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Using machine learning to predict the efficiency of biochar in
pesticide remediation
Amrita Nighojkar 1,2,8, Shilpa Pandey 3,8, Minoo Naebe 4✉, Balasubramanian Kandasubramanian 1✉, Winston Wole Soboyejo 5,
Anand Plappally 6 and Xungai Wang 7

Pesticides have remarkably contributed to protecting crop production and increase food production. Despite the improved food
availability, the unavoidable ubiquity of pesticides in the aqueous media has significantly threatened human microbiomes and
biodiversity. The use of biochar to remediate pesticides in soil water offers a sustainable waste management option for agriculture.
The optimal conditions for efficient pesticide treatment via biochar are aqueous-matrix specific and differ amongst studies. Here,
we use a literature database on biochar applications for aqueous environments contaminated with pesticides and employ
ensemble machine learning models (i.e., CatBoost, LightGBM, and RF) to predict the adsorption behavior of pesticides. The results
reveal that the textural properties of biochar, pesticide concentration, and dosage were the significant parameters affecting
pesticide removal from water. The data-driven modeling intervention offers an empirical perspective toward the balanced design
and optimized usage of biochar for capturing emerging micro-pollutants from water in agricultural systems.
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INTRODUCTION
Water pollution caused by pesticides (PCs) is a major environ-
mental concern that hinders the achievement of Sustainable
Development Goals (UN), especially in emerging countries like
India and China1. The rapid urbanization and industrialization that
fuel agricultural modernization have accelerated the spread of
pesticides in the ecosystem, posing serious threats to biota, water
quality, and human health2. Anthropogenic activities, industrial
wastewater, and agricultural runoff contribute to the contamina-
tion of surface and groundwater by pesticides1. These toxic and
mobile contaminants eventually enter the food chain, leading to
retinal degeneration, cardiovascular problems, muscle degenera-
tion, cancer, and irreversible cell membrane damage3,4. Various
ex-situ and in situ remediation processes have been implemented
to treat water polluted with PCs. Among these, in-situ removal of
PCs using biochar adsorption matrices has gained widespread
recognition as a sustainable and cost-effective remediation
procedure that is easy to design and efficient5,6.
Biochar has shown great potential for retrieving pesticides from

contaminated ecosystems due to its superior physicochemical
properties compared to primary feedstocks7. Biochar can be
produced from various natural biological sources, such as
agricultural residues, sludge, and animal manure, using different
heating methods, such as fast pyrolysis, slow pyrolysis, hydro-
thermal carbonization, and gasification, to treat both organic and
synthetic forms of pesticides, such as herbicides, insecticides, and
fungicides in aqueous environments5. However, the PC adsorption
efficiency of biochar-mediated aqueous systems depends on
several factors, including feedstock choice, production conditions,
water matrix (e.g., pH, concentration, temperature), experimental
conditions (dose, treatment time), and pesticide properties (e.g.,
solubility, molecular weight)8. Numerous adsorption mechanisms,

such as hydrogen bonding, surface complexation, electrostatic
interactions, π–π interactions, Van der Waals’ forces, and pore
filling, have contributed to PC removal efficiency9–11. Despite
extensive research, the optimal settings for maximizing PC
adsorption in aqueous solutions via biochar remain highly
variable. Concurrent adsorption studies examining the synergistic
effect of all experimental parameters are challenging. Review
studies, bibliometrics, and quantitative analyses have been used
to assess the effectiveness of pesticide adsorption12–14. Still, these
methods are time-consuming and complex in estimating the
relative contribution of adsorption variables to removal efficiency.
An empirical approach that uses a computational framework to
optimize the factors related to biochar characteristics, experi-
mental conditions, and aqueous matrix configuration and high-
light their relative contribution to enhancing pesticide removal
can lead to an overall understanding of complex adsorption
behavior15. This approach can reduce the time, cost, and resources
involved in biochar-based adsorption procedures and help
determine the optimal conditions for maximum PC sequestration
from water.
In the realm of chemical sciences, machine learning (ML) based

data-driven models are gaining traction as powerful tools for
promoting environmentally conscious research. Diverse machine
learning techniques such as support vector machines (SVM),
convolutional neural networks (CNN), random forests (RF), and
artificial neural networks (ANN) have demonstrated effective utility
in the identification of pesticides and their derivatives within real
samples16–18. Additionally, ML models have been used to track the
dissipation of pesticides in plants19, assess their effects on soil
microbial communities20, and evaluate their potential genotoxic
impact on humans21. However, the application of ensemble ML
algorithms to predict the efficacy of biochar adsorption matrix in
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treating pesticides is not known. While various studies have been
conducted to experimentally investigate pesticide remediation
from water using different biochar systems and validate scientific
hypotheses using classical sorption models, the exploration of
machine-learning algorithms in this context remains unexplored22.
Furthermore, previous studies have utilized molecular simula-

tions to forecast biochar adsorption23,24. However, these investi-
gations have focused on capturing minuscule interactions rather
than evaluating the impact of physicochemical parameters on the
remediation of pesticides using bulk biochar. To fill the existing
research gap, we utilize three ensemble machine learning (ML)
models, namely Categorical boost (CatBoost), Light gradient boost
machine (LightGBM), and Random forest (RF), to predict the
adsorption efficiency of biochar in removing pesticides from
aqueous environments. While traditional statistical methods can
establish linear or quadratic relationships between an individual
independent variable and the target variable, ML models can
simultaneously consider all correlated features and establish a
more complex relationship with the output variable. Moreover, the
developed models can assist researchers in designing experiments
for biochar-based pesticide remediation. In this study, we
considered ten adsorption attributes linked to three different
aspects of the adsorbate-adsorbent system, namely (i) biochar
properties, (ii) aqueous matrix configuration, and (iii) experimental
conditions, and assessed their impact on pesticide adsorption in
biochar-treated aqueous media.

RESULTS
Modeling pesticide adsorption on biochars
Decision-tree-based ensemble machine learning (ML) models,
including CatBoost, LightGBM, and Random forest (RF), were
utilized to predict the efficacy of adsorptive sequestration of
pesticides from an aqueous medium using biochar. These models
integrate multiple individual models to enhance the accuracy of
predictions. The decision tree-based model flow utilized eight
input attributes to split the data into smaller subsets based on
specific features. This process was recursively repeated to achieve
a decision or prediction. Grid search optimization was employed
to determine the best possible combination of hyperparameters,
minimizing the root-mean-squared error (RMSE) on both the train
and test sets. More information regarding the hyperparameters of
the fine-tuned models can be found in Supplementary Table 1 in
the supplementary information (SI).
Figure 1a–c shows scatter plots that juxtapose the experimen-

tally determined pesticide adsorption efficacy values with those
predicted by the model. The CatBoost framework yielded the
highest regularization coefficient (R2) values of 0.968 and 0.956 for
the training and test subsets, correspondingly surpassing
LightGBM (R2train= 0.931, R2test= 0.862) and Random forest
(R2train= 0.820, R2test= 0.796) models. The CatBoost was the
best-performing model due to less variation between the train
and test losses compared to LightGBM, while the RF predictive
error was very high than the loss functions of boosting models
(refer SI, Supplementary Fig. 1). The feature importance graph

Fig. 1 Performance of machine learning models and feature importance. The figure presents the performance comparison of three
machine learning models: a Categorical boost (Catboost), b Light Gradient Boosting Machine (LightGBM), and c Random Forest (RF) model in
predicting pesticide adsorption capacity of biochars in aqueous system. In addition, d and e show feature importance insights using the
CatBoost model and SHAP feature importance plots, respectively.
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(Fig. 1d) indicated that surface area (SA) had the most significant
effect on the model, followed by pesticide concentration (Co) and
pore volume, respectively. Figure 1e demonstrates the SHAP
values, which visually represent each feature’s relative contribu-
tions to the final predictions generated by the CatBoost model.
These results suggested the superiority of CatBoost in predict-

ing pesticide adsorption on biochars. The influence of each input
feature on the output or PC adsorption performance in the
CatBoost model, which delivered the best performance, was
assessed utilizing both the CatBoost-built-in feature importance
criteria and Shapley Additive exPlanations. Figure 3d exhibits the
feature significance of the trained model based on the total
percentage gain with the feature. The findings of this study
highlight surface area (SA) as the most significant physicochemical
characteristic affecting pesticide adsorption on biochar, followed
by pesticide concentration (Co), pore volume (Vt), and biochar
dose (Fig. 1d, e).

Model feature insights and their implication on sustainability
in agriculture
The partial dependence plots (PDP), depicted in Fig. 2I, II, offer
valuable insights into the impact of biochar attributes (SA, Vt,
pH_BC), experimental factors (CT, dose), and aqueous conditions
(pH, Co, and T) on the biochar capacity to treat pesticide-
contaminated water in agricultural fields. Among the biochar
attributes, the textural characteristics of biochar, especially surface
area, have the most significant influence on the model prediction
results. In contrast, the biochar pH contributes the least among all
the input parameters. It can be observed that the increment in the
surface area (SA) and pore volume (Vt) demonstrate a direct
correlation with the increase in the pesticide adsorption capacity
of biochar within a specific range (0.25–1000 m2/g, 0.004–0.5 cm3/
g) (Fig. 2I-a, Fig. 2II-a). The expansion in the surface area leads to
an increased number of active adsorption sites25–28. At the same
time, the interconnected pore structure of well-structured biochar
facilitates efficient diffusion and transfer of adsorbate molecules
through its pores, thereby augmenting adsorption performance29.
This information can help researchers, agricultural scientists, and
biochar producers optimize biochar production processes for
targeted remediation of specific pesticides, thereby promoting the

responsible and efficient use of biomass feedstocks to produce
biochar with effective textural properties.
Among the experimental factors, biochar dose significantly

influenced the model predictions (Fig. 2I-f). The pesticide
adsorption capacity of biochar decreased with the increasing
biochar dose and was found to be highest for a biochar dose of
less than 1 g/L. As the quantity of biochar increases, the available
surface area per unit mass decreases, or pore blockage occurs due
to particles’ aggregation, which reduces the accessibility of active
adsorption sites, resulting in reduced adsorption capacity30. The
biochar dose of less than 1 g/L with a treatment duration of fewer
than 500min provided the biochar’s maximum pesticide adsorp-
tion capacity (Fig. 2II-b). These findings can aid in optimizing the
biochar dose with the treatment time, which maximizes the
removal of specific pesticides from agricultural water. By optimiz-
ing the biochar dose and contact time during pesticide treatment,
the residual biochar in the treated water can be utilized for
subsequent soil amendment31,32.
Among the water matrix parameters (i.e. Co, pH, and T),

pesticide concentration significantly impacts the model predic-
tions, followed by pH and water temperature. The biochar
adsorption capacity showed a linear increment with the increasing
concentration of pesticide in water (0.2–2000 mg/L) (Fig. 2I-h).
Higher pesticide concentrations result in steeper concentration
gradients between the solution and the biochar surface. This
concentration gradient promotes more efficient mass transfer of
pesticides from the solution to the biochar, allowing for increased
adsorption capacity33. The model results can help in optimizing
the water matrix parameters for maximum adsorption of
pesticides on Biochar (Fig. 2II-c, Fig. 2II-d). The model can improve
water quality near agricultural fields by reducing pesticide runoff
and subsequent contamination.
With the acquired insights into the capacity of biochar to

adsorb pesticides by manipulating model attributes across a wide
range of parameters, machine learning-mediated modeling can be
pivotal in advancing sustainable agricultural practices. This can be
achieved through optimizing resource utilization to achieve a
well-balanced biochar design, enhancing soil health via applying
biochar for soil amendments, and mitigating pesticide runoff and
environmental contamination. The present data utilized to train

Fig. 2 Attribute analysis for pesticide adsorption on biochar. (i) 1D-PDP of Model Attributes: One-dimensional Partial Dependence Plots
(1D-PDP) showcasing the relationship between individual model attributes and pesticide adsorption capacity. (ii) 2D-PDP on Pesticide
Adsorption Capacity: Two-dimensional Partial Dependence Plots (2D-PDP) exploring the combined effects of model attributes on pesticide
adsorption capacity of biochars.
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the model primarily comprises experiments conducted on
laboratory-scale solutions. Nonetheless, to enhance the predictive
capability of the machine learning model, it is essential to
incorporate real-world data obtained from diverse agricultural
scenarios and environments, thus ensuring its applicability and
generalizability.

DISCUSSION
Benefits of the ML intervention and its pathway to impact
agriculture
Utilizing a machine learning framework to predict pesticide
removal from agricultural systems using biochar holds significant
advantages for various stakeholders in the agricultural sector.
Firstly, agrarian practitioners can significantly benefit from
adopting machine learning models to assess pesticide removal
using biochar. By doing so, farmers can gain valuable insights into
the performance and effectiveness of biochar-based remediation
methods. With this knowledge, individuals can make well-
informed decisions when implementing these techniques to
address irrigation water concerns. This approach not only
minimizes pesticide exposure but also fosters sustainable agri-
cultural practices.
Moreover, researchers investigating sustainable agricultural

practices and water quality can leverage this technology to their
advantage. By utilizing predictions generated by the machine
learning model, they can explore the impact of biochar on
pesticide adsorption and its subsequent effects on soil and water
systems. Through extensive data analysis, researchers can develop
robust models capable of predicting the efficiency of biochar in
removing specific pesticides from water. Consequently, this
promotes subsequent investigations aimed at optimizing the
utilization of biochar as an adsorbent and gaining insights into the
kinetics of pesticide elimination. Ultimately, this enhances our
comprehension of the intricate interactions among biochar
characteristics, soil water chemistry, and pesticide behavior.
Furthermore, biochar producers can harness this technology to

tailor their products for adsorbing pesticides in agricultural
runoffs. Producers can optimize their production processes by
understanding the relationship between biochar characteristics
and pesticide adsorption efficiency and offer highly effective
biochar products for pesticide treatment. This contributes to
biochar’s commercialization and drives its adoption as a sustain-
able solution for treating agricultural water and reducing pesticide
contamination.
Lastly, environmental agencies can rely on the machine learning

model to assess the potential impacts of pesticides from
agricultural runoffs on water bodies. By incorporating the
predicted adsorption efficiency of biochar, these agencies can
evaluate the effectiveness of different biochar types in reducing
pesticide concentrations in soil and water. The resulting knowl-
edge enables the development of more targeted policies and
guidelines to mitigate pesticide contamination, thereby safe-
guarding the environment and public health.
The pathway to impact in agriculture involves empowering

stakeholders with knowledge and tools to make informed
decisions about agricultural water treatment, pesticide manage-
ment, and water resource protection. The technology helps
optimize the use of biochar with a balanced design as an effective
adsorbent for pesticide removal, promoting sustainable agricul-
tural practices, minimizing environmental contamination, and
supporting soil and water conservation efforts.
The application of biochar to remediate pesticides from

agricultural runoffs offers a sustainable waste management and
water treatment solution. The permeation of ensemble machine
learning tools can help in the balanced design and use of biochar-
based pesticide removal processes. This study demonstrates the

potential of the CatBoost framework to derive insights from the
biochar adsorption data and help forecast the relevant attributes
impacting the retrieval of pesticides from aqueous solutions. The
CatBoost reveals the dominance of textural characteristics,
pesticide concentration, and biochar dose on the adsorptive
capture of pesticides. As more pertinent data related to pesticide
properties and selectivity parameters of biochar are available, the
CatBoost technique, with the acquired prediction accuracy of
~96%, can be extended into real-world treatment systems to
formulate a more holistic model framework that will help
researchers and agricultural scientists to predict the potential of
biochar to treat specific pesticides in water and soil systems.
Moreover, the current theme of the research focuses on the role of
ML in analyzing pesticide adsorption behavior, but in the future, it
will be intriguing to explore the role of ML-assisted management
models to address the post-adsorption environmental challenges
related to desorbed pesticides and the management of pesticide
saturated biochars.

METHODS
The sections below briefly discuss the pre-processing steps in the
pesticide treatment data preparation using biochars, model
development, and feature importance analysis.

Pesticide remediation dataset based on biochars
Compilation of data. A comprehensive collection of 96 academic
research articles was compiled to investigate the adsorption of
pesticides in biochar-mediated aqueous systems. The articles were
gathered using reputable online search engines such as Google
Scholar, Scopus Index, and Web of Science. Pesticides treated
using biochar adsorption matrix methods are depicted using a tag
cloud (Fig. 3). Supplementary Table 2 provides an elaborate
tabular representation of feedstock biomass data, while Supple-
mentary Fig. 2 offers a visual overview of the biochar dataset. A
comprehensive and detailed description of the gathered data is
presented in an Excel file, which can be accessed through a
downloadable link provided in Supplementary Table 3. The file
contains extensive information about the specific biochar utilized
for pesticide treatment, research locations, publication years, and
the dataset.
The information about the PC adsorption capacity from the

collected research articles was extracted from graphs using Plot
Digitizer Software34or was acquired from tables or calculated
using Eq. (1).

PC adsorption capacity ¼ CPO � CPBð Þ � V
CPO�m

(1)

where CPO refers to the initial PC concentration in the solution and
CPB is the PC concentration post-biochar treatment at time t of the
pesticide solution. V designates the volume of the aqueous
solution, and m denotes the mass of the biochar. The pesticide
adsorption capacity was expressed in mg g−1. The biochar-
mediated adsorption process in PC-contaminated solutions
describes a decrease in their concentration, expressed in
mg L−1. The domain knowledge was used to group the ten input
attributes, i.e., the surface area of Biochar (SA), pH of biochar
(pH_BC), total pore volume (Vt), biochar dose (dose), cation
exchange capacity (CEC), pH of the solution (pH), initial pesticide
concentration (Co), treatment or contact time (CT) and tempera-
ture (T) into empirical categories of the adsorbate-adsorbent
system mentioned in the Introduction.

Imputation of missing data and assessment of correlations
The research studies did not report all the values associated with the
ten sets of attributes. The missing value imputation was used for the
feature for which most data was available. In this work, a threshold of
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50% was employed, meaning attributes with missing values greater
than the threshold were discarded from the dataset. Thus the cation
exchange capacity (CEC) attribute was excluded from the dataset, and
the median value was employed to impute missing values for the
remaining features. The median was selected as it demonstrated the
highest representativeness for the comprehensive data and did not
introduce bias. Pearson’s correlation matrix, consisting of nine sets of
features, is presented in Supplementary Fig. 3. Subsequently, the
dataset matrix with dimensions of 878 × 9, encapsulating data
variability as shown in Table 1, was employed to generate ensemble
machine learning (ML) models.

Development and evaluation of models
Data division, scaling, and hyperparameter tuning. Predictive
models were developed using three machine-learning techniques:
CatBoost, LightGBM, and Random Forest (RF). Figure 4 showcases
a flowchart that provides an overview of the technical aspects of
the machine learning pipeline. This flowchart encompasses the
steps involved in data preparation, model training, validation, and,
ultimately, the prediction of pesticide adsorption. A sample space
was established to perform ML modeling, comprising 878 data
records encompassing nine attributes: SA, Vt, pH_BC, pH, CT, Dose,
T, Co, and the desired output attribute, Pesticide Adsorption. By
using a stratified random sampling algorithm, 703 samples were
chosen as the training set, and 175 samples were designated as
the test set from the previously mentioned sample space. The grid
search algorithm was utilized to identify the optimal hyperpara-
meters in the training process for each specific model (CatBoost,
LightGBM, and RF). The fundamentals of each ML model are
described in Supplementary Methods in SI. To mitigate the risk of
overfitting in our study, we implemented a 5-fold cross-validation

approach. This technique was employed to assess the predictive
performance of our models on unseen data samples, thereby
enhancing the reliability and generalizability of our results. Finally,
the precision of the predictive models was measured using the
coefficient of regularization (R2) and the root-mean-squared error
(RMSE). R2 and RMSE values were computed using Eqs. (2) and (3).

R2 ¼ 1�
PN

i¼1
ðym;i � ye;iÞ2

PN

i¼1
ðye;i � ym avÞ2

(2)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ym;i � ye;i

� �2

n

v
u
u
u
t (3)

where ym;i associates with the value of output predicted by the
model and ye;i corresponds to the output value acquired using
experiments, ym av is the average of all the outcomes predicted by
the model, and n is the sample size in the training or testing
subsets. We utilized the Python programming language and
relevant libraries for modeling implementation. The Scikit-Learn
library31 was employed for performance analysis, while the conda
packages of CatBoost, LightGBM, and RF libraries were utilized for
implementing the model algorithms. The pyplot libraries were also
used for exploratory data analysis and graph generation.

Feature importance. The significance and impact of each
attribute (feature) on the output attribute (pesticide adsorption
capacity) were computed in two ways in Python. First, the built-in
feature importance function provided by the CatBoost library was

Table 1. Representation of data variability using the quartile range (QR).

Data points = 878 Input parameters Output parameters

QR SA (m2/g) Vt (cm3/g) pH_BC pH CT (min) Dose (g/L) T (K) Co (mg/L) Pesticide adsorption (mg/g)

Minimum 0.25 0.0024 2.29 2 40 0.001 288 0.2 0.1

First Quartile 15.08 0.0751 2.73 5 180 0.4 298 10 6

Median 275 0.134 6.24 6.5 360 1 303 25 25

Third Quartile 660 0.296 8.91 7 720 1 308 100 95.83

Maximum 2192 1.085 10.12 10 4320 8 333 1000 1120

SA surface area, Vt total pore volume, pH_BC biochar pH, pH pH of water, CT contact time between biochar and pesticide-contaminated water, dose quantity of
biochar used, T temperature condition, Co pesticide concentration in water.

Fig. 3 Visualization of a cloud representing various pesticides adsorbed on biochar, with further details available in Supplementary Table 2.
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used to plot features in the order of their impact on model fit. The
systematic correlation between the input adsorption attributes
and output was illustrated by integrating partial dependence plots
generated using CatBoost. Another feature importance criterion,
known as SHAP (Shapley’s Addition Description Method)35,36, was
also employed to anticipate the impact of various attributes on
the model predictions.

DATA AVAILABILITY
The data used in this study can be downloaded from the following GitHub link:
[GitHub https://github.com/shilpapandey/Pesticide_study].

CODE AVAILABILITY
The source code is currently employed to conduct an in-depth analysis of
comprehensive data and will be provided upon request from the corresponding
author.
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