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Symmetry of the emergent inductance tensor exhibited by
magnetic textures
Soju Furuta1, Wataru Koshibae2 and Fumitaka Kagawa1,2✉

Metals hosting gradually varying spatial magnetic textures are attracting attention as a new class of inductors. Under the
application of an alternating current, the spin-transfer-torque effect induces oscillating dynamics of the magnetic texture, which
subsequently yields the spin-motive force as a back action, resulting in an inductive voltage response. In general, a second-order
tensor representing a material’s response can have an off-diagonal component. However, it is unclear what symmetries the
emergent inductance tensor has and also which magnetic textures can exhibit a transverse inductance response. Here, we reveal
both analytically and numerically that the emergent inductance tensor should be a symmetric tensor in the so-called adiabatic limit.
By considering this symmetric tensor in terms of symmetry operations that a magnetic texture has, we further characterize the
magnetic textures in which the transverse inductance response can appear. This finding provides a basis for exploring the
transverse response of emergent inductors, which has yet to be discovered.
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INTRODUCTION
An inductor is a component that exhibits an inductive counter-
electromotive force, V, under a time-varying electric current, I,
following

V ¼ L
dI
dt

; (1)

where L denotes the inductance. The electric work done by the
external power supply, IV, is henceZ

dt IV ¼
Z

dt IL
dI
dt

¼
Z

d
1
2
LIðtÞ2

� �
; (2)

which shows that the inductor stores an energy of 1
2 LI

2. Thus, it
can also be said that an inductor is a component that can store an
energy of ΔE ¼ 1

2 LI
2, under the application of an electric current. A

textbook example is a solenoidal inductor, which stores energy as
a magnetic-field energy1. Other inductors possess similar energy-
storing properties. An established example is the so-called kinetic
inductor, in which the energy is stored as the kinetic energy of
mobile charge carriers. When considering the Drude model of
conduction electrons, one can immediately find that the
inductance defined using the imaginary part of the angular-
frequency (ω)-dependent resistivity, ρ(ω), agrees with the
inductance defined using the total kinetic energy of electrons2.
Recently, a new class of inductors, now referred to as emergent

inductors, has been proposed theoretically3 and confirmed
experimentally4–6. In these inductors, the flowing conduction
electrons exert a spin-transfer torque (STT)7–10 on the underlying
magnetic texture; as a result, the magnetic texture exhibits time-
dependent elastic deformations under an AC electric current in
the linear-response regime. Such current-induced magnetic-
texture dynamics exert a back action on the flowing conduction
electrons, yielding the so-called spin-motive force or emergent
electric field (EEF)11–15. This phenomenon can be derived
microscopically in terms of the so-called spin-Berry phase or the
effective U(1) gauge field, and the resulting EEF can be described

by

eiðr; tÞ ¼ _

2jejmðr; tÞ � ½∂imðr; tÞ ´ ∂tmðr; tÞ�; (3)

where e(>0) is the elementary charge, m(r, t) is the unit vector of
the local magnetic moment at position r and time t, and ∂i
(i= x, y, z) and ∂t denote spatial and time derivatives, respectively
(when the conduction-electron spins are not fully polarized, the
so-called spin-polarization factor P is further multiplied on the
right-hand side of Eq. (3)12,15). It has been numerically demon-
strated that in the so-called adiabatic limit (i.e., β= 0; see the
“Methods” section), the inductance value defined using the EEF
under an AC electric current quantitatively agrees with that
defined using the current-induced magnetic-texture-deformation
energy16. Thus, in the adiabatic limit, the emergent inductance is
well defined, and both the electric and energetic responses are
correctly captured by Eq. (1). On the other hand, when
nonadiabaticity is concerned (i.e., β ≠ 0), the inductance values
derived independently from the two definitions do not match,
implying that the system responses are beyond the framework of
Eq. (1) and hence the inductance interpretation does not apply16.
An interesting aspect of emergent inductors is that the

inductive electric response is potentially not limited to the applied
current direction but may also appear along the perpendicular
directions, as inferred from Eq. (3). Thus, in general, the emergent
inductance, when it is well defined, should be represented by a
tensor: Vi ¼ Lij

dIj
dt ði; j ¼ x; yÞ or

Vx

Vy

� �
¼ Lxx Lxy

Lyx Lyy

� �
d
dt

Ix
Iy

� �
: (4)

In classical electrodynamics, such an inductance tensor with
i, j= 1, 2 may be introduced to describe two mutually coupled
coils, 1 and 2. It, therefore, appears that an emergent inductor
possesses a function similar to that of a coupled classical inductor
system. However, such an intuitive analogy requires careful
consideration because the microscopic mechanism is quite
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different between classical and emergent inductors. For instance,
in a coupled classical inductor system, one can analytically express
the mutual inductance and find L12= L21≡M1; moreover, the fact
that the coupled system stores a positive energy in the quadratic
form of 12 L11I

2
1 þ 1

2 L22I
2
2 þMI1I2 for arbitrary values of I1 and I2 leads

to a constraint, L11L22 ≥M217, in addition to the obvious one,
L11, L22≥ 0. Such classical electrodynamics considerations, how-
ever, are not helpful for emergent inductors consisting of an
arbitrary spin texture including disorder, and thus, the relation
between Lxy and Lyx appears to be nontrivial.
When considering the nature of Lij, it is instructive to review the

resistivity tensor, ρij, as a textbook example. Note that any second-
order tensor, Kij, can always be decomposed into a symmetric part,
KS
ij , and an antisymmetric part, KA

ij ; namely, Kij ¼ KS
ij þ KA

ij with
KS
ij ¼ ðKij þ KjiÞ=2 and KA

ij ¼ ðKij � KjiÞ=2. In the case of ρij, the
symmetric part represents dissipative transport, whereas
the antisymmetric part represents nondissipative transport, that
is, the Hall resistivity. Thus, the symmetric and antisymmetric parts
of ρij have their own physical meanings with quite different
characteristics. Therefore, the symmetry of the emergent induc-
tance tensor is also an important issue in understanding the
underlying physics.
In this paper, focusing on the adiabatic limit, in which the

emergent inductance is well defined by Eq. (1)16, we aim to reveal
the symmetry of the emergent inductance tensor and discuss the
physical implications of the revealed symmetry. Our approach is
two-fold. First, we consider the tensor-expressed circuit equation
[Eq. (4)] in detail and draw a conclusion regarding the symmetry of
Lij: this also enables us to discuss how the inductor tensor should
behave under the time-reversal operation. Second, we numerically
investigate Lij for various magnetic textures using micromagnetic
simulations. These two approaches consistently show that Lij is a
symmetric tensor (that is, Lxy= Lyx) and Lij is even under the time-
reversal operation. By combining the numerical results and
symmetry arguments, we also find what kinds of magnetic
textures can or cannot exhibit a transverse emergent inductance,
Lyx. We note that the present conclusion is for the case where the
emergent inductance is well-defined (i.e., the adiabatic limit,
β= 0). The effect of nonadiabaticity (i.e., β ≠ 0), which makes the
emergent inductance ill-defined16, is discussed in the Supplemen-
tary Note 1.

RESULTS
Considerations for the circuit equation
We discuss the consequences that are prescribed in the tensor-
expressed circuit equation, Eq. (4). Following the general
arguments on a second-order tensor, we decompose Lij into
symmetric and antisymmetric parts: Lij ¼ LSij þ LAij , or explicitly,

Lxx Lxy
Lyx Lyy

� �
¼

LSxx LSxy

LSxy LSyy

 !
þ

0 LAxy

�LAxy 0

 !
: (5)

To gain insight into the physical meaning of the symmetric and
antisymmetric tensors, we consider the work done by the power
source along a closed loop in the Ix–Iy plane, which is expressed as:I

dt ðIxVx þ IyVyÞ ¼
I

d
1
2
LSxx I

2
x þ

1
2
LSyy I

2
y þ LSxy Ix Iy

� �

þ
I

dt LAxy Ix
d
dt
Iy � Iy

d
dt
Ix

� � : (6)

Note that the first term in the right-hand side consists of only the
symmetric tensor components and the integrand takes the form
of a total derivative; hence, the contour integral results in zero.
The expression, 12 L

S
xx I

2
x þ 1

2 L
S
yy I

2
y þ LSxy Ix Iy , is essentially the same as

that derived for mutually coupled classical inductors, representing
energy stored in the emergent inductor under a current. In

contrast, the second term consists of only the antisymmetric-
tensor components, and the integrand is not the form of a total
derivative, indicating that the second term is non-zero and
dependent on the path. These features imply that LAxy is associated
with a non-conserved quantity.
To see the consequences of the antisymmetric component LAxy

more clearly, it is helpful to consider a specific closed path for the
integral(s) of Eq. (6). Suppose LAxy > 0; we consider a specific cycle C
that consists of three paths, C1, C2, and C3, as shown in Fig. 1:

ðIx ; IyÞ ¼ ð0; 0Þ�!C1 ðI0; I0Þ�!C2 ðI0; 0Þ�!C3 ð0; 0Þ with constraints of
Ix= Iy on C1, Ix= I0 on C2, and Iy= 0 on C3. Thus, taking the
contour integral along the cycle in the clockwise direction results
in:I

C
dt ðIxVx þ IyVyÞ ¼ �LAxy I

2
0 < 0: (7)

The result indicates that if a positive LAxy were present, the power
source could acquire energy by cycling the closed loop. Such
behavior is obviously not allowed for a passive element, such as a
stable material. Similarly, one can consider the case of LAxy < 0, and
the same conclusion can be drawn by considering the same
closed loop C but in the counterclockwise direction. Thus, Eq. (4)
concludes that even for the case of an emergent inductor, the
inductance tensor cannot have an antisymmetric component; that
is, LAxy ¼ 0, and an emergent inductor tensor should be a
symmetric tensor (below, we therefore omit the superscript, S),

Lxy ¼ Lyx � Ltr : (8)

Hence, the energy stored in an emergent inductor under current is
found to be expressed by 1

2 Lxx I
2
x þ 1

2 LyyI
2
y þ Ltr Ix Iy , and for this

quadratic form to be nonnegative, Lij should satisfy

LxxLyy � ðLtrÞ2; (9)

in addition to Lxx, Lyy ≥ 016.
Thus, although the microscopic mechanism is quite different

between classical and emergent inductors, it turns out that there
is no difference in the constraints that inductance tensors should
satisfy. These characteristics are implicitly prescribed by the
relation between voltage and current, Eq. (4), not depending on
the microscopic mechanism for inductors.
Having established the symmetry of Lij, we can discuss the

behavior of Lij under the time-reversal operation. Since an
emergent inductance arises from a magnetic texture {m(r)}, the
behavior of an emergent inductance under the time-reversal
operation is an interesting issue. In fact, in experiments, the
magnetic-field (B)-dependence of an emergent inductance has
been frequently investigated4–6. To incorporate a case where
{m(r)} shows hysteretic behavior with respect to changes in B, Lij
may be expressed as a function with {m(r)} and B as variables.
Note that regardless of the details of the variables, Lij should be a
symmetric tensor as discussed above, and hence, Lij(B, {m(r)})=
Lji(B, {m(r)}) should always be satisfied. Moreover, with respect to
the complex resistivity, Onsager’s reciprocal theorem concludes

Ix

Iy
(I0, I0)

C1

C2

C3
(0, 0) (I0, 0)

Fig. 1 A specific closed loop used to prove the absence of the
antisymmetric components of an inductance tensor.
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Im ρijðω;B; fmðrÞgÞ ¼ Im ρjiðω;�B; f�mðrÞgÞ (the real part also
satisfies the same relation)18; hence, the inductance tensor should
also satisfy Lji(B, {m(r)})= Lij(−B, {−m(r)}). By combining the two
relations regarding Lij, one can thus conclude

LijðB; fmðrÞgÞ ¼ Lijð�B; f�mðrÞgÞ: (10)

This relation indicates that Lij is even under time reversal, or
equivalently, Lij is a polar symmetric tensor. In particular, we note
Lyx(B, {m(r)})= Lyx(−B, {−m(r)}), distinct from the Hall resistivity,
which satisfies ρyx(B, {m(r)})=−ρyx(−B, {−m(r)}). For this reason,
we call Lyx the transverse inductance, not the Hall inductance.

Micromagnetic simulations
To observe the symmetry of the inductance tensor of emergent
inductors, we consider magnetic textures that slowly vary in space;
for such magnetic textures, the EEF can be calculated according to
Eq. (3). We further consider the pinned regime, in which a
magnetic texture does not exhibit a steady flow under a DC
electric current19–28. The procedure for calculating the emergent
inductance arising from a slowly varying magnetic texture in the
pinned regime is detailed in the literature16 and also in
the “Methods” section. We consider a spin Hamiltonian based
on the continuum approximation that can exhibit helical and
skyrmion lattice (SkL)29–32 magnetic textures and calculate the
current-induced dynamics of a magnetic texture by numerically
solving the Landau–Lifshitz–Gilbert (LLG) equation33 (see the
“Methods” section). To be more specific, the magnetic-texture
dynamics under the application of an AC current along the
x-direction are calculated by micromagnetic simulation; then, by
referring to Eq. (3), the time-dependent EEFs along both the x- and
y-directions are further derived; and finally, by referring to Eq. (4),
Lxx and Lyx are obtained. Similarly, we obtain Lyy and Lxy by
simulating the case of an AC current along the y-direction. The
emergent inductance Lij depends on the system size in the form of
Lij ¼ ~Lij ℓS, where

~Lij; ℓ, and S represent the normalized inductance
(we call it “inductivity”), system length, and system cross-section
area. Below, we, therefore, present ~Lij , rather than the system-size-
dependent Lij. The inductivity tensor may be defined by

ei ¼ ~Lik
djk
dt

; (11)

where j represents the current density. The following simulation
results are obtained for the case of β= 0 (i.e., the adiabatic limit).
Figure 2 summarizes the magnetic textures investigated in this

study and the corresponding inductance tensors. We studied four
examples of helical magnetic textures, for which the helical
q-vector forms approximately an angle θ= 0°, ± 20°, and ± 45°
with respect to the x-direction (Fig. 2a–e, respectively); a maze-
helix texture (Fig. 2f); and an SkL (Fig. 2g). The intensity and
concentration of disorder were minimized as much as possible
while confirming the linear response of the pinned dynamics. As a
result, more disorders had to be included when examining the
maze-helix and SkL, as summarized in Table 1: selecting a much
lower current density while keeping the disorder density as low as
0.3% was not appropriate in terms of the required numerical
accuracy. As shown in Fig. 2, we find that ~Lxy ¼ ~Lyx invariably holds
within the numerical error, consistent with the conclusion derived
from the circuit equations.
The diagonal components of the inductance tensor are

invariably positive, whereas the off-diagonal components can
be either positive or negative. Nevertheless, we emphasize that the
inductance tensor retains energetic interpretations; that is,
the energy increase in the magnetic system, ΔE(Ix, Iy), caused by
the application of an electric current agrees with
1
2 LxxI

2
xþ 1

2 LyyI
2
y þ Ltr Ix Iy . As an example, we discuss the results for

the helical texture with θ=− 20°, in which the off-diagonal

components of ~Lij are negative. The ΔE(Ix, Iy) is calculated for the
following three cases independently: (i) (Ix ≠ 0, Iy= 0), (ii) (Ix= 0,
Iy ≠ 0), and (iii) (Ix ≠ 0, Iy ≠ 0). Then, by solving the three simulta-
neous equations regarding ΔEðIx ; IyÞ ¼ 1

2 LxxI
2
x þ 1

2 LyyI
2
y þ Ltr Ix Iy , we

can obtain: ð~Lxx;~Lyy ;~LtrÞ ¼ ð2:67; 0:63;�1:00Þ ´ 10�21 Hm. These
values are in quantitative agreement with ~Lij calculated from the
EEF (Fig. 2c), indicating that the emergent inductivity is well
defined by Eq. (11). We also confirmed ~LxyðB;mðrkÞÞ ¼
~Lxyð�B;�mðrkÞÞ numerically (Fig. 3), in which the disorder density
and strength Kimp (see “Methods”) are fixed to 3% and
1.0 × 107 J m−3, respectively, and the single-q-helix with θ= 45°
was considered. Thus, our numerical study confirms that ~Lij for an
emergent inductor is a polar symmetric tensor.
When comparing the three helical textures quantitatively, one

can find that as the θ increases from 0° to 45°, ~Lxx decreases,
whereas ~Lxy increases. We also note that in the maze-helix and SkL
textures, the transverse component, ~Lxy , is more than one order of
magnitude smaller than the longitudinal components, ~Lxx and ~Lyy .
As discussed below, these observations can be explained by
considering an orthogonal transformation of ~Lij and the rotational
symmetry that each magnetic texture has.

DISCUSSION
In the following, we aim to categorize inductance tensors of a
magnetic-texture origin and consider how our numerical results
obtained in the adiabatic limit can be explained in terms of the
symmetry operations that each magnetic system has. Note that
because an inductance tensor is real and symmetric, it can be
diagonalized by performing an appropriate orthogonal transfor-
mation, R, or equivalently by choosing appropriate Cartesian
coordinates:

~Lxx ~Ltr
~Ltr ~Lyy

 !
!R λ1 0

0 λ2

� �
; (12)

where λ1 and λ2 (λ1, λ2≥ 0) represent the eigenvalues of the
inductance tensor. Hence, to classify an emergent inductance
tensor, it is sufficient to consider the diagonalized form. This
approach does not lose generality because a representation in
different Cartesian coordinates can be immediately obtained by
performing the corresponding orthogonal transformation. Follow-
ing the group theory arguments for a polar symmetric tensor, one
can conclude that: (i) when the system has three-fold or higher
rotational symmetry with respect to the z-axis (i.e., C3z, C4z, C6z or
C∞z), λ1 and λ2 should be equal, whereas (ii) when the system has
only two-fold with respect to the z-axis (C2z) or no rotational
symmetry, λ1 and λ2 should be inequivalent: For the details of the
derivation, see Supplementary Note 3. Thus, the diagonalized two-
by-two tensor can be classified as one of the two categories,
which are characterized by λ1= λ2 and λ1 ≠ λ2, respectively.
The first category, λ1= λ2, is represented by an isotropic

tensor
1 0
0 1

� �
, and thus, the off-diagonal components are

always zero for arbitrarily chosen Cartesian coordinates; that is, the
transverse inductance response does not appear. From group
theory, a magnetic texture that has C3z, C4z, C6z, or C∞z symmetry
should belong to this category. Note that our numerical
calculations deal with finite-size systems including randomly
distributed disorder, and therefore, the simulated magnetic
textures do not have any rotational symmetry in a strict sense.
Nevertheless, we numerically find that the inductance tensors of
the maze-helix and SkL textures satisfy ~Lxx � ~Lyy and ~Lxy ;~Lyx �
~Lxx ;~Lyy (Fig. 2f, g, respectively), indicating that the obtained
tensors are close to isotropic. These results appear reasonable,
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considering that in a macroscopic system, the maze-helix and SkL
textures have global approximate C∞z and C6z symmetries,
respectively. The symmetry of the macroscopic systems can be
imagined by looking at the corresponding fast-Fourier-transform
(FFT) images. To be precise, the rotation symmetry of the SkL
confined in the finite-size system is C2z, rather than C6z, as
indicated by the FFT image (Fig. 2g): This perturbative symmetry
lowering from C6z to C2z explains the small but finite symmetric
off-diagonal component, which is originally prohibited under C6z

symmetry. When nonadiabaticity is not negligible, the effective

inductivity tensor defined by ~L
eff
ij ¼ Im ½ρijðωÞ � ρijð0Þ�=ω is

discussed, but it should be noted that ~L
eff
ij is a different quantity

from the inductivity tensor in Eq. (11). For instance, the ~L
eff
ij of the

SkL has antisymmetric off-diagonal components when β ≠ 0,
although the antisymmetric component in ~Lij is energetically
prohibited; for more details, see Supplementary Notes 1 and 3.
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Lyx Lyy
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Fig. 2 Various metastable magnetic textures and corresponding inductance tensors. a–e Helical magnetic textures with the helical q-
vector that forms approximately an angle θ= 0° (a), 20° (b) −20° (c), 45° (d), and −45° (e) with respect to the x-direction. f Maze-helix.
g Skyrmion lattice. The corresponding fast-Fourier-transform (FFT) images are also shown in each panel. Color wheels specify the x–y plane
magnetization direction. The brightness of the color represents the z component of the magnetization, and white represents the local
magnetizations pointing toward the z-direction. The current-induced magnetic-texture dynamics are calculated under the application of a
weak AC current. The parameters used for the simulation are tabulated in Table 1; they are chosen so that the resulting emergent voltage is in
the linear response and low-frequency regimes (see the “Methods” section). The simulations were done for β= 0.
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The second category consists of tensors that have two

inequivalent components,
λ1 0
0 λ2

� �
, and thus, off-diagonal

components can appear if arbitrary Cartesian coordinates are
chosen. For instance, the matrix R(θ) that rotates Cartesian
coordinates clockwise by θ transforms the diagonalized tensor
into a nondiagonal form:

λ1 0

0 λ2

� �
�!RðθÞ λ1cos2θþ λ2sin2θ ðλ1 � λ2Þ sin θ cos θ

ðλ1 � λ2Þ sin θ cos θ λ1sin2θþ λ2cos2θ

 !
:

(13)

Thus, ~Lxy ¼ ~Lyx can be either positive or negative depending on
the selection of Cartesian coordinates. An example of this category
is a single-q-helix, in which the inductance tensor is diagonalized,
for instance, when the x-axis is chosen parallel to the helical q-
vector. An important feature of an ideal single-q-helix is that the
local magnetic moments show no modulation along the direction
perpendicular to q. Hence, no STT effect is expected for the
current along the y-axis, resulting in λ2= 0. Thus, for the case of an
ideal single-q-helix, the diagonalized form and its orthogonal

transformation are given as:

1 0

0 0

� �
�!RðθÞ cos2θ sin θ cos θ

sin θ cos θ sin2θ

� �
: (14)

Figure 4 displays the comparison between the numerically
obtained inductivity tensors of various q-direction helices and
the orthogonal transformation of λ1= 3.11 × 10−21 H m and λ2= 0,
which is an approximate inductivity tensor of the single-q-helix
with θ= 0° (Fig. 2a). Although the simulated single-q-helices are
more or less affected by random disorder and the open
boundaries of the system, the overall tendency is well reproduced
by orthogonal transformation. This observation demonstrates that
the above arguments based on the orthogonal transformation of
the symmetric inductivity tensor are helpful when considering a
single-q-helix with arbitrary q-direction.
For a more complicated magnetic texture, positive λ1 and λ2

with λ1 ≠ λ2 may be expected. For instance, a multidomain of
single-q-helices obviously belongs to this category. In contrast, a
long-range ordered state belonging to this category may not be
so clear. A candidate of this category is likely a magnetic texture
that has multiple q vectors with different wavenumbers, such as
those observed in EuAg4As234 and EuAl435; however, such an
anisotropic magnetic texture is beyond the scope of our model
Hamiltonian based on the continuum approximation [see Eq. (15)
in the “Methods” section].
To conclude, we have revealed analytically and numerically the

symmetry of the emergent inductance tensor exhibited by pinned
magnetic textures. We focused on the adiabatic limit, where the

Lxx

Lyx
Lyy

Lxy

�1 cos2 �
�1 sin � cos �

�1 sin2 �

 × 10-21
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-1

 -3
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 0 -30 -45 30 45 -15  15

�1 =3.11 × 10-21

~
~
~
~

-2

 2

Fig. 4 Numerically obtained inductivity tensors of helical mag-
netic textures for various q-directions. The θ= 0 represents the q-
direction parallel to the x-axis. The solid symbols are the data
obtained by the micromagnetic simulations, and the solid curves
represent the corresponding trigonometric functions multiplied by
λ1= 3.11 × 10−21 Hm. The simulations were done for β= 0.

Table 1. Parameters used for the micromagnetic simulations displayed in Fig. 2.

Magnetic texture Magnetic field Kimp Disorder density Current density Frequency

(T) ×107 (J m−3) (%) × 1010 (Am−2) (MHz)

Helix (θ= 0, ± 20°, ± 45°) 0 0.1 0.3 5.0 50

Maze-helix 0 2.0 3 2.0 50

SkL 0.3 1.0 3 1.0 10

The disorder density was chosen as low as possible while confirming the linear response of the pinned magnetic textures under a given current density.

F H F

×10-21

Tr
an

sv
er

se
 in

du
ct

iv
ity

 (H
 m

)

 0

-0.5

-1.5

 0.5

 1.5

 0.2-0.2-0.4  0.0 0.4

Magnetic field (T)

-1.0

1.0

(� = 45 )
SkL SkL

Fig. 3 Magnetic-field dependence of the transverse inductivity. H,
SkL, and F denote the single-q-helix with θ= 45°, skyrmion lattice, and
ferromagnetic state, respectively. The disorder density and strength
Kimp (see “Methods”) is fixed to 3% and 1.0 × 107 Jm−3, respectively. The
simulations were done for β= 0. When β is non-zero, the effective

inductivity tensor ~L
eff
ij should be discussed (~L

eff
ij ¼ Im ½ρijðωÞ � ρijð0Þ�=ω):

The magnetic-field dependence of the transverse components of ~L
eff
ij at

finite β is shown in Fig. S1 and discussed in Supplementary Note 2.

Note that ~L
eff
ij is a different quantity from the inductivity tensor defined

by Eq. (11).
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inductance tensor is well defined by ei ¼ ~Lik
djk
dt . We thus found

that the inductance tensor is a real symmetric tensor, and hence,
the presence and magnitude of the transverse component are
determined by the degree to which the measurement axis is tilted
from the principal axis that generates the diagonalized tensor. As
a natural consequence of the real symmetric tensor, the transverse
component does not change sign with respect to the magnetic-
field reversal. These fundamental aspects of the emergent
inductance tensor will be useful when exploring the transverse
inductive response in a magnetic texture. However, it must also be
noted that when nonadiabaticity is not negligible, the electric
response produced by magnetic textures may not be described by
an inductance tensor in the strict sense defined by Eq. (4).

METHODS
Numerical model
In this study, we consider long-period helical magnetic textures
that are stabilized by the Dzyaloshinskii–Moriya (DM) interac-
tion36,37. We consider dirty systems including randomly distrib-
uted disorder. Our model Hamiltonian is:

H ¼
Z

d3r
a3

J
2
ð∇mÞ2 þ Dm � ð∇ ´mÞ

� �

�
X
k2Λ

Z
Vk

d3r K impðmk � nimp;kÞ2
(15)

where J is the Heisenberg exchange energy, D is the DM
interaction and a is the lattice constant. The extrinsic pinning
effect is controlled by the last term of Eq. (15), which is introduced
to randomly selected cells to break the translational symmetry:
Kimp(>0) represents the magnetic-easy-axis anisotropy along a
randomly chosen direction, nimp,k, at the k-th cell (the cell volume
Vk is 33 nm3), and Λ is a set of random numbers. The disorder
density displayed in Table 1 represents the ratio of the number of
cells with finite Kimp to the total number of cells (243 × 243).
When simulating the current-induced dynamics of a given

helical magnetic structure, we insert the spin Hamiltonian into the
following Landau–Lifshitz–Gilbert (LLG) equation33:

dmrðtÞ
dt

¼ � jγj
1þ α2

dH
dmr

´mr � αjγj
1þ α2

mr ´
dH
dmr

´mr

� �� �

þ 1
1þ α2

ð1þ βαÞf mr ´ ½mr ´ ðu � ∇Þmr�
þðβ� αÞ½mr ´ ðu � ∇Þmr�g;

(16)

where u represents the spin drift velocity, α is the Gilbert damping
constant, β is a dimensionless constant that characterizes the
nonadiabatic electron spin dynamics, and γ ( > 0) is the gyromag-
netic ratio; u is related to the electric current density j by
u ¼ PμB

2jejMsð1þβ2Þ j, where μB is the Bohr magneton and Ms is the

saturation magnetization. When implementing the micromagnetic
simulation, we use the open software MuMax3 (https://
mumax.github.io/download.html)38. We choose the following
parameter set: J/(2a3)= 1.8 × 10−11 J m−1, D/a3= 2.8 × 10−3 J m−2,
Ms= 2.45 × 105 Am−1, P= 1, and α= 0.04.
In the simulation, we apply a current density of a sufficiently

small magnitude so that the magnetic system is certainly in the
linear-response regime; that is, with respect to the input
alternating electric current along the x- or y-direction, jiðtÞ ¼
j0;i sinωt (i= x, y), the magnetic system is in the pinned regime,
and the output AC emergent voltage, Ve,i(t), is
/ j0;kω cosωt ði; k ¼ x; yÞ. Based on these observations, Lij is
derived from the following equations:

Ve;iðtÞ ¼ heiðtÞiℓ ¼ Lij
dðIjðtÞÞ

dt
; (17)

where 〈⋯〉 denotes a spatially averaged value, the system length ℓ
is 243 × 3 nm, and I= jS with the cross-section area
S= 243 × 1 × 32 nm2. In the present frequency range (≤100MHz),
it is confirmed that the inductivity is independent of ω (i.e., 〈ei〉∝ω)
(Fig. S2) and the α dependence of the numerical results is negligibly
small (Fig. S3) (see also Supplementary Note 4). The numerical
accuracy of MuMax3 is Δm/∣m∣~10−7, and the typical increment of
Δm/∣m∣ in one time step (4 ps) is ~10−5 under the current
application of ~1010 Am−2. This finite accuracy eventually gives
rise to an uncertainty of ~10−23 Hm in the calculated inductivity.
In the numerical simulation, a uniform current density is

considered to understand fundamental aspects of the inductivity
tensor. On the other hand, the local ρxx and ρyx may be non-
uniform in real material, reflecting spatial variations in magnetic
textures. Nevertheless, the uniform current is a good approxima-
tion as long as 〈ρxx〉≫ δρxx, δρyx, where δρxx and δρyx represent
the magnitude of the spatial variations. For instance, in the chiral
magnet MnSi at 10 K, the presence or absence of the metastable
skyrmion lattice changes ρxx and ρyx by ≈ 50 nΩ cm
and ≈ 30 nΩ cm, respectively, whereas ρxx ≈ 5 μΩ cm39. Such
magnetic-texture-dependent ρxx and ρyx imply that 〈ρxx〉≫
δρxx, δρyx holds, although the precise estimation of the spatial
variations is experimentally difficult; thus, the current uniformity is
well expected. If δρxx and δρyx are significant, the current
distribution should be determined self-consistently; for instance,
see ref. 40.

Initial-state preparation
To obtain various metastable magnetic textures, a pristine helical
texture with a different oblique angle of the helical q-vector, a
random spin configuration, or a SkL is prepared as an initial state
and then relaxed under zero current. Note that imposing the
open-boundary condition and introducing disorder are key in
obtaining the intended magnetic textures.

DATA AVAILABILITY
The data used in this work are available from the corresponding author upon
reasonable request.
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