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Whole-brain dynamics across the
menstrual cycle: the role of hormonal
fluctuations and age in healthy women

Check for updates

Daniela S. Avila-Varela1,2,7, Esmeralda Hidalgo-Lopez3,4,5,7, Paulina Clara Dagnino1, Irene Acero-Pousa1,
Elvira del Agua1, Gustavo Deco1,6, Belinda Pletzer3,8 & Anira Escrichs1,8

Recent neuroimaging research suggests that female sexhormone fluctuationsmodulate brain activity.
Nevertheless, how brain network dynamics change across the femalemenstrual cycle remains largely
unknown. Here, we investigated the dynamical complexity underlying three menstrual cycle phases
(i.e., early follicular, pre-ovulatory, and mid-luteal) in 60 healthy naturally-cycling women scanned
using resting-state fMRI. Our results revealed that the pre-ovulatory phase exhibited the highest
dynamical complexity (variability over time) across the whole-brain functional network compared to
the early follicular andmid-luteal phases, while the early follicular showed the lowest. Furthermore, we
found that large-scale resting-state networks reconfigure along menstrual cycle phases. Multilevel
mixed-effects models revealed age-related changes in the whole-brain, control, and dorsal attention
networks, while estradiol and progesterone influenced thewhole-brain, DMN, limbic, dorsal attention,
somatomotor, and subcortical networks. Overall, these findings evidence that age and ovarian
hormones modulate brain network dynamics along the menstrual cycle.

Approximately 49.7% of the world’s female population are women of
reproductive age (15–45 years old).Of thesewomen, around58%experience
anaturalmenstrual cycle (free of hormonal contraceptives), characterized by
physiological fluctuations of the ovarian hormones estradiol and
progesterone1–4. A regularmenstrual cycle ranges between 21 to 35 dayswith
less than seven days of variability in cycle length5 and can be divided into
three main phases according to the hormonal levels. The onset of menses
initiates the follicular phase andmarks the beginning of themenstrual cycle.
The follicular phase is characterized by lowprogesterone levels and a gradual
increase in estradiol concentrations until the pre-ovulatory phase, in which
estradiol levels reach their peak. Following ovulation, the luteal phase
commences and continues until the last day of the menstrual cycle. This
phase is characterized by an increase in progesterone levels, which reach
their highest peak in the middle of the phase6,7. Converging and growing
evidence shows that these cyclic hormonal fluctuations impact brain
structure and function in multiple ways1,8–15. Especially, large-scale network
dynamics have proven responsive to endogenous hormonal fluctuations11,16.

Resting-state fMRI enables exploring the brain’s intrinsic organization
of large-scale distributed networks. Recent neuroimaging studies on the
menstrual cycle have revealed cycle-related brain activity fluctuations in
several resting-state networks, including the default mode network (DMN),
salience, dorsal attention, and subcortical networks11,17–21. For instance,
studies have shown that the connectivity of the DMN changes throughout
themenstrual cycle21. Increased connectivity between the DMN and the left
middle frontal gyrus was found in the early follicular phase compared to the
mid-follicular phase. By contrast, decreased connectivity between theDMN
and the left angular gyrus was observed in the luteal phase compared to the
early follicular phase18,20. Dynamic changes across the cycle phases have
been shown to involve a reorganization of salience and executive control
networks depending on the hormonal levels22.

However, prior menstrual cycle research has focused on studying
specific brain regions using static approaches. Thus, a comprehensive
understanding of the impact of hormonal fluctuations on whole-brain
dynamics is lacking. To date, only a few menstrual cycle fMRI studies have
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used a whole-brain dynamic approach and showed that progesterone and
estradiol impact brain dynamics and information processing across large-
scale brain networks11,12,23,24. Specifically, high estradiol levels have been
shown tomodulate theDMNand thedorsal attentionnetwork11.During the
ovulatory phase, brain dynamics exhibit increased flexibility among pre-
frontal, limbic, and subcortical nodes compared to the follicular and luteal
phases12. Furthermore, the luteal phase shows higher information trans-
mission across spatial scales compared to the follicular phase23. In addition,
recurring network states of high-amplitude dynamic functional con-
nectivity have been linked to fluctuations in follicle-stimulating and lutei-
nizing hormones24. However, these studies were based on a dense-sample
dataset (N=1) of a woman in her twenties, presenting some limitations.
Notably, variations in brain activity patterns among women may arise due
to diverse factors, including age, hormone sensitivity, or expression of sex
hormone receptors8. Addressing these limitations is critical for providing a
more reliable understanding of howmenstrual cycle-related changes impact
cognition, emotion, and behavior, as well as for developing targeted inter-
ventions for menstrual cycle-related disorders. Thus, further investigations
are needed to enhance our understanding of the complex interplay between
sex ovarian hormones and brain dynamics.

The dynamic intrinsic ignition framework provides a comprehensive
view of the brain as a complex system that exhibits specific dynamical
properties essential for effective informationprocessing25,26. This framework
emphasizes the concept of intrinsic ignition, which refers to the ability of
brain areas to transmit unidirectional and recurrent neural activity to other
areas across the whole brain network, and is related to the levels of
metastability26. Metastability in a brain area (i.e., node-metastability) is a
measure of diversity across time, which is linked to the fundamental func-
tionality of a given area.Different levels of temporal diversity in a givenbrain
area can be considered a measure of local functional variability or metast-
ability and thusdescribe the versatility of a givenbrain area.At rest, the brain
operates optimally in high metastable dynamical regimes, contributing to
cognitive flexibility, whereas low metastability is related to a reduction in
dynamical complexity and information processing27,28. This framework has
proven remarkably robust in capturing subtle differences in whole-brain
dynamics across several brain states in health and disease, including deep
sleep, meditation, aging, depression, and abnormal development, among
others26,29–32. The impact of menstrual cycle phases and hormone levels on
the female brain can be determined by examining the underlying whole-
brain dynamics, as it provides a comprehensive understanding of the pro-
cesses governing brain function, the interaction of different brain areas and
adaptive changes over time.

In this study, we aimed to investigate the dynamical complexity of the
menstrual cycle phases by examining resting state activity at different levels
of analysis, including global, network and local brain activity patterns in a
sample of 60 healthy naturally-cycling women scanned using resting state
fMRI. Specifically, we computed the intrinsic ignition framework25 to
measure brain dynamics across the whole-brain network and within eight
well-known resting-state networks (control, DMN, dorsal attention, limbic,
somatomotor, salience, subcortical, and visual) along three menstrual cycle
phases (early follicular, pre-ovulatory, and mid-luteal). Furthermore, we
employed multilevel modeling to examine the effects of hormone levels
(progesterone and estradiol) and age on whole-brain and resting-state
network dynamics. We hypothesized that hormone levels and age can
substantially influence brain network dynamics.

Results
Demographic and hormonal data
This study analyzed a cohort of 60 young healthy women with a regular
menstrual cycle as previously reported in Hidalgo-Lopez et al.16. The parti-
cipants had an average age of 25.4 years (range 18–35 years), and their
average cycle length was 28 days (range 23-38). Mixed effects models show
that estradiol levels were significantly higher during the pre-ovulatory than
the early follicular (Estimate = 0.329, SE = 0.051, FDR-corrected p < 0.001)
or mid-luteal phase (Estimate =− 0.178, SE = 0.051, FDR-corrected
p = 0.003) and higher in the mid-luteal than the early follicular phase
(Estimate = 0.151, SE = 0.051, FDR-correctedp = 0.009). Progesterone levels
during the mid-luteal phase were significantly higher than those during the
pre-ovulatory phase (Estimate = 116.34, SE = 13.05, FDR-corrected
p < 0.001) and early follicular phases (Estimate = 138.74, SE = 13.05, FDR-
corrected p < 0.001). Hormonal results were as expected for healthy women
in each phase of the menstrual cycle. See Table 1 and Fig. 1.

Node-metastability across the whole-brain network
For each menstrual cycle phase, we computed the node-metastability
measure to study the dynamical complexity underlying the whole-brain
functional network (Fig. 2 and Methods). We found that the dynamical
complexity was higher in the pre-ovulatory phase compared to the early
follicular (p < 0.001, Monte Carlo permutation and FDR-corrected) and
mid-luteal (p < 0.001, Monte Carlo permutation and FDR-corrected) pha-
ses. Furthermore, we found that the dynamical complexitywas higher in the
mid-luteal phase than in the early follicular phase (p < 0.001, Monte Carlo
permutation andFDR-corrected) (Fig. 3a). InFig. 3b,we show thehierarchy
for each phase across the whole-brain functional network (i.e., brain areas
sorted from highest to lowest node-metastability). The red area represents
the 10% brain areas showing the highest node-metastability values for each
phase. For the early follicular phase, the brain areas showing the highest
values of metastability were primarily located in the attentional networks,
DMN, visual, and somatomotor. For the pre-ovulatory phase, brain areas
with the highest metastability belonged to the DMN, limbic, subcortical,
dorsal attention, and control networks.During themid-luteal phase, the top
brain areas weremainly located in the subcortical network, dorsal attention,
and control networks. In Fig. 3c, we show the rendered brains representing
the node-metastability for each phase across the whole-brain functional
network. It is clear that the pre-ovulatory phase shows the highest metast-
ability values compared to the early follicular and mid-luteal phases.

Node-metastability across resting state networks
We independently computed the node-metastability measure within each
resting-state network. Differences among menstrual cycle phases for each
network are presented in Fig. 4a. First, the pre-ovulatory phase showed
significantly increased dynamical complexity compared to the early folli-
cular phase in the DMN, visual, subcortical (p < 0.001, Monte Carlo per-
mutation and FDR-corrected), limbic, control, salience (p < 0.05, Monte
Carlo permutation and FDR-corrected); however, the control network did
not survive multiple comparisons correction (p = 0.067). In contrast, the
pre-ovulatory phase showed lower dynamical complexity compared to the
early follicular phase in the dorsal attention network (p < 0.05,Monte Carlo
permutation and FDR-corrected). Second, the mid-luteal phase showed
significantly increased dynamical complexity compared to the early folli-
cular phase in the DMN, subcortical (p < 0.001, Monte Carlo permutation

Table 1 | Hormonal and cycle days data for the 60 participants

Estradiol (pg/ml) Progesterone (pg/ml) Cycle days

Early follicular 0.84 ± 0.46 (0.23–2.41) 68.77 ± 44.37 (7.89–177.97) 3.72 ± 1.51 (1–7)

Pre-ovulatory 1.17 ± 0.62 (0.23–4.02) 91.18 ± 67.34 (10.69–323.21) 12.08 ± 2.43 (5–21)

Mid-luteal 0.99 ± 0.45 (0.37–2.36) 207.52 ± 144.61 (48.47–625.59) 21.37 ± 3.57 (15–37)

We present the mean values, ±standard deviation, and range in parentheses.
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and FDR-corrected), and limbic networks (p < 0.05, Monte Carlo permu-
tation and FDR-corrected), but showed decreased dynamical complexity in
the dorsal attention, salience, and somatomotor networks (p < 0.001,Monte
Carlo permutation and FDR-corrected). Finally, compared to the pre-
ovulatory phase, the mid-luteal phase showed significantly increased
complexity only in theDMN(p < 0.05,MonteCarlo permutation andFDR-
corrected) but lower dynamical complexity in the visual, salience, and
somatomotor networks (p < 0.001, Monte Carlo permutation and FDR-
corrected). Figure 4b shows a radar plot representing the average metast-
ability values for each resting-state network in each menstrual cycle phase.

Mixed effects models of age and ovarian hormones on brain
dynamics
Mixed effectsmodelswere carried out to investigate the effects of estradiol,
progesterone, and age on brain dynamics. Node-metastability values

associated with each network for each woman were introduced as a
dependent variable (see Statistical analyses section). Results are displayed
in Fig. 5. For the whole brain, age (Estimate = 0.001, SE = 0.001,
p = 0.033), estradiol (Estimate = 0.007, SE = 0.001, p < 0.001), progester-
one (Estimate = 0.000, SE = 0.000, p = 0.028), and the interaction between
both hormones (Estimate =− 0.000, SE = 0.000, p = 0.006) showed a sig-
nificant effect. These results indicate higher levels of metastability in the
whole-brain network with increased age, estradiol, and progesterone.
Furthermore, the significant interaction between hormones shows that
metastability increases in the whole brain when estradiol levels
increase and progesterone levels decrease. For the DMN,
estradiol (Estimate =− 0.005, SE = 0.002, p = 0.022) and progesterone
(Estimate = 0.000, SE = 0.000, p < 0.001) showed a significant effect. This
result indicates that higher estradiol levels predict lower metastability,
while higher progesterone levels predict higher metastability. For the
limbic network, estradiol (Estimate = 0.019, SE = 0.005, p < 0.001), pro-
gesterone (Estimate = 0.000, SE = 0.000, p < 0.001), and the interaction
between both (Estimate =− 0.000, SE = 0.000, p = 0.002) show a sig-
nificant effect. These results indicate that higher estradiol and proges-
terone levels predict higher metastability. In the control network,
higher age levels predicted increased metastability (Estimate = 0.002,
SE = 0.001, p = 0.002). For the dorsal attention network, age
(Estimate = 0.002, SE = 0.001, p = 0.011), estradiol (Estimate = 0.008,
SE = 0.004, p = 0.021), progesterone (Estimate = 0.000, SE = 0.000,
p < 0.001) and interaction between hormones (Estimate =− 0.000,
SE = 0.000, p = 0.000) revealed a significant effect. These results indicate
that higher age predicted increased metastability. Additionally, the sig-
nificant interaction between hormones shows that metastability decreases
when estradiol levels decrease and progesterone levels increase. In the
salience network, a significant effect was observed for the
hormone interaction (Estimate =− 0.000, SE = 0.000, p = 0.040),
indicating increased metastability with elevated estradiol levels and
decreased progesterone levels. The somatomotor network,
estradiol (Estimate =− 0.010, SE = 0.004, p = 0.011), progesterone (Esti-
mate =− 0.000, SE = 0.000, p < 0.001) and the interaction between both
(Estimate = 0.000, SE = 0.000, p < 0.001). The results indicate that this
network exhibits lower metastability when progesterone levels increase,
and estradiol levels decrease. In the subcortical network, estradiol
(Estimate = 0.006, SE = 0.003, p = 0.026), progesterone (Estimate = 0.000,
SE = 0.000, p = 0.029), and the interaction (Estimate =− 0.000,
SE = 0.000, p = 0.002) shows significant effects. These results suggest

Fig. 1 | Estradiol (magenta) and progesterone (violet) levels during each
menstrual cycle phase.Data is presented as mean ± SE and were analyzed by mixed
effects models. Significant differences are denoted by ***p < 0.001, and **p < 0.01.

Fig. 2 | Intrinsic ignition framework. a Events
were captured applying a threshold method61

(see purple area). For each event elicited
(gray area), the activity in the rest of the
network was measured in the time window of
4TR (see red area). b A binarized matrix was
obtained, representing the connectivity between
brain areas where activity was simultaneous.
c Applying the global integration measure62,
we obtained the largest subcomponent.
Repeating the process for each driving event,
we calculated the node-metastability computed
as the standard deviation of the integration of
each brain area over time. Figure adapted
from25,29,30.
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higher metastability in the subcortical network when estradiol increases
and progesterone decreases or vice versa.

Discussion
In this study, we investigated the dynamical complexity underlying three
menstrual cycle phases (i.e., early follicular, pre-ovulatory, and mid-luteal)
in a sample of 60 healthy naturally-cycling women. First, the pre-ovulatory
phase showed the highest metastability across the whole-brain functional
network, followed by the mid-luteal and early follicular phases. Further-
more, our results revealed that the dynamical complexity of resting-state
networks varies according to the menstrual cycle phase. Additionally, we
found that age impacts the whole-brain functional network, control, and
dorsal attention networks and that estradiol and progesteronemodulate the
whole-brain, DMN, limbic, dorsal attention, somatomotor and subcortical
networks.

At the whole-brain network, we found that the dynamical com-
plexity showed the highest variability over time (i.e., higher metast-
ability) during the pre-ovulatory phase, followed by the mid-luteal,
whilst the early follicular showed the lowest. Higher metastability across
the network indicates higher dynamical complexity, implying that the
network’s activity exhibits more variability over time26,29,30. Only a few

menstrual cycle fMRI studies applied a whole-brain dynamic approach
and were based on the same dense-sampling single-subject dataset.
Specifically, it has been observed that estradiol levels impact the DMN
and the dorsal attention network, while progesterone was related to
reduced coherence across the whole brain11. Furthermore, brain
dynamics are more flexible among prefrontal, limbic, and subcortical
nodes during the ovulatory phase (when estradiol levels peak)12. Simi-
larly, it has been shown that whole-brain turbulent dynamics change
between early follicular and luteal phases. In particular, the luteal phase
showed more complex whole-brain turbulent dynamics across long
distances in the brain, while the follicular phase was associatedwithmore
stable turbulent dynamics23. In addition, recurring network states of
high-amplitude dynamic functional connectivity have been linked to
fluctuations in follicle-stimulating and luteinizing hormones24. Such
studies have shown that the menstrual cycle and hormone concentra-
tions impact whole-brain dynamics. These studies however were based
on the same single-subject dataset, which poses some limitations, related
to inter-individual differences in brain activity patterns depending on
age, hormone sensitivity, or expression of sex hormone receptors8. As
such, the generalization of these findings may be limited. Additionally,
the few fMRI time points in the pre-ovulatory phase of this dataset limit

Fig. 3 | Dynamical complexity of menstrual cycle phases. aWhole-brain node-
metastability. The pre-ovulatory phase showed higher node-metastability values
across the whole-brain network than the early follicular and mid-luteal phases.
P-values are based on Monte-Carlo permutation tests and were FDR corrected,
*** represents p < 0.001. The box in the boxplot indicates the upper and lower
quartiles and the line inside the box indicates the median. bHierarchy. The red area
marks the ten regions showing the highest node-metastability values in each phase.
For the early follicular phase, brain areas showing the highest values were primarily

located in the salience, DMN, dorsal attention, visual, and somatomotor networks.
For the pre-ovulatory phase, the brain areas belonged to the DMN, limbic, sub-
cortical, dorsal attention and control networks. During the mid-luteal phase, they
were located in the subcortical, DMN, dorsal attention and control networks.
c Renders brains represent the node-metastability values of the 116 areas for each
menstrual cycle phase. The dynamical complexity of the pre-ovulatory phase across
the whole-brain networks is clearly more complex than the dynamical complexity of
the other two phases.
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statistical power when comparing menstrual cycle phases. Our investi-
gation aligns with and extends these findings by examining a large cohort
of 60 healthy women during three menstrual cycle phases.

Our findings further reveal a phase-dependent dynamical complexity
across large-scale resting-state networks. In particular, we found that most

networks reached the highest complexity during the pre-ovulatory andmid-
luteal phases. The only exception was for the dorsal attention network,
which exhibited the highest complexity during the early follicular compared
to the pre-ovulatory and mid-luteal phases. Specifically, the pre-ovulatory
phase showed the highest dynamical complexity in visual, salience, and

Fig. 4 | Node-metastability within resting state networks. aCompared to the early
follicular phase, node-metastability was significantly increased in the pre-ovulatory
and mid-luteal phases in the DMN, limbic, visual, and subcortical networks but
lower in the dorsal attention network. Compared to the pre-ovulatory phase, the
mid-luteal phase showed lower node-metastability in the visual, salience, and
somatomotor networks and increased node-metastability only in the DMN. P-

values are based on Monte-Carlo permutation tests and were FDR corrected,
* denotes p < 0.05, **p < 0.01 and ***p < 0.001. The box in the boxplot indicates the
upper and lower quartiles and the line inside the box indicates the median. b The
radar plot represents the average metastability values per resting state network for
each menstrual cycle phase.

Fig. 5 | Multilevel models of the effects of age and ovarian hormone levels on
brain networks. Points represent the observed data, and lines represent the multi-
levelmodel-implied intercepts (mean ofmodel coefficients estimates for the random
effect of subjects) and slopes (model coefficients estimates for the fixed effects of age,
estradiol and progesterone). a Effect of age (in light blue) on node-metastability
values at the whole-brain (p = 0.033), control (p = 0.002) and dorsal attention net-
works (p = 0.011). In these three cases, higher age predicted higher node-
metastability values. b Significant effects of estradiol levels (in magenta) on node-
metastability values at the whole-brain network (p < 0.001), on the default mode

(p = 0.022), limbic (p < 0.001), dorsal attention (p = 0.021), somatomotor
(p = 0.011), and subcortical networks (p = 0.026). In all cases, except for the default
mode and somatomotor networks, higher estradiol levels predicted higher node-
metastability values. c Significant effect of progesterone levels (in violet) on node-
metastability values at the whole-brain network (p = 0.028), default mode
(p < 0.001), limbic (p < 0.001), dorsal attention (p < 0.001), somatomotor
(p < 0.001), and subcortical networks (p = 0.029). In all cases, except for the soma-
tomotor network, higher progesterone levels predicted higher node-metastability
values.
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somatomotor networks compared to themid-luteal phase. Importantly, the
dynamical complexity of the DMN increased significantly across phases
(from the early follicular to pre-ovulatory to mid-luteal), with the peak
occurring during the mid-luteal phase. This result aligns with our prior
biphase investigation, which compared the follicular and luteal phases and
revealed that the DMN exhibits higher levels of turbulent dynamics during
the luteal phase in one naturally-cycle healthy woman23. Our current
findings not only corroborate this result but also expand it by showing that
this effect persists across all three menstrual cycle phases in a cohort of 60
healthy women. Additionally, we observed more complex dynamics within
limbic and subcortical networks aroundovulationandduring themid-luteal
phase, which is consistent with prior menstrual cycle resting-state fMRI
research12,17. Furthermore, our results also align with our previous pub-
lications, where we observed distinct brain dynamic patterns within the
triple network model (i.e., DMN, salience, and control networks) across
menstrual cycle phases16, as well as a decrease in the motor network in the
mid-luteal phase compared with the early follicular and pre-ovulatory
phases17. Overall, these results demonstrate dynamical complexity changes
related to menstrual-cycle phases across large-scale brain networks.

In order to effectively study the effects of the menstrual cycle on brain
function, it is important to use repeated measures designs that account for
within-person cycle phase and/or hormone effects33–35. Therefore, we used a
mixed-effects model to examine the effects of age and hormones on
metastability across the whole-brain and resting state networks. Our results
revealed that age significantly increases whole-brain dynamics. Furthermore,
we observed age-related effects in the control and dorsal attention networks.
These findings are consistent with previous studies reporting a maximum
peak innetworkefficiencyaround40yearsold, suggestingan increase inbrain
dynamics during early adulthood30,36–39.Notably, not only age but alsoovarian
hormones contribute to increased dynamic complexity across the whole-
brain network. Our results suggest that low levels of both hormones are
associated with reduced whole-brain dynamical complexity. Remarkably, an
increase in progesterone is linked to high dynamical complexity, while an
increase in estradiol is linked with the highest dynamical complexity. Our
study comprises healthy women aged 18–35 years, and future investigations
could extend this analysis to critical hormonal states such as menopausal
transition and menopause. This would enhance our understanding of how
ovarian sex hormones modulate brain dynamics throughout women’s life-
spans. Furthermore, we observed estradiol and progesterone-related changes
in the dynamical complexity of resting-state networks, particularly in the
DMN, limbic, dorsal attention, somatomotor, and subcortical networks.
Specifically, we found that increased progesterone is associated with higher
dynamical complexity in the DMN. Previous investigations have shown that
both hormones impact connectivity within theDMNand between theDMN
andotherbrainnetworks, influencingnetworkefficiencyandconnectivity11,16.
Higher progesterone levels have also been linked to an increased focus on
others, potentially associated with the involvement of the DMN in self-
referential mental processes40. Regarding the limbic network, our findings
indicate that higher estradiol and progesterone predict increased dynamical
complexity. The limbic network, comprising the orbitofrontal cortex (OFC)
and the temporal lobe, plays a crucial role in emotional stimuli representation
and processing41. Previous studies have linked OFC activity modulation to
emotional processing across the menstrual cycle42. Another essential part of
the limbic network is the temporal pole, located in the anterior part of the
temporal lobe43. Recent evidence has shown that progesterone impacts the
medial temporal lobe volume along the menstrual cycle10,44. Moreover, we
found that the dynamical complexity of the dorsal attention network is
modulated by estradiol and progesterone. It has been observed that estradiol
enhances global efficiency within the dorsal attention network, influencing
network connectivity11 and that high progesterone levels are associated with
increased turbulence dynamics in the dorsal attention network23. Our results
also revealed a significant decrease in dynamical complexity in the somato-
motor network when progesterone increases, especially in interaction with
decreased estradiol, which aligns with previous investigations. Arelin et al.14

provided evidence of endogenous progesterone modulation of functional

connectivity within the somatomotor network. Additionally, eigenvector
centrality analysis revealed a negative correlation between progesterone levels
and functional connectivity in the sensorimotor resting-state network11.
Similarly, a reduction in motor network activity during the luteal phase,
characterized by increased progesterone, was observed compared to the early
follicular and pre-ovulatory phases17. Finally, our findings revealed that
increased estradiol levels and decreased progesterone, or vice versa, are
associated with increased dynamical complexity in the subcortical network.
Elevated estradiol levels have been associated with increased gray matter
volumes in the bilateral hippocampus, while high progesterone is related to a
significant increase in gray matter volumes in the right basal ganglia45. Hor-
monal variations throughout themenstrual cycle, influenced by estradiol and
progesterone, impact functional connectivity in the hippocampus, caudate,
and putamen-thalamic connectivity across different phases18. Overall, these
findings evidence the significant modulatory role of ovarian hormones on
dynamical complexity across large-scale resting-state networks.

Menstrual cycle neuroimaging studies have found that ovarian hor-
mones modulate network dynamics during a natural menstrual cycle11,12,23.
However, Syan et al.46 used seed-based and independent component ana-
lysis and reported no significant differences in resting state networks
between the follicular and luteal phases but found correlations between sex
hormones and patterns of functional connectivity in both menstrual cycle
phases. Liparoti et al.47 applied the concept of avalanche (i.e., variations of
the functional brain repertoire) using magnetoencephalography. Specifi-
cally, they found that the brain’s flexibility increases during the peri-
ovulatory phase but did not find any association between sex hormones and
the observed avalanche patterns. Thus, they observed an effect of phase but
not of ovarian hormones. Here, we observed that menstrual cycle phases
and ovarian hormones modulate brain dynamics. This discrepancy in
findings highlights the complexity of studying the relationship between
brain networks and the menstrual cycle. Therefore, further studies are
needed to understand better the underlying mechanisms and potential
factors contributing to these inconsistent results.

Wewant to acknowledge some limitations. This study applied amodel-
free approach; thereby, it did not provide insights into the brainmechanisms
of the menstrual cycle. Theoretical whole-brain models that simulate brain
dynamics canhelp to reveal themechanistic principles underlyingmenstrual
cycle brain activity changes48,49. Furthermore, evidence has shown that the
results in functional magnetic resonance imaging studies on brain networks
can vary depending on different analysis pipelines50 and the atlas used51,52.
Moreover, utilizing a higher magnetic field strength and decreasing the
repetition time during scanning can enhance sensitivity and resolution and
may offer more comprehensive insights into functional brain networks.
Finally, while saliva sampling provides a non-invasive method, it is impor-
tant to recognize that concentrations of hormones in saliva may differ from
those in blood, which can affect the accuracy of the results35,53.

In summary, our study sheds light on the intricate interplay between
menstrual cycle phases, hormone levels, age, and brain network dynamics.
This study demonstrates that the menstrual cycle phases modulate the
dynamical complexity of the whole-brain functional network as well as
large-scale resting-state networks. Our results also confirmed the impact of
age and hormone levels on brain dynamics. Further investigations are
needed to determine inconsistent results due to methodological differences
among studies. This field of research may have implications for elucidating
the effects ofhormones oncognition,mood, andbehavior inhealthywomen
and those affected by menstrual cycle-related disorders.

Methods
Participants
A total sample of 60 healthy young women was selected from a dataset
previously described in Hidalgo-Lopez et al.16. The study was conducted on
women between the ages of 18 and 35 who had regular menstrual cycles
lasting 21–35 days with intercycle variability of fewer than 7 days. All par-
ticipants met the following inclusion criteria: (1) not having used hormonal
contraceptives in the 6 months before the study, (2) having no history of
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neurological, psychiatric, or endocrine disorders, and (3) not taking any
medications. Three appointments were scheduled for each participant:
during the early follicular phase (1–7days after the onset of currentmenses),
in the pre-ovulatory phase (2–3 days before the expected date of ovulation),
and during the mid-luteal phase (3 days after ovulation to 3 days before the
expected onset of next menses). The order of appointments was counter-
balanced to minimize any potential bias. The pre-ovulatory sessions were
confirmedby commercial urinary ovulation tests (Pregnafix ®). Participants
were asked to confirm the onset of the following menses after the
appointment. The cycle duration was calculated based on the participants’
self-reported onset dates of their last three periods. Participants gave
informed written consent to participate in the study. The University of
Salzburg’s ethics committee approved the study and conformed to the Code
of Ethics by the World Medical Association (Declaration of Helsinki).

Hormone analysis
Hormone levels were assessed using Salimetrics salivary Estradiol and
Progesterone ELISAs. Saliva sampleswere collected fromparticipants using
the passive drool method, stored at −20° until analysis, and centrifuged
twice at 3000 rpm for 15 and 10min, respectively, to remove solid particles.
All samples were tested in duplicates, and samples with more than 25%
variation between duplicates were re-analyzed.

MRI data acquisition
MRI images were acquired using a Siemens Magnetom TIM Trio 3T
scanner. The high-resolution T1-weighted images were acquired with
160 sagittal slices (slice thickness = 1mm; TE = 291ms; TR = 2300ms; TI
delay = 900ms; (FA) 9°; FOV 256X256mm). Resting-state fMRI was per-
formed using a T2* weighted gradient echo-planar (EPI) sequence with 36
transversal slices (≈9min, volumes = 244; TE = 30ms; TR = 2250ms; flip
angle (FA) 70°; slice thickness = 3.0mm; matrix 192 × 192; FOV 192mm;
in-plane resolution 2.6 × 2.6 mm). During the resting state, participants
were instructed to relax, close their eyes, and let their minds flow.

Preprocessing
For each participant, thefirst six volumeswere discarded, and the functional
images were despiked using the 3d-despiking algorithm implemented in
AFNI54–56. Then, despiked images were pre-processed using standard pro-
cedures and templates in SPM12 (www.fil.ion.ucl.ac.uk/spm), including
segmentation of the structural images using CAT12. The resulting images
were then subjected to the ICA-AROMA algorithm implemented in FSL to
remove artefactual components in anon-aggressivemanner57,58. BOLD time
series were filtered within the narrowband (0.01–0.09 Hz). Pre-processing
quality control procedures included the automatic exclusion of participants
with excessive movement (>3mm translation, >2° rotation), visual
inspection of structural and functional scans ensuring adequate coregis-
tration, and visually checking thenormalization to a standardT1and anEPI
MNI template.

Brain parcellation
Time series were obtained using two brain atlases. The Schaefer cortical
parcellation59, which consists of 100 cortical regions clustered into 7 resting
state networks (https://github.com/ThomasYeoLab/CBIG/tree/master/
stable_projects/brain_parcellation/Schaefer2018_LocalGlobal), and the
Tian subcortical parcellation60, which consists of 16 subcortical regions,
representing the subcortical network (https://github.com/yetianmed/
subcortex).

Intrinsic ignition framework
We computed the Intrinsic Ignition Framework25 to evaluate the effect of
intrinsic local perturbations (i.e., neural events), reflecting the capacity of a
brain area to propagate neural activity to other brain areas.Our evaluation
of each area’s node-metastability was measured as the standard deviation
of integration over time. In other words, this framework quantifies the
degree of whole-brain integration from spontaneously occurring events

over time. Figure 2 schematizes the methodology for obtaining the
intrinsic integration across brain areas. The algorithm captures driving
events for each brain area, which are transformed into a binary signal
using a threshold61. To represent events as a binary signal, time series are
transformed into z-scores, denoted as zi(t), and a threshold value, θ, is
applied. Specifically, an event is marked as 1 in the binary sequence σ(t) if
zi(t) exceeds the threshold frombelow andmarked as 0 otherwise.When a
brain area triggers an event, neural activity is measured in all brain areas
within a set time window of 4TR. A binary matrix is then constructed to
represent the connectivity between brain areas exhibiting simultaneous
activity. The measure of global integration62 is applied to determine the
broadness of communication across the network for each driving event
(i.e., the largest subcomponent). This process is repeated for each spon-
taneous neural event to obtain the node-metastability (measured as the
standard deviation of the integration over time) for each brain area across
the network, where higher node-metastability corresponds to higher
dynamical complexity. Thus, eachbrain area can be classified according to
its local degree of functional variability, i.e., local- or node-metastability.
In otherwords, different levels of temporal diversity in a givennode can be
considered a measure of local functional variability or metastability and
thus describe the versatility of a given node within the network. This
analysis was assessed across the whole brain and within specific resting-
state networks for each woman in each menstrual cycle phase.

Statistical analyses
For the hormone analysis, we fitted two independent linear mixed models.
In particular, we included estradiol or progesterone as a dependent variable,
the cycle phase (i.e., early follicular, pre-ovulatory, mid-luteal) as a fixed
effect, and the participant number (subject) as a random effect. We defined
the syntax for themodels as: hormone ~menstrualCyclePhase+ (1∣subject).
For the intrinsic ignition framework, we applied the Monte Carlo permu-
tation method (10,000 iterations) to evaluate the outcomes of the node-
metastability between each pair of phases. Furthermore, we corrected
p-values using the False Discovery Rate (FDR) method63 to account for
multiple comparisons when comparing menstrual cycle phases. The
intrinsic ignition framework, Monte Carlo permutation and FDR were
performed using Matlab version 2023a (MathWorks, Natick, MA, USA).
Moreover, we carried outmixed-effectmultilevelmodels to study the effects
of estradiol and progesterone levels and age on node-metastability at the
whole brain network and within resting state networks. Furthermore, we
also included age as an independent variable, given it is an important factor
affectinghormonal patterns64,65. As dependent variable,we included a vector
with all node-metastability values of each specific network for each woman
(n = 60) in each menstrual cycle phase (n = 3). Specifically, the dependent
variable (AllNodesMetastability) for themixed-effect statisticalmodel of the
whole-brain network comprised a vector of 116 node-metastability values.
Additionally, the models for the resting state networks included a vector of
24 node-metastability values for the DMN, limbic (5 values), control (13
values), dorsal attention (15 values), visual (17 values), salience (12 values),
somatomotor (14 values), and subcortical (16 values). As fixed effects, we
included the age, progesterone, estradiol, and the interaction between
progesterone and estradiol, and subject as random effect. We defined the
models syntax as: AllNodesMetastability ~ 1+ age+ estradiol+
progesterone+ estradiol � progesterone+ (1∣subject). We included age,
hormone values, and node-metastability values in all multilevel models as
intra-subject variables.We performed all multilevel model analyses using R
Statistical Software (v4.3.2; ref. 66 with the package lme467.

Data availability
The dataset analyzed during the current study is available from the corre-
sponding authors upon reasonable request.

Code availability
Scripts are openly available online on https://github.com/aescrichs/
menstrualcycle-ignition.
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