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demonstration with clinical data
Samuel J. Abplanalp 1,2✉, Eric A. Reavis1,2,3, Thanh P. Le1,2,3 and Michael F. Green1,2

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024

Ecological momentary assessment (EMA) is a frequently used approach among clinical researchers to collect naturalistic data in real
time. EMA data can provide insights into the temporal dynamics of psychological processes. Traditional methods used to analyze
EMA data, such as hierarchical linear modeling and multilevel vector auto-regression, paint an incomplete picture of the dynamics
of psychological processes because they cannot capture how variables evolve outside predefined measurement occasions.
Continuous-time models, an analytical approach that treats variables as dynamical systems that evolve continuously, overcome this
limitation. Time advances smoothly in continuous-time models, contrasting with standard discrete-time models in which time
progresses in finite jumps. This paper presents a practical introduction to continuous-time models for analyzing EMA data. To
illustrate the method and its interpretation, we provide an empirical demonstration of a continuous-time model utilizing EMA data
of real-time loneliness and mood states (happiness, sadness, and anxiety) from a clinical sample comprising Veterans with a history
of mental illness. Psychological variables, such as feelings of loneliness or sadness, can often change many times throughout the
day. However, standard ways of analyzing these variables do not accurately capture these changes and fluctuations. Here, we
highlight the benefits of continuous-time models, a method that can capture subtle changes in such psychological variables over
time.
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LAY SUMMARY

Psychological variables, such as feelings of loneliness or sadness, can often change many times throughout the day. However,
standard ways of measuring these variables do not accurately capture these changes and fluctuations. In this paper, we introduce
and highlight the benefits of continuous-time models, a method that can capture subtle changes in psychological variables over
time.

INTRODUCTION
Ecological momentary assessment (EMA) allows researchers to
collect self-report and behavioral data in naturalistic contexts. EMA
encompasses a range of methods, including paper and pencil
diaries, telephone interactions, and self-monitoring [1]. In recent
years, EMA data are almost always derived from smartphones. A
typical procedure has participants, via smartphone, complete
surveys throughout the day for a specific number of days that ask
about real-time thoughts, feelings, or behaviors. Although EMA
has the benefit of collecting repeated measurements in real-time
within naturalistic environments, traditional methods used to
analyze these data paint an incomplete picture of the dynamics of
the measures. Specifically, traditional approaches cannot capture
how psychological variables evolve, vary, and relate to one
another outside predefined measurement occasions [2–6]. There-
fore, there is a need to apply methods capable of analyzing these
data as dynamical systems that evolve continuously over time.

The current paper aims to present continuous-time models for
analyzing EMA data. Time advances smoothly in continuous-time
models, contrasting with standard discrete-time models in which
time progresses in finite jumps [2–6]. Most previous articles on
continuous-time models are highly technical and seemingly
require readers to have some degree of mathematical back-
ground—an assumption that can make such articles daunting to
those unfamiliar with the procedures. Hence, we attempt to take a
less technical approach (while still introducing general modeling
equations) to help clinical researchers understand and interpret
continuous-time models from a more practical perspective. First,
we briefly describe common discrete-time models, including
hierarchical linear modeling (HLM) and the multilevel vector auto-
regression (mlVAR) model. Second, we discuss continuous-time
models based on first-order stochastic differential equations.
Third, we provide an example of a continuous-time model and its
interpretation. The example uses EMA data of real-time loneliness
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and mood states (happiness, sadness, and anxiety) from homeless-
experienced Veterans with a history of mental illness.

DISCRETE-TIME MODELS FOR EMA DATA
Before introducing methods for analyzing EMA data in discrete
time, it is helpful to describe what discrete time means. In discrete
time, events are recorded or observed at specific, distinct intervals
or time points, and time is treated as a sequence of separate units
—not as a continuous flow. For example, a study might measure
daily stress levels once per day at 7 p.m. In this case, the time
variable is discrete, representing one separable time unit each day.
However, the intervals between measurement occasions could be
either regular (i.e., occurring at the same time on every occasion)
or irregular (e.g., collecting stress data one day at 7 p.m., the next
day at 5 p.m. and the following day at 9 p.m.). Sampling at
irregular time intervals can allow for a more complete evaluation
of the processes under study and has the added benefits of
reducing participant anticipation and increasing ecological validity
[7]. However, irregular intervals are usually analyzed as regularly
occurring intervals— a practice which can bias estimates and lead
to inaccurate inferences regarding the temporal dynamics of the
variables.

Hierarchical Linear Modeling
One of the most widely used discrete-time methods for EMA data
is hierarchical linear modeling (HLM), also known as multilevel
modeling [8]. A foundational feature of HLM is its ability to parse
and analyze data into fixed (an effect of a variable that is
consistent across all observations) and random (an effect of a
variable that varies across observations) effects. In the case of EMA
data, repeated measurements are nested within individuals,
making it possible for time to be entered into the model as a
predictor variable that can capture linear and nonlinear trends
across measurement occasions [8]. However, HLM has limitations
that hinder its interpretation. First, the modeling of time is
restricted. In HLM, time is treated as discrete intervals such that
the actual moment when a measurement occurred is not
modeled. Instead of treating measurement times as a continuous
variable, they are simply modeled as “occasion 1”, “occasion 2”,
“occasion 3’” and so forth.
The second limitation of HLM is that time is explicitly entered as

a predictor into the model equation, thus treating time as an
explanatory variable [2]. Including time assumes that time is the
“cause” of other variables. For instance, including time in the HLM
of daily stress levels would mathematically model the discrete
passage of time as a predictor or cause of later stress. While time
may be an explicit cause of certain outcomes (e.g., biological
aging), we do not typically assume that time itself causes
psychological outcomes in this way. Instead, psychological
measures may evolve and interact at every moment as a
dynamical system, without time itself as a causal factor.
A dynamical system can be broadly described as a set of variables
that are treated as a “whole”, and the parts (i.e., variables)
that comprise the whole evolve and change over time. One
approach that treats variables as a dynamical system is the
mlVAR model.

Multilevel vector auto-regression
The mlVAR model, a multilevel extension of the vector auto-
regression (VAR) model, describes dynamic relationships among
variables measured repeatedly over time [9, 10]. In mlVAR, lagged
regression parameters, or lagged coefficients, are crucial in
capturing the temporal dynamics between variables. These
coefficients quantify the influence of one variable on itself, called
an auto-regressive effect, or on another variable, called a cross-
lagged effect, at a subsequent measurement occasion. Specifically,
the lagged coefficients measure the strength and direction of

these effects, indicating how a change in one variable can lead to
changes in the same or another variable in the future.
Two network structures are estimated from auto-regressive and

cross-lagged effects: a lagged network and a contemporaneous
network [11]. The lagged network employs lagged coefficients to
illustrate the predictive relationships between variables over time,
accounting for the influence of all other variables in the model.
This network reveals how variables are interconnected through
past values and can illustrate temporal precedence and potential
causal relationships. The contemporaneous network partials out
the lagged coefficients and focuses on the unique relationships
among variables within the same time interval. This approach
allows for the estimation of immediate, within-time interactions
among variables.
A limitation of the mlVAR model is that it relies on the

assumption of equidistance—an assumption that requires that the
difference in time between measurements is equal [11, 12]. Time is
only considered implicitly by the order of the measurement
occasions, contrasting with HLM, in which time is treated as an
explicit predictor. Because time is only considered implicitly, the
auto-regressive and cross-lagged results depend on the time
interval the researcher chooses. Consequently, separate research-
ers examining the same variables may get drastically different
results depending on the time interval selected. For instance, one
study could find a strong auto-regressive effect (i.e., high stability)
of stress when measured at 24-hour intervals, and another could
observe a weak auto-regressive effect when measured at 1-hour
intervals. However, as time is only considered by the ordinal rank
of measurement occasions, these effects cannot be compared
across studies, making it difficult to understand the true nature of
the auto-regressive effect. This problem is referred to as time-
interval dependency, and it suggests that psychological variables
can—and probably often do—evolve and interact outside
predefined measurement occasions [5, 13].
Thus, HLM and mlVAR, two common methods of analyzing EMA

data, both model time as a discretized variable, but with differing
underlying assumptions that are often violated. HLM, despite
being able to manage measurements collected at irregular time
intervals, treats time as a causal influence that staggers forward in
discrete jumps, and does not model variables as dynamical
systems. On the other hand, mlVAR treats variables as dynamical
systems but suffers from the problem of time-interval depen-
dency. In the next section, we introduce continuous-time models,
which overcome these limitations of HLM and mlVAR.

CONTINUOUS-TIME MODELS FOR EMA DATA
Continuous-time models have historically been used in fields such
as finance and physics, with a common application being the
modeling and prediction of stock prices [14–16]. However, these
models have only recently begun to be applied to psychological
data [17–19]. The primary objective of continuous-time models is
to estimate direct moment-to-moment effects, also known as local
dependencies, among variables, which will ultimately allow us to
examine the temporal dynamics of variables over any time
interval.
Using the example of stress, we can assume that measuring

stress levels only once per day will not adequately capture its
temporal dynamics. Although measuring stress levels every hour
would provide richer information, stress likely changes even faster.
In fact, there are infinite time intervals between any two discrete
measurement occasions [2, 5], meaning that stress would have a
value if measured at any imaginable moment. As such, stress and
other psychological variables may continuously evolve on a
moment-to-moment basis. Such moment-to-moment fluctuations
are represented by the “instantaneous rate of change,” which
refers to the slope of a variable’s trajectory at any given moment
[20]. The slope provides the exact velocity at which a variable
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increases or decreases, as every point in time has its own rate of
change. Unlike discrete-time models, in which changes are
assessed between distinct time points, modeling the instanta-
neous rate of change allows continuous-time models to discern
how variables evolve and interact at any conceivable moment in
time. In this paper we focus on how continuous-time models can
be applied to EMA data, but these models can also be used to
analyze other forms of longitudinal data [2].
Moment-to-moment effects from continuous-time models can

be calculated using first-order stochastic differential equations—
mathematical tools used to describe the evolution of systems over
time in the presence of both predictable and random influences.
The predictable influence of a stochastic differential equation is
known as the deterministic trend. For example, the deterministic
trend could model how stress is expected to increase during work
hours and decrease during relaxation and how this fluctuation in
stress affects mood. Given the same starting conditions, it follows
a set formula that will always produce the same result. Conversely,
the stochastic trend models the randomness or noise inherent in
psychological measures that are not explained by the determi-
nistic trend alone. In this paper and in our demonstration, the
stochastic trend is represented by a Weiner process, which can be
thought of as a white noise residual term. Using the stress
example, this stochastic trend could be sudden spikes in stress
from an unexpected work email that subsequently worsens mood
or, conversely, a random act of kindness that significantly
improves stress and improves mood. It is also possible for the
stochastic trend to model measurement noise inherent within the
variables. Of note, while we use first-order stochastic differential
equations to estimate continuous-time models in this paper, any
differential equation system (e.g., ordinary differential equations,
second-order stochastic differential equations) are modeled using
a continuous-time framework. We refer interested readers to
[21–23] for more technical details related to differential equations.
The concept of equilibrium is essential to interpreting moment-

to-moment effects in continuous-time models. A movement away
from equilibrium is measured with “drift matrix” parameters that
show how variables within the system react over time in response
to a random shock—the unexpected changes captured by the
model’s stochastic trend. The Weiner process representing the
stochastic trend pushes the variables away from equilibrium, and
the values of the drift matric parameters determine how the
variables respond to the random shocks. When variables are
centered and standardized, equilibrium typically corresponds to
zero, indicating no deviation from their mean value [5, 24]. The
equilibrium state serves as a baseline: any divergence due to a

stochastic random shock prompts the system to adjust by moving
further from equilibrium or reverting toward it. We can use
information about movement toward and away from equilibrium
to help interpret auto-effects and cross-effects within the drift
matrix.
Auto-effects in continuous-time models differ fundamentally

from those in traditional discrete-time models. Traditional auto-
regressive effects measure the extent to which a variable at one-
time point can predict its future values at later time points. In
contrast, continuous-time auto-effects capture the relationship
between a variable’s current value and its instantaneous rate of
change—again defined as the slope of a variable’s trajectory at
any given moment [6, 25]. Specifically, a negative auto-effect
indicates a stable effect, suggesting that any increase above
equilibrium (a positive deviation) will be followed by a decrease (a
return toward equilibrium). Conversely, any decrease below
equilibrium (a negative deviation) will be followed by an increase
(again, a return toward equilibrium). These dynamics reflect a
tendency for the variable to revert to its equilibrium over time.
Conversely, a positive auto-effect indicates an unstable effect, as a
return toward equilibrium does not necessarily follow increases
above or below equilibrium. Figure 1 shows a conceptual
illustration of continuous-time model auto-effects using the stress
example. The figure includes three types of auto-effects: a strong
negative effect, a weak negative effect, and a positive effect. As we
can see, the strong negative auto-effect returns to equilibrium
very quicky, while the weak negative auto-effect fluctuates above
and below equilibrium before returning toward it. Given its
instability, the positive auto-effect does not return toward
equilibrium.
Cross-effects are conceptually similar to traditional cross-lagged

effects in discrete-time models in that they describe the influence
of one variable on the future state of another. However, in
continuous-time modeling, cross-effects estimate the direct,
moment-to-moment relationships between variables [6, 25].
Consider a negative cross-effect from stress to mood. In this
scenario, an instantaneous increase in stress corresponds to a
decrease in the rate of change at which mood reaches 0. The
higher stress levels can impede the recovery of mood, preventing
it from stabilizing.
The drift matrix parameters, including auto and cross-effects,

are essential values derived from continuous-time models. Once
these parameters are calculated, we can use them to predict how
variables will evolve and interact continuously over time.
Regardless of how frequently the original data were collected,
we can use the drift matrix parameters to estimate the relation-
ships between variables over shorter or longer periods [2, 13, 26].
For example, suppose stress and mood data were collected at
1-hour intervals. The drift matrix parameters can be rescaled to
explore the dynamics of these relationships on a minute-to-
minute basis.
In addition to modeling auto-effects and cross-effects over any

time interval, the drift matrix parameters permit us to calculate
impulse response functions [6, 17]. These functions illustrate how a
deviation or random shock (due to the Weiner process stochastic
trend) to one variable in the system will affect the evolution of
both it and the other variables at subsequent time points. By
plotting the trajectory of these responses, we can infer the
system’s resilience, identify potential feedback loops, and under-
stand the interdependencies between variables. Impulse response
functions may be particularly beneficial in the context of clinical
interventions [27]. For instance, if an intervention aims to reduce
stress, impulse response functions can help predict how quickly
and effectively stress levels might decrease and how this
reduction might subsequently affect related variables, such as
mood. Moreover, they can inform the duration of an intervention,
including whether an intervention is likely to have a short-lived
impact or result in sustained changes.
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Fig. 1 Conceptual illustration of continuous-time model auto-
effects. Note. The blue line represents a highly stable, strong
negative auto-effect; the green line represents a weak negative
auto-effect; the red line represents an unstable positive auto-effect;
the dotted black line represents the equilibrium of the hypothetical
“Stress” variable.
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Continuous-time models rely on key assumptions. First, we
must assume that there is one underlying continuous-time model
(i.e., a single generating process) [2]. In other words, we must think
that the variables under study evolve continuously over time. If we
believe that the variables do not continuously evolve and instead
evolve in discrete intervals (e.g., such as trash collection, which
usually happens on a weekly time interval) or event-based
intervals (e.g., such as panic attacks only occurring in specific
contexts), then a continuous-time model could yield misleading
results. A second assumption is that the data used to fit a
continuous-time model were collected at time intervals that
approximate the genuine dynamics of the variables under study
[13]. For instance, if we collected stress data on a year-to-year
interval, it would not be appropriate to rescale the drift
parameters to time intervals at the minute-to-minute level.
Indeed, sampling much slower than a process operates can lead
to biased estimates and poor confidence interval coverage, while
sampling that approximates or is faster than the process under
study results in unbiased estimates [13]. However, in most
instances, researchers may not know the genuine dynamics of
the variables under study. In these cases, some form of theoretical
knowledge about the variables should be used to guide the
sampling intervals, as well as the rescaled intervals.
The following section presents an empirical demonstration of a

continuous-time model. We utilize EMA data of real-time lone-
liness and mood states, including happiness, sadness, and anxiety,
to illustrate the interpretive value of continuous-time models. The
model uses first-order stochastic differential equations to estimate
1) auto-effects that capture the variables’ current value and its
instantaneous rate of change across a 24-hour time interval; 2)
cross-effects predicting the rate of change of the variables across a
24-hour time interval; and 3) impulse response functions to
predict how a random shock to loneliness (and mood states)
affects the evolution of both itself and mood states (and
loneliness) across a 24-hour time interval.

CONTINUOUS-TIME MODEL DEMONSTRATION
Suppose a researcher wishes to use EMA to ascertain the temporal
relationships between loneliness and mood states in a clinical
sample. Loneliness is a subjective discrepancy between a person’s
social needs and the degree to which those needs are satisfied; it
is distinct from objective social isolation [28, 29]. According to
evolutionary theories, loneliness is a sign that changes in the
social environment are not optimal and that the individual should
return to social homeostasis [28, 30, 31]. Loneliness should,
therefore, be studied and analyzed as a dynamic construct that
evolves continuously over time. Loneliness is distinct from mood
states (which may be unrelated to social context); however, the
two are frequently associated [32, 33]. Moreover, mood states, like
loneliness, may fluctuate throughout the day [34–36]. Thus, using
continuous-time models, EMA sampling intervals that measure
loneliness and mood states at discrete times throughout the day
could be rescaled to examine how these variables evolve on a
minute-to-minute basis.

MATERIALS AND METHODS
Data were drawn from a study that sought to examine the
feasibility of collecting EMA data in homeless-experienced
Veterans with a history of mental illness. Participants were
recruited from the greater Los Angeles area, had a history of
homelessness, and had attained housing with a voucher from
the Veterans Affairs (VA) Supportive Housing program in
the Department of Housing and Urban Development within
the 12 months before study enrollment. Mental illness was
broadly defined as participants were eligible if they met DSM-5
criteria for at least one of the following: mood disorder

(e.g., major depressive disorder), post-traumatic stress disorder,
schizophrenia-spectrum disorder (e.g., schizophrenia), or a
substance use disorder (e.g., alcohol use disorder). Diagnoses
were confirmed using the SCID-5 Clinician Version [37]. All
recruitment and study procedures were approved by the VA
Greater Los Angeles Institutional Review Board, and participants
provided written informed consent.
The participants were instructed to answer EMA surveys five

times a day for seven days using mindLAMP—a smartphone
application designed to collect digital phenotyping data (https://
docs.lamp.digital). The EMA surveys were sent on a semi-random
schedule between 9 am and 9 pm. Participants were scheduled to
receive 35 surveys across the seven days and could also manually
enter the mindLAMP application and provide additional responses
at any time throughout the day. The four EMA items we chose to
analyze in this demonstration included: loneliness (“How lonely do
you feel right now?”), happiness (“How happy do you feel right
now?”), sadness (“How sad do you feel right now?”), and anxiety
(“How nervous do you feel right now?”). All items were measured
on a 7-point Likert scale, with 0 indicating “not at all” and 7
indicating “extremely.” Participants had to complete at least
10 surveys to be included in the analyses [38].

Statistical analysis
We applied continuous-time models using the R packages ctsem
[39] and ctnet [5], with a portion of the code adapted from [5, 17].
The R code for all analyses is available at the following OSF page:
https://osf.io/jt2k5/. First, we examined sample sociodemographic
characteristics and descriptive statistics of the EMA data, including
the number of prompts responded to and the time elapsed
between prompts.
Second, we used first-order stochastic differential equations to

estimate the drift matrix parameters. These parameters reflect the
moment-to-moment effects using maximum-likelihood estima-
tion, including auto-effects and cross-effects among loneliness,
happiness, sadness, and anxiety. All variables were centered with a
mean value of 0. The stochastic differential equations can be
expressed by the following:

dYðtÞ
dt

¼ AY tð Þ þWðtÞ

Here, dYðtÞdt represents the first derivative (i.e., the rate of change) of
the variables Y (loneliness and mood states) at time t. The
derivative is dependent on the momentary values of loneliness
and mood states. The drift matrix (A) relates the derivative and
current values of loneliness and mood states. A Weiner process (a
white noise residual term) denoted WðtÞ represents the stochastic
trend in the equation.
Third, we rescaled the drift matrix parameters to examine auto-

effects and cross-effects among the variables over 24 hours
(Δt= 0 to Δt= 24). This procedure allowed us to explore how
the variables evolve continuously throughout the day. Although
rescaling time intervals past 24 hours was mathematically
possible, we did not believe rescaling beyond 24 hours would
be reliable. Rescaling the drift matrix parameters was done using
the following equation:

Y tτð Þ ¼ eAΔtτY tτ�1ð Þ þ ϵðΔtτÞ

Loneliness and mood states at the current measurement
occasion, denoted Y tτð Þ, are regressed on the values of loneliness
and mood states at the previous occasion, expressed by tτ�1ð Þ. τ
represents the measurement occasion (e.g., 1, 2, 3, etc.), while t
represents the actual time (e.g., 11:30, 13:15, 17:20) that the
measurement occurred. These lagged relationships are related via
the matrix exponential of the drift matrix multiplied by the given
time-interval, which is expressed by eAΔtτ . The vector ϵ Δtτð Þ
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includes the residual terms of loneliness and mood states that are
functions of the given time-interval.
Fourth, we calculated impulse response functions. Specifically,

we estimated how the variables would evolve and interact over
time when loneliness takes on a value of one standard deviation
above equilibrium at time 0 (i.e., the current moment in time) or
one standard deviation below equilibrium. In addition, we
estimated how the variables would evolve and interact over time
if the mood state variables (happiness, sadness, and anxiety) took
on values one standard deviation above or below equilibrium at
time 0. We can calculate the impulse response function by
essentially taking the integral form of the equation we used to
represent the stochastic differential equation system. This can be
expressed using the following:

Y tð Þ ¼ eAðt�t0ÞY t0ð Þ þ
Z t

t0

eA t�sð ÞdWðsÞ

Y tð Þ represents the state vector of the dynamical system (i.e.,
loneliness and mood states) at the given time. eAðt�t0Þ expresses
the matrix exponential of the drift matrix A multiplied by the time
elapsed since the impulse. The term ðt � t0Þ describes how the
system evolves over time from its state at t0, which is influenced
by A. Y t0ð Þ represents the state of the system immediately before
the impulse, serving as the initial condition for the response
function.

R t
t0
eA t�sð ÞdW sð Þ expresses the integral of the matrix

exponential of the drift matrix multiplied by the differential of the
Wiener process WðsÞ over time from t0 to t. This term captures the
effect of stochastic trends on the system’s response to the
impulse.
The continuous-time model we estimate here differs from

discrete-time models like HLM and mlVAR in important ways. First,
this continuous-time model essentially estimates fixed effects,
meaning that we assume the effects are consistent across all
participants. In a standard HLM, random effects, which are allowed
to vary across participants, are also estimated. Although random
effects can be included in continuous-time models, we chose to
estimate a more simplistic model for illustrative and interpretation
purposes. Second, the continuous-time model does not rely on a
contemporaneous or lagged network like mlVAR. Contempora-
neous and lagged networks would show how loneliness and

mood states interact cross-sectionally and over a discrete period
(e.g., perhaps averaged across days or via unevenly binned time
intervals). In contrast, our continuous-time model shows how
loneliness and mood states evolve and interact continuously over
an entire day.

RESULTS
Twenty-five participants were included in the study. Fourteen
participants (56%) had a primary diagnosis of major depressive
disorder; two participants (8%) had a primary diagnosis of
persistent depressive disorder; four participants (16%) had a
primary diagnosis of schizophrenia; four participants (16%) had a
primary diagnosis of substance use disorder; and one participant
(4%) had a primary diagnosis of PTSD. The average age of the
sample was 42.33 years old (SD= 12.27); the average education
level was 13.00 years (SD= 1.45); 86% of the sample identified as
male, and 16% identified as female. The racial breakdown of the
sample was as follows: 4% American Indian or Alaskan Native; 60%
Black; 8% More than one race; and 28% White.
Regarding descriptive statistics of the EMA data, participants

completed an average of 32.20 EMA surveys (SD= 11.40) across
the 7-day study period. The mean time between completed EMA
surveys was 6.64 hours (SD= 2.34), which included overnight gaps
and missing responses. The mean response time between
completed surveys was partially driven by relatively few data that
were collected at very long intervals. In addition, there were
163 surveys that were answered at time intervals below 1 hour,
with a mean of 6.52 per participant (see the Supplementary
Materials and Methods for a histogram of this data). Therefore, we
felt as though rescaling the data to minute intervals was
appropriate. The sample size and amount of completed EMA
surveys align with the recommended number of timepoints
required for estimating continuous-time models [38].

Drift matrix parameters
The drift matrix parameters are presented in a local dependency
network (Fig. 2) and their corresponding ninety-five percent
confidence intervals are in Table 1. Red arrows represent positive
dependencies, and blue arrows represent negative dependencies.
Focusing first on the auto-effects (i.e., circular arrows adjacent to
each of the four variables), we see that all values are negative,
indicating a stable system. However, there are notable differences
among the variables. Specifically, happiness had the lowest auto-
effect (−0.24, 95% CI=−0.35, −0.14) by a large margin, indicating
that happiness would be expected to return to equilibrium less
quickly than loneliness, sadness, and anxiety following a shock to
the system. Qualitatively, this means that feelings of loneliness,
sadness, and anxiety are more quickly regulated away than
happiness, which is more persistent. Notably, loneliness (−12.12,
95%CI=−13.55, −10.71) and sadness (−12.78, 95% CI=−13.80,
−11.61) had very similar auto-effects.
Next, we examined the cross-effects of the local dependency

network (Fig. 2). Each variable has a cross-effect to and from every
other variable. As a reminder, cross-effects reflect the influence of
one variable on another variable’s instantaneous rate of change.
The strongest cross-effect was between sadness and loneliness.
That is, being sad is likely to lead to a rising trajectory of loneliness.
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Fig. 2 Local dependency network of loneliness and mood states
corresponding to the drift matrix parameters. Note. Arrows going
into the same variable represent auto-effects and arrows going into
different variables represent cross-effects.

Table 1. Ninety-five percent Confidence Intervals Corresponding to the Drift Matrix Parameters of Loneliness, Happiness, Sadness, and Anxiety.

Happiness Sadness Anxiety Loneliness

Happiness −0.24 (−0.35, −0.14) 1.10 (0.53, 1.67) 0.16 (−0.58, 0.85) −0.75 (−1.06, −0.45)

Sadness −0.84 (−1.26, −0.42) -12.78 (−13.80, −11.61) 6.02 (4.84, 7.17) 7.72 (6.28, 9.07)

Anxiety 0.62 (0.27, 0.97) 3.86 (1.94, 5.62) −7.00 (−8.57, −5.42) 0.33 (−0.90, 1.60)

Loneliness 1.34 (0.79, 1.82) 14.08 (10.64, 17.33) −2.03 (−5.46, 1.716) −12.12 (−13.55, −10.71)
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The opposite is also true, such that loneliness is expected to
diminish the subsequent rate of change of sadness; however, this
effect was weaker in magnitude. Loneliness and happiness
showed an unexpected pattern. Loneliness is expected to decrease
the rate of change of happiness, but happiness increases the rate
of change of loneliness. This paradoxical relationship can be better
understood when we look at the cross-effects of loneliness and
happiness over time, which we present in the next section.

Auto-effects and cross-effects over time
To examine how the variables evolve continuously over time, we
rescaled the drift matrix parameters to change continuously over
24 hours (Fig. 3, Panel A). Looking at the auto-effects, we see that
happiness slowly begins to move back towards equilibrium
around two hours later but does not fully reach its equilibrium
state within one day. In contrast, loneliness, sadness, and anxiety
begin to revert to equilibrium quickly and return to equilibrium
after about 20 hours.
For the cross-effects, we examined the influence of momentary

loneliness on future mood states (Fig. 3, Panel B) and the influence
of momentary mood states on future loneliness (Fig. 3, Panel C). In
general, panels B and C show that loneliness and mood states
affect each other in slightly different ways. The effect of
momentary loneliness on all mood states becomes 0 approxi-
mately 19 hours later. However, the effects of momentary mood
states on future loneliness do not die down and reach 0 over the
course of 24 hours. This result suggests that mood states have a
more enduring effect on loneliness than loneliness has on mood
states. We can also interpret specific cross-effects. For example,
momentary sadness had a stronger effect on the rate of change of
future loneliness (0.48, 95% CI= 0.43, 0.54) than momentary

loneliness had on the rate of change of future sadness (0.28, 95%
CI= 0.24, 0.32), although both effects reach a peak value around
12minutes (which correspond to the effects and confidence
intervals presented above). Meanwhile, the effect of momentary
loneliness on the rate of change of future happiness is negative at
very short intervals, then becomes positive approximately
42minutes later; however, this effect does not become significant
until the 72-minute mark (0.04, 95% CI= 0.004, 0.08). In contrast,
the effect of momentary happiness on the rate of change of future
loneliness in panel C slowly builds, reaches its peak around 3 hours
later (0.31, 95% CI= 0.25, 0.36), and does not return to 0.
The positive cross-effect of happiness on loneliness may be

partly due to a diurnal pattern between the variables. Indeed, we
observed that participants tended to have lower levels of
loneliness and higher levels of happiness in the morning.
Loneliness then tended to rise throughout the day, while
happiness tended to lower. We provide more information about
this potential diurnal effect in the Supplementary Materials and
Methods.

Impulse response functions
Impulse response functions are presented in Fig. 4. Panel A shows
what would happen to the system if loneliness had a momentary
value one standard deviation above equilibrium. When partici-
pants feel lonely in the moment, they are expected to experience
a decrease in happiness and an increase in sadness and anxiety.
Due to its large auto-effect, loneliness begins reverting towards
equilibrium instantaneously. Thus, as participants experience less
loneliness, they experience less sadness and anxiety and more
happiness. Panel B illustrates a negative impulse to loneliness, that
is, what we would expect to happen if loneliness took on a value
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Fig. 3 Auto-effects and cross-effects of loneliness and mood states. A = Auto-effects; B = Cross-effects showing loneliness predicting the
rate of change of mood states; C = Cross-effects showing mood states predicting the rate of change of loneliness. The dashed lines represent
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one standard deviation below equilibrium. Here, we can see that
as participants experience less loneliness, sadness, and anxiety
decrease while happiness temporarily increases. However, as
loneliness, sadness, and anxiety approach equilibrium, happiness
departs from equilibrium before reverting towards it again after
about eight hours.
In panel C, we show an impulse response function correspond-

ing to simultaneous positive impulses in happiness (i.e., more
happiness) and negative impulses in sadness and anxiety (i.e., less
sadness and anxiety). Loneliness was estimated at the equilibrium
value. Participants would be expected to experience decreases in
loneliness for about 4 hours until the system quickly reverts to
equilibrium. Panel D shows the reverse simultaneous impulses (i.e.,
less happiness and more sadness and anxiety). As happiness
increases towards equilibrium, loneliness, sadness, and anxiety
decrease and reach equilibrium around 4 hours later.

DISCUSSION
Using EMA, researchers can collect ecologically valid data in
naturalistic contexts; however, traditional methods used to
analyze these data, such as HLM and mlVAR, are limited in their
capabilities. These methods model time in discrete measurements
even though most psychological processes are thought to change
continuously. Continuous-time models, an analytical approach
that treats psychological variables as dynamical systems that
evolve continuously, overcome these limitations.
To illustrate the interpretive value of continuous-time models,

we conducted an empirical demonstration using EMA data of
momentary loneliness and mood states in homeless-experienced
Veterans with a history of mental illness. The dynamical system
was stable, as all variables had negative auto-effects. In addition,

we found stronger cross-effects of mood states predicting the rate
of change of loneliness over time than vice versa, with the
strongest effect emerging between momentary sadness and the
rate of change of loneliness 12 minutes later. This finding could be
used to inform future EMA studies that aim to examine the
relationship between loneliness and mood. Researchers may want
to use a very short sampling interval or use other sampling
strategies, such as a burst design, to capture peak effect sizes
between the variables. Regarding impulse response functions, we
found that the rate of change among loneliness, sadness, and
anxiety decreases in response to a sudden spike in loneliness. In
contrast, the rate of change of happiness temporarily increases
over time in response to a sudden spike in loneliness. Overall, this
demonstration highlights the ability of continuous-time models to
answer substantively interesting and clinically relevant questions
related to auto-effects, cross-effects, and impulse response
predictions.
One potential limitation of our demonstration relates to the

equilibrium value. For ease of interpretation, all variables had the
same global equilibrium value of 0, a common practice within
psychological literature. However, it is possible that some variables
had multiple equilibria or that the equilibrium of certain variables
depended on the values of other variables [40]. If some
equilibrium depended on the values of other variables, the
dynamical system would be better conceptualized as nonlinear. In
contrast to a linear system in which the equilibrium is stable over
time, the equilibrium within a nonlinear system may exhibit
oscillations over time, such as sinusoid functions. More complex
continuous-time models will need to be tested to truly understand
the temporal dynamics of psychological variables. Another
potential limitation was that we rescaled the drift matrix
parameters to minute-to-minute intervals despite the average
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Fig. 4 Impulse response functions of loneliness and mood states. Diamonds represent starting positions for impulse responses; Panel A =
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time interval between measurements being approximately
6 hours per participant. Although our theoretical understanding
suggests that loneliness and mood states can fluctuate at minute
intervals, along with having a moderate amount of actual data
collected at time intervals under 1 hour, the results for effects at
minute-to-minute intervals may reflect some biases. That said,
researchers should use caution when interpolating or extrapolat-
ing findings from continuous-time models beyond a reasonable
time interval.
Besides applying continuous-time models to EMA or other

forms of conventual longitudinal data, these models could also be
used to analyze different types of neuroimaging data, such as
electroencephalography (EEG) and functional magnetic resonance
imaging (fMRI). Applying continuous-time models to EEG and fMRI
data would allow for a nuanced understanding of brain activity
and the ability to precisely capture complex, rapidly changing
patterns. This approach could be valuable for neuroscience
research and clinical diagnostics by offering enhanced insights
into brain function and the potential for more accurate detection
of neurological conditions. An exciting avenue for extending the
clinical application of continuous-time models is using network
centrality metrics to identify intervention targets [5, 40]. Network
centrality metrics for continuous-time models can provide
information on the relative importance of individual variables
and which variables would be optimal intervention targets. Using
this information, we could design an intervention that aims to
change a variable’s value over time, also known as a “press”
intervention [5, 40]. For example, we may want to induce a change
in sadness levels over 2 hours by prompting participants to view
positively valanced stimuli (like a picture or video), pre-prepared
positive affirmation statements, or other standard coping techni-
ques from cognitive behavioral-based interventions. Once the
intervention holds sadness levels constant, we can observe how
loneliness, happiness, and anxiety change over time. This example
is one of the many ways researchers could leverage continuous-
time models to construct clinically relevant interventions.

Citation diversity statement. The authors have attested that
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citations used in this article.
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