J. Epidemiol. 45, 382–388 (2016).

    Article  PubMed  Google Scholar 

  43. Young, A. I. et al. Relatedness disequilibrium regression estimates heritability without environmental bias. Nat. Genet. 50, 1304–1310 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cai, N., Choi, K. W. & Fried, E. I. Reviewing the genetics of heterogeneity in depression: operationalizations, manifestations and etiologies. Hum. Mol. Genet. 29, R10–R18 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lee, S. H. et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 45, 984–994 (2013).

    Article  PubMed  Google Scholar 

  46. Lubke, G. H. et al. Estimating the genetic variance of major depressive disorder due to all single nucleotide polymorphisms. Biol. Psychiatry 72, 707–709 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Laurin, C. A., Hottenga, J.-J., Willemsen, G., Boomsma, D. I. & Lubke, G. H. Genetic analyses benefit from using less heterogeneous phenotypes: an illustration with the Hospital Anxiety and Depression Scale (HADS). Genet. Epidemiol. 39, 317–324 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bjørndal, L. D., Kendler, K. S., Reichborn-Kjennerud, T. & Ystrom, E. Stressful life events increase the risk of major depressive episodes: a population-based twin study. Psychol. Med. 53, 5194–5202 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ayorech, Z. et al. Maternal depression and the polygenic p factor: a family perspective on direct and indirect effects. J. Affect. Disord. 332, 159–167 (2023).

    Article  PubMed  Google Scholar 

  50. Madigan, S., Wade, M., Plamondon, A. & Jenkins, J. M. Trajectories of maternal depressive symptoms in the early childhood period and family-wide clustering of risk. J. Affect. Disord. 215, 49–55 (2017).

    Article  PubMed  Google Scholar 

  51. Ystrøm, E. et al. Multiple births and maternal mental health from pregnancy to 5 years after birth: a longitudinal population-based cohort study. Nor. Epidemiol. 24, 203–208 (2014).

    Google Scholar 

  52. Nes, R. B., Røysamb, E., Reichborn-Kjennerud, T., Harris, J. R. & Tambs, K. Symptoms of anxiety and depression in young adults: genetic and environmental influences on stability and change. Twin Res. Hum. Genet. 10, 450–461 (2007).

    Article  PubMed  Google Scholar 

  53. Nivard, M. G. et al. Stability in symptoms of anxiety and depression as a function of genotype and environment: a longitudinal twin study from ages 3 to 63 years. Psychol. Med. 45, 1039–1049 (2015).

    Article  PubMed  Google Scholar 

  54. Räsänen, K. & Kruuk, L. E. B. Maternal effects and evolution at ecological time-scales. Funct. Ecol. 21, 408–421 (2007).

    Article  Google Scholar 

  55. Biele, G. et al. Bias from self selection and loss to follow-up in prospective cohort studies. Eur. J. Epidemiol. 34, 927–938 (2019).

    Article  PubMed  Google Scholar 

  56. Nilsen, R. M. et al. Self-selection and bias in a large prospective pregnancy cohort in Norway. Paediatr. Perinat. Epidemiol. 23, 597–608 (2009).

    Article  PubMed  Google Scholar 

  57. Cheesman, R., Ayorech, Z., Eilertsen, E. M. & Ystrom, E. Why we need families in genomic research on developmental psychopathology. JCPP Adv. 3, 1–9 (2023).

    Article  Google Scholar 

  58. Demange, P. A. et al. Estimating effects of parents’ cognitive and non-cognitive skills on offspring education using polygenic scores. Nat. Commun. 13, 4801 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Horwitz, T. B., Balbona, J. V., Paulich, K. N. &Keller, M. C. Evidence of correlations between human partners based on systematic reviews and meta-analyses of 22 traits and UK Biobank analysis of 133 traits. Nat. Hum. Behav. 7, 1568–1583 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Peyrot, W. J., Robinson, M. R., Penninx, B. W. J. H. & Wray, N. R. Exploring boundaries for the genetic consequences of assortative mating for psychiatric traits. JAMA Psychiatry 73, 1189–1195 (2016).

    Article  PubMed  Google Scholar 

  61. Eilertsen, E. M. et al. Parental prenatal symptoms of depression and offspring dymptoms of ADHD: a genetically informed intergenerational study. J. Atten. Disord. 25, 1554–1563 (2021).

    Article  PubMed  Google Scholar 

  62. Torvik, F. A. et al. Modeling assortative mating and genetic similarities between partners, siblings, and in-laws. Nat. Commun. 13, 1–10 (2022).

    Article  Google Scholar 

  63. Ayorech, Z. et al. The structure of psychiatric comorbidity without selection and assortative mating. Transl. Psychiatry (in press).

  64. Sunde, H. F. et al. Genetic similarity between relatives provides evidence on the presence and history of assortative mating. Preprint at bioRxiv https://doi.org/10.1101/2023.06.27.546663 (2023).

  65. Corfield, E. C. et al. The Norwegian Mother, Father, and Child cohort study (MoBa) genotyping data resource: MoBaPsychGen pipeline v.1. Preprint at bioRxiv https://doi.org/10.1101/2022.06.23.496289 (2022).

  66. Zhou, H. et al. OpenMendel: a cooperative programming project for statistical genetics. Hum. Genet. 139, 61–71 (2020).

    Article  PubMed  Google Scholar 

  67. Hesbacher, P. T., Rickels, K., Morris, R. J., Newman, H. & Rosenfeld, H. Psychiatric illness in family practice. J. Clin. Psychiatry. 41, 6–10 (1980).

    PubMed  Google Scholar 

  68. Tambs, K. & Røysamb, E. Selection of questions to short-form versions of original psychometric instruments in MoBa. Nor. Epidemiol. 24, 195–201 (2014).

    Google Scholar 

  69. Fink, P., Ørnbøl, E., Hansen, M. S., Søndergaard, L. & De Jonge, P. Detecting mental disorders in general hospitals by the SCL-8 scale. J. Psychosom. Res. 56, 371–375 (2004).

    Article  PubMed  Google Scholar 

  70. Fink, P. et al. A brief diagnostic screening instrument for mental disturbances in general medical wards. J. Psychosom. Res. 57, 17–24 (2004).

    Article  PubMed  Google Scholar 

  71. Eaves, L. J., St. Pourcain, B., Smith, G. D., York, T. P. & Evans, D. M. Resolving the effects of maternal and offspring genotype on dyadic outcomes in genome-wide complex trait analysis (‘M-GCTA’). Behav. Genet. 44, 445–455 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Akaike, H. Factor analysis and AIC. Psychometrika 52, 317–332 (1987).

    Article  Google Scholar 

  73. Dominicus, A., Skrondal, A., Gjessing, H. K., Pedersen, N. L. & Palmgren, J. Likelihood ratio tests in behavioral genetics: problems and solutions. Behav. Genet. 36, 331–340 (2006).

    Article  PubMed  Google Scholar 

  74. Wu, H. & Neale, M. C. On the likelihood ratio tests in bivariate ACDE models. Psychometrika 78, 441–463 (2013).

    Article  PubMed  Google Scholar 

  75. Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: A fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017).

    Article  Google Scholar 

  76. Eilertsen, E. M. VCModels.jl—a Julia package for fitting variance component models with relationship matrices version 0.1.0; https://github.com/espenmei/VCModels.jl (2021).

Download references

Acknowledgements

The Research Council of Norway supported R.C., R.B.N., E.R., and T.A.M. (288083); H.A. (274611); A.H. (274611, 336085); L.D.B. (314843) and E.Y. 288083, 262177, 336078, and 331640). The South-Eastern Norway Regional Health Authority supported L.J.H. (2022083 and 2018058) and A.H. (2020022). L.D.B. has received internationalization support from UiO:Life Science. J.R.B. is supported by a Sir Henry Wellcome Postdoctoral Fellowship (215917/Z/19/Z). The positions of T.A.M. and Y.I.A., were funded by a Wellcome Trust Senior Research Fellowship awarded to T.A.M. (220382/Z/20/Z). E.Y. is funded by the European Research Council under the Horizon 2020 (818425) and the Horizon Europa program (101045526). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

Author information

Authors and Affiliations

Authors

Contributions

L.D.B., E.M.E. and E.Y. were responsible for the concept, design and analysis of data. L.D.B., E.M.E., Z.A., R.C., Y.I.A., J.R.B., H.A., L.J.H., T.A.M., A.H., R.B.N., E.R. and E.Y. contributed to the interpretation of the results. Drafting of the manuscript was done by L.D.B., while E.M.E., Z.A., R.C., Y.I.A., J.R.B., H.A., L.J.H., T.A.M., A.H., R.B.N., E.R. and E.Y. provided critical revision of the manuscript for important intellectual content.

Corresponding authors

Correspondence to Ludvig Daae Bjørndal or Eivind Ystrom.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Justin Tubbs and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bjørndal, L.D., Eilertsen, E.M., Ayorech, Z. et al. Disentangling direct and indirect genetic effects from partners and offspring on maternal depression using trio-GCTA. Nat. Mental Health 2, 417–425 (2024). https://doi.org/10.1038/s44220-024-00207-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-024-00207-3

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research