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Multimodal bioimaging is a broad term used to describe experimental workflows that employ two or
more different imagingmodalities. Such approaches have been in use across life science domains for
several years but these remain relatively limited in scope, in part due to the complexity of undertaking
these types of analysis. Expanding these workflows to encompass diverse, emerging technology
holds potential to revolutionize our understanding of spatial biology. In this perspective we reflect on
the instrument and workflows in current use, emerging areas to consider and our experience of the
barriers to broader adoption and progress.We propose several enabling solutions across the different
challenge areas, emerging opportunities for consideration and highlight some of the key community
activities to help move the field forward.

Multimodal bioimaging: context and concepts
Multimodal bioimaging development has gathered significant pace in
recent years, was recently highlighted as a ‘method to watch’1, and is poised
to transform the way in which researchers approach spatial biology chal-
lenges. Conceptually this involves the integration of multiple imaging
techniques to obtain a comprehensive view of biological structures and
processes. Multimodal bioimaging combines the strengths of different
imaging approaches to overcome the limitations of individual techniques
and provides a more holistic understanding of the sample under investi-
gation. ‘Multimodal’ has been used as a catch-all term to describe the
integration of two or more imaging modalities, within or between different
domains, including (but not limited to): Microscopy Techniques (light and
electron microscopy, atomic force, etc.); Molecular Imaging (fluorescence,
bioluminescence, positron emission tomography (PET), etc.), Structural
Imaging (X-ray, computed tomography (CT), magnetic resonance imaging
(MRI), ultrasound (US), etc.); and Spectroscopy (Raman, infrared,magnetic

resonance). Combining these modalities has the potential to revolutionize
biological, biomedical, and clinical research by integrated visualization of
complex processes in context from single molecule to whole organism.

Broadly speaking there are two categories of multimodal bioimaging:
direct correlative and indirect. In direct correlative multimodal bioimaging,
two or more imaging techniques are used simultaneously (as in hybrid
hardware-fused imaging platforms) or sequentially to capture com-
plementary information about the same biological sample and region of
interest. This is valuable for understanding the relationships between dif-
ferent cellular or tissue structures and functions. Examples of this include
correlative light electronmicroscopy (CLEM; data acquired sequentially on
the same sample) or PET/MRI scanners (images acquired simultaneously
on one multimodal instrument). Indirect multimodal bioimaging uses dif-
ferent imaging modalities to study the same biological sample type, but not
necessarily at the same time or region within that sample. This approach is
useful when it is challenging to synchronize modalities, or when each
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modality must be acquired independently due to technical (e.g., sensitivity
issues or need of moving the sample to different equipment) or sample
preparation constraints. Data is collected separately using each modality,
and the integration between the datasets is established post-acquisition
through computational or analytical techniques to enable a more holistic
understanding of the sample. The level of integration needed is determined
by the specific research question at hand. Examples include serial tissue
sections imaged using color/fluorescence microscopy and Raman spectro-
scopy, or MRI and multiphoton imaging of pre-clinical models. We refer
readers to several recent reviews providing detailed descriptions of tech-
nology and uses across different biological domains2–6.

Technological advances in the past decade have expanded capabilities
in single instruments and development of workflows have improved the
depth of information gained within imaging domains. Indeed, some forms
ofmultimodal imaging (largely within specific imaging domains) have been
in use for several years with impactful outcomes. However, progress in
combining modalities across diverse imaging domains and disciplines (i.e.:
microscopy,molecular, structural and spectroscopy) has been hampered by
several confounding factors, limiting thepotential to fully realize the benefits
of indirect multimodal bioimaging that span multiple distinct domains.
Here we provide our perspective - based on our experiences across all
multimodal imagingdomains - on theopportunities and challenges facedby
users and developers and offer potential solutions to begin to break down
these barriers for broader community adoption.

Hardware and sample preparation challenges
The combination of imaging techniques across the multimodal domain
holds significant promise to bridge the gap between structure and function,
offering means to image the entire biological repertoire scaling from single
molecules (lipids or proteins) to organs. Several examples already exist
where different imaging disciplines have converged into single platforms or
have been combined through development of appropriate tools and
workflows. These have largely focusedonbiomedical or clinical applications
thus far, but with potential for adoption into developmental biology, plant
biology, and 3D culture models.

Direct correlative multimodal bioimaging across different domains
generally requires colocation of instruments, particularly when using ex-
vivo samples. However, such instruments are rarely located in the same
facility, making workflows challenging for end users. Ideally, operating on a
single multimodal instrument would circumvent these problems. The
technical specifications of microscopy and molecular/structural imaging
approaches make combined platforms highly challenging7. Some examples
where these constraints have been overcome include combined optical
projection tomography and light sheet microscopy to provide enhanced
contrast for model organism imaging8,9 and coupling of quantitative
fluorescence endoscopy with MRI in human and preclinical imaging to
improve assessment of therapeutic response10. Combined optical coherence
tomography (OCT) with nonlinear optical imaging and spectroscopy also
enables rapid label-free imaging of structural and chemical detail in tissues11.
For indirectmultimodal bioimaging, combining in vivo and ex vivo images
pose challenges through changes to organ size, structure, and morphology
following sample extraction. Sensitive organs and tissues such as vessels can
be carefully maintained ex-vivo under physiological conditions to mitigate
this12. In cases where tissue fixation or dehydration are required, the use of
markers that are visible across modalities is critical to ensure accurate co-
registration and interpretation of features across diverse resolutions and
scales.

An important issue in both direct and indirect multimodal imaging is
the development of multimodal contrast agents. Such probes need to cross
imaging disciplines and retain their properties to track proteins/contrast
agents/cells in vivo and be preserved for onward analysis using com-
plementary approaches. While such probes are being developed, they still
represent a technical challenge, for example as contrast agents for MRI can
interfere with downstream optical methods; microscopy-compatible con-
trast agents are needed to enable higher quality MR detail coupled to

subcellular resolution feature retrieval. Multimodal optical/MRI contrast
agents such asGadolinium-loaded and targeted quantumdots13,14 are highly
fluorescent and bleaching-resistant but can be toxic, limiting use of these
agents to animal models. Alternatively, US andmultiphoton imaging (MP)
have been combined to study vessel healing in mice after injury using
targeted multimodal US-MP micro-bubbles. US imaging in the living
mouse revealed uptake and adhesion of the agents in vascular structures, but
only the combinationwith ex vivo and in vivomultiphoton imaging allowed
determinationof the exact locationof the attachmentof the agents, revealing
sites of damage at the molecular level15,16. X-ray imaging can also provide
valuable structural information and when combined with bioluminescence
these modalities can reveal location and function of genetically modified
cells or tissues17.

Distinct imaging molecules/markers are not an optimal approach as
each imaging agent could exhibit different in vivo biodistribution and
pharmacokinetic properties. Single markers would help to achieve reliable
bimodal probes that are comparable between imaging modalities. Recent
improvements in fluorinated imaging probes for MRI has enabled dual
structural imaging and tracking of immune cells in vivo in amousemodel of
neuroinflammation, followed by detection of the same probe and chemical
features at higher resolution using Raman imaging of ex-vivo spinal cord
slices18. This allowed for real-time tracking of inflammatory cells within
specific anatomical sites, coupled to single-cell level environmental chemical
signatures that helps to distinguish healthy and diseased tissue. Similarly,
PET/MRI imaging of gliomamousemodels has been combinedwith optical
imaging of ex-vivo optically cleared brain slices to enable co-registration of
modalities and assess disease heterogeneity across scales19.

Multimodal approaches that bridge in-vivo and ex-vivo imaging across
scales from preclinical imaging to microscopy are - despite their great
potential for research and diagnostics - hampered due to the difficulties in
software and hardware solutions to locate the same imaging region after
transfer between platforms including correlative probes and fiducial mar-
kers. An example of such amultimodal workflow combinesMRI, PET, CT,
US, OCT and light microscopy to visualize vasculature at different length
scales and molecular information on hypoxia and blood flow20. However,
the workflows to integrate such datasets to retrieve impactful findings
remain complex, slow and highly challenging to navigate for non-expert
researchers. A summary of suggested considerations to overcome these
challenges is provided in Box 1.

Integration with complementary orthogonal spatial ‘omics’
approaches
‘Spatial biology’ is witnessing a significant expansion beyond the four ‘tra-
ditional’ imaging domains (introduced above) to include high-resolution
spatial ‘omics’ profiling. This includes techniques such as spatial genomics/
transcriptomics, imaging mass spectrometry (proteomics, metabolomics,
lipidomics, metallomics etc.) and imaging mass cytometry (IMC) that
provide orthogonal, highly complementarymolecular detail for any sample
of interest21. It is technically feasible to acquire directly correlated multi-
modal or ‘omics’ datasets on sections from tissues and more ‘classical’
biological imaging modalities on adjacent sections for co-registration.
Similar challenges exist with these datasets as for other modalities, in terms
of sample preparation and resolution differences. However, datasets
retrieved from spatial ‘omics’ approaches can contain tens to many thou-
sands of measurements within each pixel, making interpretation and
visualization even more complex. Commercial platforms are being devel-
oped to enable easier handling of ‘omics’ spatial data with other modalities
and are likely to expand significantly in coming years – ideally within the
public domain - as uptake of such approaches increase.

Ultimately, combining such deep ‘omics’ phenotyping data with
structural (e.g., MRI, X-ray), fluorescence (e.g., lightsheet, super-resolution)
and atomic-level (e.g., volume EM) approaches will provide means to
achieve a ‘Google earth’ view of any given sample, providing unprecedented
insight into cell and tissue states. Creation of such holistic, rich and complex
datasets for open accessmining–with the ultimate goal of generating spatial
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tissue ‘atlases’ fromdifferent organisms anddisease states –would represent
extremelyvaluable resources for the community andopendoors fornewAI-
based interrogation with potential impact in discovery science and ther-
apeutic development.

Data analysis challenges
Multi-modal analysis typically includes twomain steps, co-registration, and
data-fusion. Co-registration is the alignment of different modalities to a
common coordinate space and enables mapping of spatial regions and/or
their derived readouts from one modality to another. A variety of general-
purpose registration algorithms exist that minimize the registered images
discrepancy in terms of their pixel intensities, contours, features, fiducial
marker localization, or point cloud alignment22, under a set of assumptions
and parameters, ideally using software tools that unify these different
approaches23–30. Single modality registration, for example aligning two
spatially consecutive pathology slides, presents inconsistencies between the
images that are being aligned as they contain information from physically
different tissue sections. Further registration challenges exist due to the
images used being acquired with different technologies and encoding dif-
ferent physical properties. These include differences in spatial resolution,
field-of-view size, tissue morphological deformations due to sample pre-
parations, moving between different imaging facilities, and imaging arti-
facts. These challenges require tailored solutions that reflect the specific
properties of the modalities that are being interpreted and of the down-
stream analyses, such as selecting visually distinct structures that are shared
across modalities as fiducial markers or introduction of external fiducials.

Cross-modality data fusion can be performed by spatially matching
tissue regions imaged with different modalities, providing direct insight
regarding the complementary information and inter-relations between the
different modalities. The higher bounds (i.e., optimal) spatial scale of the
matching is determinedby the spatial resolutionof themore coarse-resolved
modality.However, inpractice, the size of the spatiallymatched regionsused
for downstreamanalysis should be determined by the estimated registration
error between the modalities. In cases where sub-sampling of different
regions of the tissue using each modality has occurred, acquisition of aux-
iliary images (such as a brightfield image) of the full tissue along with the
partial field of view can help with co-registration. Registration error can be
estimated globally or locally, based on biological and physical fiducial
markers that are consistent across modalities. Smaller registration errors
lead to higher resolution of the cross-modality matching enabling to gain
biological insight at finer spatial details. Moreover, multimodal datasets are
of limited size, because the number of independent observations is limited
by the costs and labor, both in terms of access to samples and the technology
used to acquire them. Thus, minimizing the registration errors, both via

appropriate modality selection, experimental and algorithmic design, is
especially crucial for increasing the number of independent matched
observations that can enable use of data-hungrymachine learning analyses.

Different single cell spatial ‘omics’ technologies can be harmonized to
one file-format to extract spatial statistics31–33. Recent studies have suc-
cessfully co-registered immunofluorescence, IMC and pathology (H&E)
images34, and IMC and imaging mass spectrometry (IMS)35. Unsupervised
or supervised identification of image regions with a consistent biological
interpretation in one modality can be used to analyze their relationships to
the matched modality. Complementary information in one modality can
alsobeused to enhance theperformanceof a specific task, such as improving
cell type classification by using (fluorescence-based) cell segmentation34.
Effective cross-modality data fusion requires commonfile-formats to enable
consistentAPIs acrossmodalities33,36 and can take place at different stages of
the information extracted from eachmodality, for example, raw image data,
image embeddings and/or image-derived features37,38.

On a practical level, data acquisition from multiple experimentalists,
laboratories and instruments can add to the complexity of combining such
multimodal/’omics’ outputs39 and requires extensive quality control, har-
monisation and iteration across acquisition sites. As for other multimodal
imaging approaches, tools for cross-modality visualization28 and inter-
pretation of the mapping between modalities40 are crucial for effective data
exploration. In some cases where one modality contains corrupted or
missing data points, these can be computationally imputed using their
relationships to other modalities41,42. However, such imputation of missing
values should be performed with great care due to potential erroneous
artefacts.

Deep learning is a class of modern machine learning techniques (also
known as “Artificial Intelligence”, or AI) that excel in data-driven nonlinear
optimization. A key challenge in applying AI to the domain of multimodal
bioimaging is the limited size of the datasets in this domain that hamper the
potential of learning complex patterns in high dimensions from the (inac-
cessible) true distributions of these data. However, while the number of
samples (e.g., patient cohort size) is limited, each sample contains a wealth
of biologically relevant spatial information that enable effective application
of AI, for example for single modality disease state classification, at the
spatial scale of pixels43, cells44, or localized regions45. Pooling multiple
localized regions where sample numbers are limited has already shown
promise for analysis ofmultimodal bioimaging35,40–42.OnedomainwhereAI
has been successfully applied to multimodal biomedical imaging datasets is
radiomics. This is a quantitative approach that applies advanced mathe-
matical analysis to extract non-visible features from medical imaging
datasets and enhance traditional analysis methods. Radiomics has been
further expanded through adoption of AI techniques to enable extraction of

Box 1 | Practical considerations to addressmultimodal workflow challenges

1. Plan experiments well in advance with experts in the relevant imaging domains,
ensuring practical factors such as sample preparation, fiducial markers, probe
viability, sample transfer between instruments, data correlation and analysis are
all considered – along with any critical controls that might be required for each
modality.

2. If more than one imaging modality will be carried out on the same sample, the
order of acquisition should be evaluated to ensure samples are not comprised
(e.g.: throughphotobleaching, reducedviability, sampledestruction etc.) between
instruments.

3. Discuss the desired endpoints from the multimodal images with computational
experts in advance to ensure workflows and acquisition parameters will be sui-
table for onward analysis. Community forums such as Image.sc can help to
highlight existing analysis tools for use or modification.

4. Consider location of instruments to be used; if not co-located, ensure technical
staff across imaging domains discuss experimental workflows - and appropriate
transit, timingand storageof samples are agreedacross sites. Existingmultimodal
open access instruments and facilities such as those within Euro-BioImaging
should be considered where feasible.

5. Define during experimental acquisition where and how data will be stored post-
acquisition (nomenclature, data format, both personal and open access
repositories) and ensure all relevant protocols and metadata associated with
each domain are gathered.

6. For newworkflows, small scale pilot experiments are advisable to enable iteration
andoptimization of both data acquisition and analysis and ensure that one image
acquisition type does not interfere with another.
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the relevant disease-specific information across large datasets. For example,
to combine data from MRI, CT and/or PET images and apply different
machine learningmethods to extract features that are not identifiable using
other means for development of predictive models46. Although promising,
these tools are not yet in clinical use for diagnostic purposes. This is in part
due to the lackof standardization indata types, lack of reproducibility across
the models used and lack of agreed protocols across the field47.

Alongside these technical challenges, a critical factor is the continuous
communication and transparency between all parties involved. In many
cases, each modality is acquired and analyzed by a distinct expert, the
integration of multiple modalities requires coordination between all data
generators and analysts. For example, jointly defining proper acquisition of
auxiliary data that will be most suitable for co-registration, characterizing
the data acquisition in an optimal manner for down-stream analyses,
identifying on-the-fly discrepancies in the data generated, or avoiding
incorrect assumptions regarding the data. These all require coherent team
communication across disciplines and a shared understanding of the
ultimate goals.

Dedicated infrastructure, community and training are critical to
lower barriers
Multimodal imaging beyond the classically combined methods (CLEM)
and fororthogonalmodalities (as outlinedabove), largely requires expensive
equipment and very diverse, advanced expertise in sample preparation, data
acquisition and data integration. This makes it very challenging for most
labs to host complex multimodal imaging pipelines and even individual
institutions will struggle to have sufficient equipment and staff to provide a
comprehensive set of different multimodal combinations. Undertaking
these experiments therefore benefits tremendously from coordinated and
quality-managed open access infrastructure, transparent processes for
access and collaboration across facilities, and joint development of tech-
nologies and workflows. Euro-BioImaging ERIC (European Research
InfrastructureConsortium) represents such a forum, and coordinates access
to more than 190 imaging facilities across Europe. By bringing together
these imaging facilities and experts across all imaging domains into one
organization with a single-entry point, Euro-BioImaging facilitates and
supports advances inmultimodal imaging, connecting thehistorically siloed
biological and biomedical imaging communities. This includes the estab-
lishment ofmixedNodeswithinEuro-BioImagingwhich combine expertise
onbiological andbiomedical imaging technologieswithin a single entity and
focus on facilitating multimodal and correlative imaging, as well as hosting
regular seminars andworkshopswith technical specialists across domains to
share knowledge and develop new approaches. Such forums are critical for
sharing best practice and enabling dissemination of information to end
users to overcomeworkflow challenges (see Box 1). However, it remains the
case that most researchers and technicians are only trained in their specific

imaging domain. Thus, delivery of multimodal services requires dedicated
staff training and exchange of experience between experts in different
imaging modalities to facilitate communication and collaboration between
the different experts delivering components of multimodal workflows.
Users also require advanced training and education to increase awareness of
how multimodal imaging can be applied to their research and enable them
to judge the strengths and limitations of multimodal imaging approaches.

This highlights the important function of coordinated research infra-
structures in fostering community-driven approaches to democratizing
access to - and appropriate use of - advanced imaging technology. In recent
years building community initiatives and knowledge exchange forums has
demonstrated to be critical for the advancement of technology, avoiding
duplication of efforts, and reaching broader potential user bases. The col-
laborative research network COMULISglobe promotes multimodal ima-
ging and analysis across scales from biological research to clinical
diagnostics.More specifically, COMULISglobe identify, fund, and showcase
novel multimodal pipelines, develop, evaluate, and share software48. Chal-
lenges remain, particularly in the need for continuous development of new
workflows combining instruments and increasing recognitionanduptakeof
opportunities that combined imaging approaches provide. Existing public
image data repositories, such as the BioImage Archive49 and EMPIAR50,
already work well for deposition of certain types of correlative multimodal
image data and they are actively engaged in developments to connect data
with added-value databases and repositories for other data types. The
development of tools to share associated code and protocols will be critical,
such as the recently developed volume EM sample preparation widget
(https://www.ebi.ac.uk/empiar/spw) linking to the EMPIAR data reposi-
tory. These approaches would facilitate broader uptake and re-use of
datasets for novel discoveries from the normally very rich datasets produced
by multimodal imaging as well as the development of new analysis
approaches. Training in how to prepare data and metadata appropriately
and how to share appropriate data types for onward re-use and ‘data
stewardship’ to help researchers is essential to lower energy barriers and
encourage routine sharing of imaging data. Funding opportunities are
required for technology and analysis development as well as to allow
researchers to access these technologies and receive the expert training and
support required before, during and after data acquisition.

Conclusions and future perspectives
Combinations of different imaging modalities have enhanced our under-
standing of complex biological systems, disease mechanisms, monitoring,
and early detection. This field has encouraged cross-disciplinary colla-
boration between experts in imaging, biology, engineering, chemistry,
computation, and medicine, leading to innovative technology solutions.
However, bioimaging is entering a new era, with new technologies being
developed apace, and the future challenge lies in maximizing the cross-

Box 2 | Key recommendations to drive advances and adoption of multimodal bioimaging

1. Build cross-imaging domain discussion forums to explore opportunities,
collaborations and engage end users early in future technology
development plans

2. Develop more open access infrastructure with appropriate expertise and tech-
nology to support advanced cross-domain imaging and appropriate expert
training and connect these on the local, national, and international level

3. Encourage mechanisms (workshops, seminars) to inform non-expert user
communities of new multimodal bioimaging approaches and potential benefits
to their research.

4. Encourage the sharing of multimodal FAIR (Findability, Accessibility, Inter-
operability, andReuse) imaging datasets and software tools in the public domain

to facilitate additional discoveries from rich datasets and thedevelopment of new
computational analysis approaches.

5. Foster collaborations with industry partners to facilitate the development,
commercialization, and distribution of multimodal imaging systems and
technologies.

6. Close community engagementwith funders to highlight the importance of novel
instrument development and encourage dedicated funding mechanisms to
enable this and their applications.
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domain potential from these discoveries. We outline our key recommen-
dations to the community to break down barriers to broader adoption of
these transformative approaches (Box 2). Improving the seamless integra-
tion of different imaging modalities, software and hardware solutions that
facilitateopenaccess data fusion and interpretationwill be critical tobroader
adoption of these techniques. Leveraging machine learning for advanced
data analytics, especially for data integration and for identifying complex
correlations between modalities, will become increasingly important as the
data volume increases with improved workflows and automated imaging.
The expert community needs to build trust in these tools and make them
accessible and understandable for all end users. The creation ofmore hybrid
imaging systems that combine multiple modalities into a single device
would be ideal to simplify data acquisition and provide real-time multi-
modal data. Enhancements in spatial and temporal resolutions, allowing
researchers to observe even smaller biological structures and faster dynamic
processes, and advancements in correlated 3D and 4D (spatiotemporal)
imaging will providemore comprehensive and dynamic information about
biological systems, allowing for a deeper understanding of processes in
living organisms.

Data availability
No datasets were generated or analysed during the current study.
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