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Automated classification of giant virus
genomes using a random forest model
built on trademark protein families
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Viruses of the phylum Nucleocytoviricota, often referred to as “giant viruses,” are prevalent in various
environments around the globe and play significant roles in shaping eukaryotic diversity and activities
in global ecosystems. Given the extensive phylogenetic diversity within this viral group and the highly
complex composition of their genomes, taxonomic classification of giant viruses, particularly
incomplete metagenome-assembled genomes (MAGs) can present a considerable challenge. Here
we developed TIGTOG (Taxonomic Information of Giant viruses using Trademark Orthologous
Groups), a machine learning-based approach to predict the taxonomic classification of novel giant
virus MAGs based on profiles of protein family content. We applied a random forest algorithm to a
training set of 1531 quality-checked, phylogenetically diverseNucleocytoviricota genomes using pre-
selected sets of giant virus orthologous groups (GVOGs). The classificationmodels were predictive of
viral taxonomic assignmentswith a cross-validation accuracy of 99.6%at the order level and 97.3%at
the family level. We found that no individual GVOGs or genome features significantly influenced the
algorithm’s performance or the models’ predictions, indicating that classification predictions were
based on a comprehensive genomic signature, which reduced the necessity of a fixed set of marker
genes for taxonomic assigning purposes. Our classification models were validated with an
independent test set of 823 giant virus genomes with varied genomic completeness and taxonomy
and demonstrated an accuracy of 98.6% and 95.9% at the order and family level, respectively. Our
results indicate that protein family profiles can be used to accurately classify large DNA viruses at
different taxonomic levels and provide a fast and accurate method for the classification of giant
viruses. This approach could easily be adapted to other viral groups.

Large viruses of the phylum Nucleocytoviricota, commonly referred to as
“giant viruses”, are a diverse group of double-stranded DNA eukaryotic
viruses with large particle sizes, reaching dimensions of up to 1.5 μm,
which is comparable to the sizes of several archaea, bacteria, and
eukaryotes1–4. These viruses are widespread in the biosphere and poten-
tially play key roles in shaping the structure ofmicrobial communities and
biogeochemical cycling5–10. Currently, documented members of the
phylum can be divided into five orders: Algalvirales, Asfuvirales, Chit-
ovirales, Imitevirales, and Pimascovirales, as well as 11 established and
potentially many new families11,12. Nucleocytoviruses are known to infect
a wide range of eukaryotic hosts; whereas members of theAlgavirales and
Imitervirales orders infect diverse algae, amoebae, and other protists,

members of the Asfuvirales, Chitovirales, and Pimascovirales infect a
mixture of metazoan and protist hosts3,13–16. Their genome sizes encom-
pass an exceptionally wide spectrum, ranging from less than 100 kbp to
over 2.7Mbp17,18. Previous comparative genomic analyses have high-
lighted the exceptional complexity of giant virus genomes and suggested
dynamic gene exchanges between these viruses and their host cells, as well
as with other viruses9,19–21. Within the Nucleocytoviricota phylum, sub-
stantial phylogenetic diversity among members has been observed, and
recent metagenome-enabled studies have vastly expanded the known
diversity of this group22,23. Due to the remarkably large phylogenetic
breadth and the chimeric nature of their genomes, taxonomic classifica-
tion of giant viruses presents a considerable challenge.
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To date, phylogenetic analyses of giant viruses have primarily relied
on analysis of a small set of core genes24,25. While alignment-based
approaches have proven effective, they present challenges in numerous
instances26. Most notably, construction of large phylogenetic trees
requires multiple computationally-intensive steps, including multi-
sequence alignment and tree inference. Manual analysis of large trees to
taxonomically assign a few genomes is oftentimes impractical due to the
substantial time and computational resources required. Furthermore, it
is not uncommon for novel genomes assembled frommetagenomes to be
incomplete. The process of reconstructing giant virus genomes from
metagenomic reads, including de novo assembly and binning steps, is
prone to errors. As a result, it can potentially produce fragmentedMAGs
that lack predicted proteins with matches to the traditional marker gene
set, thereby compromising the ability to produce good-quality align-
ments. Due to these challenges, methods that do not require the con-
struction of phylogenetic trees have emerged as promising
alternatives27–29. Many of these approaches also make use of machine
learning, which has been shown to be successful in a range of applica-
tions, including virus identification and classification29–38. Machine
learning algorithms can be considerably less computationally demand-
ing compared to methods that require multi-sequence alignment and
tree inference, allowing the trained models to be effectively applied to
large query datasets that would otherwise be impractical to handle39.

Here we developed TIGTOG (Taxonomic Information of Giant
viruses using Trademark Orthologous Groups), a machine learning-based
approach to classify novel giant virus genomes based on a broad genomic
signature, rather than relying on a fixed set of marker genes. We trained
TIGTOGwith a diverse genome dataset that consisted of sequences fromall
major documented phylogenetic lineages of giant viruses and other large
viral groups often found to bear similarities to giant viruses. We tested our
classification model using an independent test set of viral genomes with
varying levels of genomic completeness and taxonomy.Ourworkprovides a
rapid, reliable tool to identify the taxonomic assignments of novel giant virus
genomes and potentially other viral groups.

Results and discussion
Construction of classification models
TIGTOG employs a machine learning approach based on protein family
profiles to classify giant virus genomes at the order and family level. Gen-
omes within the Nucleocytoviricota phylum exhibit high diversity and dis-
tinct signatures of protein content among different taxonomic groups
(Figs. 1, S1). Each lineage harbors a unique set of protein families, i.e.,
distinct giant virus orthologous groups (GVOG) composition, that can be
leveraged for classification purposes. We hypothesized that these unique
protein family profiles could provide predictive information for the taxo-
nomic classification of a novel genome. Aiming to search for a classification

Fig. 1 |Distinct protein family profiles in differentNucleocytoviricota orders.The
y-axis denotes the taxonomic order of giant virus representative genomes, color-
coded by their respective order. The x-axis shows different GVOGs, whichwere used

as features during the training of the classification model at the order level. The
Not_GV group includes Mirusviricota and jumbo phage genomes.
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method that relies less on a fixed set of marker genes, we employed a
supervised machine learning approach using the Random Forest (RF)
algorithm to construct models for taxonomic classification at the order and
family levels. Given the limited availability of representatives for giant virus
genera, withmany genera currently containing only 1–3 genomes, we opted
not to include a classification model at the genus level. The presence of
ortholog groups and the GC content of sequences in the training set were
used as features, and pre-established taxonomic information was used as
labels during the model construction process. We chose not to use genome
size as a feature because many metagenome-derived genomes can be
incomplete or harbor redundancies (i.e., multiple closely related viruses
binned together), and we therefore wanted to exclude these possible biases
from our classification method.

We included a total of 1531 genomes belonging to all established
families of the Nucleocytoviricota,Mirusviricota, and large members of the
Caudovirales (jumbo phages) in the training set. The recently-discovered
Mirusviricota lineage is a widespread group of large DNA viruses with a
herpesvirus-like capsid that represents a lineage distinct from the Nucleo-
cytoviricota. Their genomes appear to contain elements from various viral
lineages, including the Nucleocytoviricota, and may therefore be mis-
classified as giant viruses based on the genomic contents. Jumbo phages are
tailed bacteriophages with genomes exceeding 200 kbp in size and can have
a misleadingly high number of giant virus orthologous group matches40,41.
Viruses of theMirusviricota and jumbo phages were therefore incorporated
into our training databases because they are a likely source of false-positive
classification as giant viruses.

The workflow for the machine learning pipeline is described in Fig. 2.
For the first round of training, we identified a set of 625 GVOGs that are

found in at least 25% of the genomes in each order. We built initial RF
classification models on the order and family levels, using all 625 GVOGs
and the sequences’ GC content as features. We tuned the models using
randomized search cross-validation followedbygrid search cross-validation.
Optimal hyperparameters for models were selected through a 10-fold grid
search cross-validation. We arrived at two initial models with classification
accuracy of 99.7% at the order level and 97.6% at the family level.

To further probe the characteristics of these models, we examined
whether the prediction accuracy was influenced by the number of features
employed, usingRecursive FeatureElimination (RFE)with cross-validation.
The initial feature set, comprising GC content and the 625 GVOGs, was
iteratively subsetted into various sizes. At each size, RFE performed feature
selection by fitting the models multiple times and removing the weakest
features until the desired number remained. The best subsets of features at
different sizes were scored and reported.We observed a plateau of accuracy
scores, as indicated by similar mean values and overlapping error bars from
approximately 150 and 200 features onwards for the order- and family-level
classifiers, respectively (Fig. 3a). Expanding the size of the feature set beyond
these valuesdidnot yield a significant improvement in themodel’s accuracy.
Thismay be attributed to the presence of correlated relationships among the
GVOG features. As correlated features can provide redundant and similar
information, the inclusion of many repetitive, non-informative features
does not contribute significantly to the classifiers’ performance, and may
even lead to over-fitting. Indeed, hierarchical clustering based on the
Spearman rank-order correlations indicated strong collinearity within the
GVOG data matrix (Fig. S2). This implies that the optimal number of
features for the model might fall within this range, negating the need to
include the entire set of 625 GVOGs.

Fig. 2 | Overview of the model training pipeline at
each taxonomic level. Classification models were
trained separately at the order and family levels.
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Conducting Hidden Markov Models (HMMs) searches against a
large set of HMM profiles is a computationally demanding and time-
consuming task. To mitigate the computational expense during the
data preparation step, we aimed to reduce the GVOG set and select
only the optimal features needed for the models’ performance. We
ranked the feature importance using permutation importances, which
measures the mean decrease in model’s prediction accuracy when a
feature is randomly permuted. In general, individual features showed
low importance in the model’s performance; permutation of the most
important GVOG feature caused only a marginal average decrease of
0.4% at the order level and 0.6% at the family level in accuracy scores
(Fig. 3b). This suggests that no single GVOG has a particularly strong
influence on the model’s prediction. To further confirm this obser-
vation, we applied an alternative measure of feature importance based
on the mean decrease in impurity (MDI). Impurity-based feature
importances can potentially be misleading, especially when applied to
predictor variables with varying measurement scales and numerous
categories42. Nevertheless, in specific situations, including highly
correlated data, RF variable importance measures could still provide
valuable insights43,44. MDI also suggested the same result as individual
features showed low importance in the model’s performance (Fig. S3).
These results suggest that effective taxonomic classification could be
based on broad genomic signatures, which lessens the necessity of a
fixed set of marker genes for taxonomic assigning purposes.

The features with the highest importance scores identified by each
of the above feature selection methods were subsequently extracted
from the 625-feature set and passed to a new RFmodel for training.We

estimated the performance of the models using 10-fold nested cross-
validation, which provided an estimation of each model’s ability to
generalize to unseen data. We chose the models with feature sets
selected through impurity-based importance as our final classifiers for
TIGTOG, as they demonstrated better performance. While the models
trained with the feature set selected based on MDI yielded average
nested cross-validation accuracies of 99.6% at the order level and 97.3%
at the family level, the models based on permutation importance had
mean accuracies of 98.1% and 96.1%, at the order and family level,
respectively (Fig. S4). The feature sets selected for the final models
included sequences’ GC content and marker genes that are prevalent
across all giant virus groups, but absent in non-Nucleocytoviricota
genomes, such as GVOGm0003 (giant virus major capsid protein),
GVOGm0760 (packaging ATPase), GVOGm0890 (Poxvirus late
transcription factor VLTF3), GVOGm0032 (Ser/Thr protein phos-
phatases), GVOGm0095 (D5-like primase), and other more lineage-
specific genes (Fig. 1, Supplementary Data S1).

Next, we assessed whether the performance of the final TIGTOG
modelswas influenced by thenumber of sequences included in training.We
examined how the order- and family-level final models’ cross-validation
accuracy changed with an increasing training set size (Fig. 4). Generally, the
performance of the models improved as the number of training instances
increased. At the largest number of training sequences, cross-validation
accuracy reached 99.6% at the order level and 98.2% at the family level. The
learning curves suggested that adding more training examples was likely to
improve models’ cross-validation accuracy at both taxonomic levels. It is
possible that the unequal representation of taxonomic groups within the

Fig. 3 | Evaluation of the impact of the initial 625 GVOG feature set on the
random forest algorithm for predicting taxonomy. a Changes in the prediction
accuracy scores with increasing number of features at the order level (top) and the
family level (bottom). The vertical lines indicate the number of GVOGs that were
employed in TIGTOG’s final models. b Permutation importance for the 15 most

important features in the classificationmodel at the order level (top) and family level
(bottom). Features were shown in decreasing order based on their impact on
accuracy when they were randomly permuted. Permutation importance testing was
performed 10 times. Mean values were denoted by green triangles.
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training datasetmay contribute to this trend. For example, at the order level,
there were only 102 Chitovirales, 66 Asfuvirales, and 18 incertae sedis
sequence instances in the training data, in contrast to the most abundant
group Imitervirales, which included 2782 sequences. At the family level,
many families were represented by 30 or fewer sequences, while the family
Imitervirales 01 had 1788 representatives. Adding more sequences from
under-represented groups could potentially provide more information
about these groups’ genomic signatures and account for more diversity
within the group, therefore improving the overall accuracy of the models’
predictions.

Evaluatingmodels’predicting taxonomic classificationbasedon
sequence content
We next assessed the models constructed using the training genome set to
predict the taxonomic classification of each genome in the independent test
set. In this test set, we included representatives from all Nucleocytoviricota
families, along with genomes from the Mirusviricota, jumbo phages, and
virophages as examples of non-giant-virus sequences. Additionally, we
introduced fragmented sequences at various completeness levels, as
described in the Methods section. The models demonstrated a sufficient
ability to generalize to new data (Fig. 5a). The performance of themodel on
the test set at the order level was comparable to the estimates made through
nested cross-validation, with an accuracy of 98.6%. At the family level, the
model’s prediction achieved an accuracy of 95.9%. This suggests that
TIGTOGis broadly applicablewhen tested against diverse sequence groups.

At the order level, out of 823 test genomes with varied levels of com-
pleteness, 11 genomes (1.3%) were classified incorrectly (Fig. 5b). Four out
of these 11 sequences were simulated incomplete genomes derived from the
other sevenMAGs. Among these, seven sequences had a completeness level
of less than 70%.The sequences thatwere falsely classified had completeness
levels ranging from 45% to 100% compared to the original sequences; this
indicates that the accuracy of TIGTOGwas not significantly affected by the
completeness of the sequences. In 9 out of 11 incorrect instances, TIGTOG
misclassified sequences as Imitervirales. Table 1details a classification report
of the model’s prediction at the order level. In general, the classifier per-
formed adequately (F1 score ≥ 0.96 for all classes), with the exception of the
incertae sedis genomes, where two sequences includedwere both incorrectly
classified into Imitervirales. This suggests a potential issue with the skewed
representation of taxonomic groups in the training dataset, where themodel
may exhibit bias towards Imitervirales, the most populous order.

At the family level, some major families appeared well-delimited,
allowing the classifier to establish boundaries more easily, whereas deli-
neating other families was more challenging (Fig. S5). Among the 823 test
genomes, 34 genomes (4.1%) were incorrectly classified. 13 out of these

Fig. 4 | The performance of final classification models over varying numbers of
training instances. The curves are plotted with the mean cross validated test scores.
Shaded areas represent a standard deviation above and below the mean for all cross-
validations. The scores of model at the order level are shown in blue and scores of
model at the family level are in green.

Fig. 5 | Evaluation of the final classification
model’s performance at the order level. aDecision
boundary plotted for the classifier at the order level
in the dimension of two t-distributed stochastic
neighbour embedding (T-SNE) components. Data
dimensionswere reduced using PCAandT-SNE.All
dots are colored by the giant virus order. Training
data are visualized in circles with black border. The
sizes of the transparent dots (without border) indi-
cate the probability of class membership for each
point on the grid across the feature space.
b Normalized confusion matrix of classification at
the order level. Rows correspond to the true taxo-
nomic assignments of sequences, and columns
represent predicted classification. The diagonal
values indicate the percentage of times the predicted
classification matches the true taxonomy. Values
were normalized by class sizes.
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34 genomes were simulated incomplete MAGs derived from the other 21
genomes. All these incorrect predictions displayed relatively low predicting
probability, ranging from 12% to 63%, and the majority (33 out of
36 incorrect predictions) hadapredictingprobability below50%.Hence, the
reported probability for predicted order/family may serve as a good refer-
ence, particularly in the prediction of families. The family-level classifier
only recognizes potential members of the major families, such as Phy-
codnaviridae (AG_02), Mesomimiviridae (IM_01), Schizomimiviridae
(IM_09), Allomimiviridae (IM_12),Mimiviridae (IM_16),Marseilleviridae
(PM_05), Poxviridae (PM_01), and Asfarviridae (AF_01). Details of all the
major families that TIGTOG recognizes are listed in Fig. S1. Other families
with fewer available representatives were combined into a group labeled
with the order name (e.g., AF, AG, IM, PM, and PV). As genomic content
can vary significantly between families, this aggregation unsurprisingly
resulted in lower precision and recall scores for the groups without family
notations (Supplementary Data S3).

Comparison of input sequences to reference giant virus data-
base using average amino acid identity (AAI) calculation
In addition to taxonomic assignment, TIGTOG can also perform protein
similarity calculations between input sequences and established giant virus
genomes using LAST searches. The custom reference database included a
wide phylogenetic variety, containing representatives of every Nucleocyto-
viricota genus as previously described (details of taxonomy available in
Supplementary Data S4). Upon request, TIGTOG will perform one-way
AAI calculation and report the bestmatch to query genomes, alongwith the
taxonomic classification of the match (order, family, and genus).

Conclusion
Overall, our results provide evidence that the application of a random
forest model to protein family profiles can effectively classify novel giant
virus genome sequences. Our application of this approach relies on
reduced-scale HMM searches against pre-selected GVOG databases,
which are time-efficient and capable of handling a large number of
sequences. Given the widespread distribution of giant viruses in the
environment and the continuous generation of new sequences through
metagenomic data, the number of newly identified giant virus MAGs is
growing quickly. An efficient classification tool would benefit ongoing
efforts to characterize the environmental diversity, explore the geo-
graphic and temporal variability of these viruses in global ecosystems,
and to gain deeper insights into the evolutionary traits within this
phylum. TIGTOG is capable of working with incomplete sequences, and
so we anticipate that this tool will be broadly useful for analyzing the
distribution of giant viruses in the biosphere. We anticipate that TIG-
TOG will be most useful when integrated into broader bioinformatic
pipelines that have already identified candidate viral bins using tools
such as ViralRecall40 and seek to provide taxonomic classification for

them. Our results provide a useful proof-of-concept that this approach
can be useful for classification of other large DNA viruses.

Materials and methods
Genome database compilation
We compiled a database of 1382 Nucleocytoviricota genomes from the
Giant Virus Database (GVDB)11 and 696 large DNA virus MAGs from
the Global Ocean Eukaryotic Viral database45, which includes Nucleo-
cytoviricota genomes and 111 genomes belonging to the recently-
discovered Mirusviricota lineage. Additionally, we randomly selected
250 complete genomes of large Caudovirales (jumbo bacteriophages)
from the INPHAREDdatabase46 (5 Jan 2023 version).We included these
groups of viruses for training because they commonly encode genes with
matches to the GVOG profiles40 and therefore likely to be falsely clas-
sified as giant viruses.

To avoid the inclusion of identical or highly similar genomes, we
performed genome dereplication using dRep v3.2.247 (dereplicate com-
mand, with parameters -l 5000 --ignoreGenomeQuality -pa 0.95 --Skip-
Secondary). We arrived at a nonredundant set of 1912 viral genomes (1551
Nucleocytoviricota, 111Mirusviricota, and 250 jumbo phage sequences) for
downstream training and testing.

Training set and independent test set
We split the compiled database into two independent genome sets for the
purposes of training and benchmarking.We randomly assigned 80% of the
genomes in each viral group (each family of the Nucleocytoviricota, Mir-
usviricota, and jumbo phages), totaling 1531 sequences, to the training set.
The remaining 20% of the genomes (381 in total) were assigned to the test
set. The test set contained sequences from theMirusviricota, jumbo phages,
and 10 virophages to serve as non-giant virus genomes. We previously
delineated taxonomic classification for theNucleocytoviricota7, and here we
used the same nomenclature in training.

Giant virus genomes assembled frommetagenomes can be fragmented
and incomplete. To simulate these incomplete cases, we utilized a custom
Python script that generated fragmented genomes at random completeness
levels (genome_fragmentizer.py at https://zenodo.org/records/10085666).
For each of the initial giant virus genomes (n = 1242), we generated 2
fragmented sequences at random completeness levels (compared to the
initial genome) ranging from 23 to 99%. For each of theMirusviricota and
jumbo phages genomes (n = 289), we generated 1 fragmented version at
random completeness level, ranging from 29 to 99%. Due to the limited
number of Pokkesviricetes incertae sedis genomes available (only 2 in our
dataset), we created 6 fragmented versions for each of them to introduce
variability. Collectively, this process resulted in a total of 4316 sequences at
varied completeness levels for the training dataset. The detailed taxonomic
classification and completeness level of each genome sequence are detailed
in Table S1.

Table 1 | Classification report for model’s prediction at the order level

Precision Recall F1-score Support

Algavirales 1 0.98 0.99 52

Asfuvirales 1 1 1 10

Chitovirales 1 0.92 0.96 63

Imitervirales 0.98 1 0.99 463

Not_GV 1 0.99 0.99 153

pandoravirales 0.93 1 0.96 26

Pimascovirales 1 0.98 0.99 54

incertae_sedis 0 0 0 2

Accuracy 0.99 823

Weighted avg 0.98 0.99 0.99 823

The weighted-averaged scores were calculated by taking the mean of all per-class scores while considering the support for each class.

https://doi.org/10.1038/s44298-024-00021-9 Article

npj Viruses |             (2024) 2:9 6

https://zenodo.org/records/10085666


We implemented a similar fragmentation process for the testing set. For
each of the initial 381 genomes reserved for benchmarking, we generated 1
fragmented version at random completeness level. Additionally, for each of
the 9 reference genomes isolated from culture and assembled into a single
contig, we generated 6 fragmented versions to introduce more variability.
This resulted ina total of 823 sequences forbenchmarking,with completeness
values spanning from 33% to 100%. Table S2 detailed the taxonomic
assignments and completeness levels of the sequences in the testing set.

Giant Virus Orthologous Groups (GVOGs) as features for
classification models
HMMs of 8863 protein families found in giant virus genomes, which we
refer to as giant virus orthologous groups (GVOGs) were downloaded from
the GVDB. Details regarding GVOG construction have been previously
described11. Given that there is a limited number of genes shared across
different giant virus orders,we screened forGVOGs that are found in at least
25% of the genomes within each order. We arrived at a set of 625 GVOGs
that were broadly represented across different orders of the Nucleocytovir-
icota that we used for the first round of model training.

Processing sequences for training
To prepare training data formodel construction, we first predicted proteins
from genomes using Prodigal48 V2.6.3, with default parameters. Next, we
comparedpredictedproteins to thepre-specified set ofGVOGHMMsusing
the hmmsearch command in HMMER3 3.349, with an e-value threshold of
1e-10. Additionally, we calculated theGC content of each genome sequence
through a customPythonmodule. Although genome size can be viewed as a
distinguishing feature of some giant virus lineages, we excluded this feature
becausewe sought to develop an approach that could be used for incomplete
genomes. These steps collectively generated a feature matrix to be passed to
the RF classifiers.

Construction of classification models
The RF algorithm was applied using the sci-kit learn library50 v1.2.1 in
Python v3.8.18. Training was performed separately for the Order and
Family levels. In the first round of training, all 625 prevalent GVOGs
(present in at least 25% of genomes in each giant virus order) and GC
content of the sequences were used as features. We first perform rando-
mized search cross validation using Scikit-Learn’s RandomizedSearchCV
method. This involved defining a grid of hyperparameters across a broad
range, randomly sampling values from this grid, and assessing the per-
formance of the models for each combination of values. Based on the best
hyperparameter values provided by random search, we defined a new
hyperparameter grid and selected optimal hyperparameters for classifica-
tionmodels through 10-fold grid search cross-validation (GridSearchCV).

To evaluatehow themodels’ accuracy variedwithdifferent training test
sizes, we split the data set into training and cross-validation folds through
10-fold cross-validation. Subsets of sequences ranging from 25 to 100% of
the training set size were drawn from each training fold, and a model was
trained through grid search cross-validation on each subset. The mean and
95% confidence interval for training and cross-validation accuracies across
all folds at eachnumberof sequenceswere reported.The accuracymetric, an
evaluation measure of model performance, was calculated as follows:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

where: TP = True positive; FP = False positive; TN = True negative; FN =
False negative.

Reducing the number of GVOG features
We first investigated whether the number of GVOG features used in
training significantly influenced prediction accuracy using Recursive Fea-
ture Elimination (RFE) with cross-validation. RFE fits the model multiple

times and removes the weakest features until it reaches a given number of
features. The best subsets of features at different sizes were scored and
reported. We examined the collinearity between GVOG features by per-
forming hierarchical clustering on the Spearman rank-order correlations
using the spearmanr() function from scipy.stats.

To identify features that were more important to the performance
of classification models and reduce the number of features required for
classification, we calculated feature importance using the RF’s fitted
attribute feature_importances_. This measures the importance of a
feature by computing the mean and standard deviation of accumula-
tion of the impurity decrease within each tree when including that
feature. In addition, we performed an alternative method, permutation
feature importance, to inspect the model. Permutation feature
importance measures the decrease in a model’s performance score
when a single feature value is randomly shuffled. We calculated the
permutation importances on a held-out set to determine which fea-
tures most significantly contribute to the model’s generalization cap-
abilities. It is worth noting that the GVOG data exhibited collinearity
(Fig. S2). When features are highly correlated, permuting a single
feature may not significantly affect the model’s performance as the
model can access the same information through its correlated feature.
This can reduce the importance value of these features, even though
they may actually be important. To address this, we employed hier-
archical clustering with Ward’s linkage to group features and retained
one feature from each cluster. Subsequently, we calculated the per-
mutation importance of the selected set after removing redundant
features.

After identifying the set ofmost important features using eachmethod,
we subsequently retrain RF models using new feature matrices. We per-
formed hyperparameter tuning using random search and grid search as
described above. The performance of the two sets ofmodels at the order and
family level was estimated using 10-fold nested cross-validation. In this
procedure, we selected models through grid search cross-validation within
an outer cross-validation loop. For each iteration of the outer loop, we
constructed and selected the best model using GridSearchCV, and then
evaluated thismodel on the test set of the outer fold.Nested cross-validation
estimates how effectively a model trained with a specific strategy will gen-
eralize to previously unseen data. The final set of classification models was
selected based on performance.

Evaluating classification model performance with an indepen-
dent test set
The classification models were tested against an independent test set,
excluded from model generation, of 823 sequences at varied genomic
completeness, ranging from 33% to 100%. The predicted taxonomic clas-
sification was compared to the actual classification for these sequences to
estimate accuracy and generate confusion matrices and classification
reports. In the classification reports, in addition to accuracy, three other
metrics were used to evaluate the performance of the classification models:
precision (correctness), recall, and F1 score. F1 score is a widely usedmetric
to evaluate multiclass classification problems as it balances precision and
recall. The metrics were calculated as follows:

Precision ¼ TP
TP þ FP

Recall ¼ TP
TP þ FN

F1score ¼ 2 � Precision � Recall
Precisionþ Recall

where: TP = True positive; FP = False positive; TN = True negative; FN =
False negative.
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Average amino acid identity (AAI) calculation
It can also be useful to know the bestmatch of a query viral genome against a
reference database, and so we also implemented a one-way average amino
acid identity (AAI) search inTIGTOG.AAIbetween the input genomesand
a custom reference database can be requested using the -a flag. Rather than
including the entire set of giant virus genomes available in the GVDB, we
included only one representative from each genus classified in this database,
which was chosen based onN50 contig length11. The module employs one-
way LAST searches51 (parameter -m 500) of predicted proteins in input
sequences against our database and calculates the AAI and alignment
fraction (AF) between all genome pairs. To avoid partial matches, input
genomes having an AF < 20 were considered to have an AAI of 0.

Data availability
The custom script for genome fragmentation and the genome sets used for
model training and testing are available on Zenodo at https://zenodo.org/
records/10085666.

Code availability
Sourcecode and instructions forTIGTOGare available onGithubathttps://
github.com/anhd-ha/TIGTOG.
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