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Coincidence measurement has become an emerging technique for optical imaging. Based on
measuring the second-order coherence g2, sample features such as reflection/transmission
amplitude and phase delay can be extracted with developed algorithms pixel-by-pixel. However, an
accurate measurement of g2 requires a substantial number of collected photons which becomes
difficult under low-light conditions. Here, we propose a deep-learning approach for Jones matrix
imaging using photon arrival data directly. A variational autoencoder (β-VAE) is trained using numerical
data in an unsupervised manner to obtain a minimal data representation, which can be transformed
into an image with little effort. We demonstrate as few as 88 photons collected per pixel on average to
extract a Jones matrix image, with accuracy surpassing previous semi-analytic algorithms derived
from g2. Our approach not only automates formulating imaging algorithms but can also assess the
sufficiency of information from a designed experimental procedure, which can be useful in equipment
or algorithm designs for a wide range of imaging applications.

In quantum optics, the utilization of coincidence measurement of photon
pairshas emerged as avaluable tool fordiverseusages, suchasdistinguishing
between classical and quantum light sources, identifying entangled photon
pairs, quantum state characterizations, and two-photon imaging1–7. In the
applications of two-photon imaging with quantum interference, this tech-
nique is primarily based on the measurement of the second-order coher-
ence, g2(τ), which describes the distribution of coincidence events between
two photons with an optical delay τ. By extracting the information stored in
g2(τ), researchers have successfully harnessed this technique for imaging
applications. It has shown effectiveness in imaging the reflection/trans-
mission amplitude and phase delay profiles of samples and can also be
leveraged for hologramgeneration and super-resolution imaging8–13.On the
other hand, two-photon imaging can also employ the entanglement
between photon pairs. With the adoption of heralded photons and coin-
cidence measurements, there have been recent demonstrations of the
implementation of multiplexed holography and remote control on the
imaging arm14,15. Such a heralding technique can improve the signal-to-
noise ratio, making coincidence measurements potentially useful for ima-
ging under low-light conditions16,17.

Metasurfaces, comprised of a single layer of nanostructures, possess
the ability to manipulate different degrees of freedom (DOFs) of light,
including phase18–21, polarization22–26, wavelength27–31, and orbital angular
momentum32–36 in fine resolution.With the development ofmetasurfaces,
they have emerged as highly effective platforms in various imaging

applications, including super-resolution imaging, computational holo-
graphy, multicolor imaging, and hyperspectral imaging28,37–40. In the
quantum realm, metasurfaces enable the generation of high-dimensional
entangled states, the control of two-photon interference, quantum state
tomography, and quantum emission41–44. Concerning quantum imaging
applications involving metasurfaces, the use of coincidence measure-
ments has facilitated demonstrations such as image edge detection,
achieved through a high-efficiency dielectric metasurface, and the ima-
ging of metasurface polarization responses using the heralding technique
with entangled photons45,46. Moreover, regarding the Jones matrix ima-
gingwhichplays a pivotal role in the realmof studying light polarization in
various applications, there have been demonstrations to simplify the
traditional techniques for Jones matrix characterizations requiring a sig-
nificant number of measurements47–49, by employing Fourier
ptychography50,51 and the method of Fourier space sharing52,53. Notably,
recent works have showcased metasurface-driven polarization and Jones
matrix profile imaging for an unknown object using Hong-Ou-Mandel
(HOM)-type interference54,55. By employing referencemetasurface panels
with known polarization responses together with an object in pairwise
coincidence measurements, the unknown polarization responses of the
object can be extracted at the pixel-by-pixel level from the HOM visibi-
lities obtained from g2(τ). The tailor-made quantum metasurfaces hold
significant potential for providing additional resources for parallelizing
different optical experiments45–56.
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Meanwhile, machine-learning (ML) techniques have proven to be
valuable in quantum optical applications, which encompass quantum
device optimization, the automation of quantum experiments, and quan-
tum state tomography57–59.When compared with conventional approaches,
ML techniques have exhibited higher efficiency and accuracy in classifying
quantum and classical light sources, as well as in extracting spatial modes of
light under low-light conditions60–62. Furthermore, a deep-learning (DL)-
assisted approach has been developed for antibunching super-resolution
imaging by predicting g2(0), providing substantial enhancements in speed
compared to conventional coincidence measurements63. However, when
the number of collected photons is limited, it is more difficult to identify
g2(0) accurately. In fact, for many quantum imaging applications, g2(0) can
be further utilized to extract sample features such as reflection/transmission
amplitude and phase delay profiles with additional algorithms to be
developed8–11. In these cases, further developing the DL techniques has the
potential to extract the sample features directly from the measured photon
arrival data in amore versatile and automaticmanner, even in the low-light
regime.

In this work, we have developed a DL-assisted approach for coin-
cidence imaging under low-light conditions for Jones matrix extraction. By
combining a variational autoencoder (β-VAE)64 with a regression network,
our proposed method automatically obtains images of object features
directly from the measured photon arrival data, eliminating the need for
manually derived algorithms. The β-VAE can determine whether the data
collected from our designed experimental procedure contains sufficient
information for feature extraction and generate aminimal representation of
data, which can be transformed into an image with little effort. Specifically,
we demonstrate its application to image Jones matrix profiles of meta-
surfaces. The imaging outcomes highlight that our DL-assisted approach
surpasses the previous semi-analytic algorithm55 derived from g2(0) in terms
of both efficiency and accuracy. The versatility and flexibility of thismethod
allow it to be used in other imaging applications in addition to quantum
imaging, such as medical imaging and ultrasound imaging65,66.

Results
Wecommencebyoutlining the experimentalworkflowand introducingour
previous semi-analytic algorithm for Jones matrix imaging, while also
acknowledging its limitations55. As illustrated in Fig. 1a, the sample is illu-
minated with a photon pair, with an optical delay τ and orthogonal circular
polarizations. Subsequently, the transmitted photons are projected to the
analyzed polarization state via a quarter-wave plate (QWP) and a polarizer,

before being detected by a single-photon avalanche diode (SPAD) camera.
As depicted in Fig. 1b, the sample consists of a metasurface featuring both
reference and object regions.Within the reference region, there are 4 panels
schematically exhibiting varied predetermined transmission polarization
responses, each of which can be represented using a Jones matrix:

tðiÞLL tðiÞLR
tðiÞRL tðiÞRR

 !
¼ tref

1 e�2iθi

e2iθi 1

 !
; ð1Þ

where L and R denote left-handed circular polarization (LCP) and right-
handed circular polarization (RCP), respectively. Each reference panel
functions as a polarizer with an identical transmission amplitude tref, yet
featuring various passing axis angles θi equal to 0, π/4, π/2 and 3π/4
(designated as H, D, V, and A, respectively). These orientations are
illustrated by the red double-arrows with differing directions in Fig. 1b. In
the sample employed for this study, each reference panel that allows a
specific polarization transmission covers 6 pixels (arranged in a 3 by 2
configuration) arriving on the single-photon camera. Conversely, the object
region comprises 576pixels (arranged in a24by24grid)on the camera,with
each pixel corresponding to an unknown Jones matrix. This matrix is most
generally described within the scope of this study as

tðjÞLL tðjÞLR
tðjÞRL tðjÞRR

 !
¼ tj

1 cos θðjÞ� e
�iθðjÞþ

cos θðjÞ� e
iθðjÞþ 1

 !
ð2Þ

where tj represents the overall transmission amplitude, while θðjÞþ (ranging
from 0 to 2π) and θðjÞ� (ranging from 0 to π/2) describe the off-diagonal
elements. {θðjÞþ , θ

ðjÞ
� , tj} are the three parameters to be extracted at each

object pixel.
During the experiment, the SPAD camera captures binary photon

arrival images, indicatingwhether a photon arrives at eachpixel during each
time frame. A coincidence event arises when two distinct pixels both detect
photons within the same time frame. As exemplified in Fig. 1b, the count of
coincidence events between the j-th object pixel and each subpixel of the i-th
reference panel can be deduced from the measured data. These counts are
then averaged over the number of subpixels in the i-th reference panel to be
used. Additionally, the optical delay (τ) is scanned to obtain the second-
order coherence gðijÞ2 ðτÞ, which emerges fromthe coincidence countbetween
the j-th object pixel and the i-th reference panel, showcasing the signal of

Fig. 1 | Schematic of the experimental and fitting
methods for Jones matrix imaging. a Schematic of
the experimental setup. A photon pair with an
optical delay (τ) and orthogonal circular polariza-
tions is generated and directed onto the sample. The
single-photon avalanche diode (SPAD) camera
records the photon arrival data corresponding to the
analyzed polarization. b Schematic of the sample.
The sample consists of a metasurface incorporating
reference and object regions, characterized by
known and unknown transmission responses,
respectively. The coincidence count between any
combination of a reference panel and an object pixel
can be obtained from the acquired data. c The nor-
malized coincidence count (depicted as solid black
dots) plotted against the delay (τ), alongside the
corresponding fitted g2

(ij) curves (shown as solid red
curves) utilizing varying total numbers of time
frames of data. dExtracted Jonesmatrix image of the
object region. The 3 DOFs in the Jones matrix are
represented using an HSB color scheme.
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two-photon interference. In Fig. 1c, the coincidence count (depicted as a
solid black dot) is plotted against the delay (τ) for three different total
numbers of time frames (50, 200, 2000), and the correspondingfitted gðijÞ2 ðτÞ
curves (shown as solid red curves) are presented in the same graph. The
plotted results gðijÞ2 ðτÞ are normalized by the ballistic case without two-
photon interference at large τ. With ample measurement time, the fitted
gðijÞ2 ðτÞ curve closely matches the experimental data. By sweeping all refer-
ence panels (each with a different θi as per Eq. 1) for the j-th object pixel
through post-selection of the results, various fitted gðijÞ2 ðτÞ curves for dif-
ferent i and j canbeobtained.Notably, the gðijÞ2 ðτÞ curvewill exhibit a peakor
dip when the delay (τ) is 0, and we define Vij θi

� �
≜1� gðijÞ2 0ð Þ to char-

acterize the visibility of the two-photon interference. Before introducing the
DL approach, the approximated analyticmodel in ref. 55 for the interference
visibility is given as

Vij θi
� �ffi βþ γ cos 2θi � θ

jð Þ
þ

� �
; ð3Þ

where
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4
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�
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����
����
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 ! !
×

� cos θ jð Þ
�

1þ cos2θ jð Þ
�

: ð5Þ

The 3DOFs {θðjÞþ , θ
ðjÞ
� , tj} of the Jonesmatrix of the j-th object pixel can

be extracted by fitting Vij θi
� �

as function depicted by Eq. 3. The constant
ballistic single-photon count rate for the reference panels, denoted as P bð Þ

ref in
Eq. 4 and Eq. 5, can be directly measured from the experiment at a large
delay. By repeating thefitting approach for all object pixels and encoding the
extracted 3 DOFs in an HSB color scheme, as illustrated in Fig. 1d, a Jones
matrix profile of the object region can be obtained. Specifically, the hue (H),
saturation (S), and brightness (B) of theHSB color scale aremapped to the 3

DOFs of the Jones matrix using H ¼ π þ θþ (mod 2π), S ¼ cos θ� and
B = tr, where tr is defined as the relative transmission amplitude jtj=tref j
between the object pixel and reference pixel, ranging from 0 to 1. More
details about the experimental setup are discussed in Supplementary
Information.

However, due to the probabilistic nature of photon arrival events, this
fitting approach requires a substantial number of time frames in the
experiment to accumulate a sufficient number of photons for obtaining
well-fitted gðijÞ2 ðτÞ curves, as illustrated in Fig. 1c. Moreover, this approach
demands considerable effort in developing an effective analytical model for
extracting the Jonesmatrix (Eqs. 3 to 5), which poses challenges in adapting
it to various other applications. In contrast, the present study employsDL to
address these limitations. Another objective is to investigate whether the
DL-assisted approach can outperform the fitting method, particularly by
using a reduced number of time frames of experimental data. In other
words, the aim is to achieve imaging with the smallest possible number of
photons.

We now introduce a DL methodology for Jones matrix imaging by
combining feature extraction and regression approaches. The training
data is generated as follows. As shown in Fig. 2a, various arrangements of
the 3DOFs, fθðjÞþ ; θðjÞ� ; tjg defined by Eq. 2, are initially generated randomly
from the uniform distributions U 0; 2πð Þ;Uð0; π2Þ and Uð0:1; 0:5Þ,
respectively. Each configuration corresponds to a possible sample for
imaging, comprising an object pixel (indexed as j) characterized by the
unknown 3 DOFs and four reference pixels (H, D, V, and A) possessing
predetermined Jones matrix elements outlined in Eq. 1. It is important to
note that each object pixel is constructed with an ‘interleaved’ structure
featuring plasmonic nanoslots, where two pairs of nanoslots possess the
same length but different rotation angles, thereby controlling the 3 DOFs
of the Jones matrix.

Subsequently, we simulate the probabilistic photon arrival events,
including two-photon interference (τ = 0), for both the object and reference
pixels (total of 5 pixels) within each configuration. In particular, considering
that LCP is analyzed in the experiment, the coherent amplitudes of photon
pairs before detection by the camera for the reference (indexed as i) and

Fig. 2 | Workflow of the DL approach for Jones matrix imaging. a Random
generation of diverse configurations of fθðjÞþ ; θðjÞ� ; tjg corresponding to various object
pixels. Each object pixel is realized through an ‘interleaved’ structure featuring two
pairs of nanoslots. For the j-th configuration, a correlationmatrixCj, for the different
reference panels (row index) and different time frames (column index), is obtained
through simulation and input into the β-VAE. The β-VAE’s objective is to uncover
the DOFs within the input data, encapsulating them within meaningful latent

variables. Subsequently, these variables are converted into the DOFs of the Jones
matrix via a regression network trained in the subsequent stage. b, c Statistics
depicting distribution parameters of the extracted latent variables. The meaningful
latent variables fL1; L3; L5g are characterized by the variance of μnproximate to 1 and
the mean of σ2n close to 0. Conversely,fL2; L4g do not carry pertinent information
about the input data.
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object (indexed as j) pixels in each time frame can be described as

αi ¼ tðiÞLLαL þ tðiÞLRαRe
iϕ

αj ¼ tðjÞLLαL þ tðjÞLRαRe
iϕ

ð6Þ

where jαLj ¼ jαRj ¼ 1=
ffiffiffi
2

p
(set as the coherent amplitudes of the incident

photons without losing generality), and the random variable ϕ, sampled
from a uniform distribution Uð0; 2πÞ, represents the phase randomization
of the incident photon pairs in the experiment. We have assumed that the
photon pairs are generated through a weakly coherent light source. The
number of photons (n) detected by the camera for the 5 pixels (4 reference
pixels and 1 object pixel) in each time frame is sampled from a Poisson
distribution PoisðμdetÞ, where μdet signifies the expectation value of the
number of detected photons, accounting for factors like incident power,
sample transmission, and detector efficiency. Each of these n detected
photons is then randomly assigned to one of the 5 pixels based on the

conditional probabilities αi
�� ��2=ðPi αi

�� ��2 þ αj

��� ���2) for the four reference

pixels and αj

��� ���2=ðPi αi
�� ��2 þ αj

��� ���2Þ for the object pixel. Further details

regarding the simulation model are discussed in the Supplementary
Information.

With the simulated photon arrival data in place, we can form a cor-
responding correlation matrix Cj for each configuration. This matrix
records the coincidence events between the object pixel and each reference
pixel in each independent time frame, as illustrated in the lower panel of
Fig. 2a. Rows and columns of Cj correspond to reference pixels and time
frame indices, respectively. A value of ‘1’ for eachmatrix element indicates a
coincidence event, while ‘0’ indicates otherwise. To streamline the use of the
data with minimal post-processing in later stages, we directly input the Cj

(after beingflattened into a vector) into theβ-VAEnetwork, consisting of an
encoder and a decoder as depicted in Fig. 2a. This probabilistic network
model aims to identify the most concise representations of the input data.
Specifically, during the unsupervised training process, the encoder encodes
the input data into independentGaussian distributions (withmean {μn} and
variance fσ2n}) fromwhich the compressed latent variables {Ln} are sampled.
The randomly sampled latent variables {Ln} are then employed by the
decoder to produce and parameterize the distribution fromwhich the input
data can be generatedwithmaximal likelihood67. Notably, a sample of latent
variable Ln ∼Nðμn; σ2nÞ is generated by Ln ¼ μn þ σnεn to ensure the
differentiability in the training process, where εn is a random number
sampled from a unit Gaussian distributionN 0; 12

� �
: The loss function of

the β-VAE in this work is defined as

Cj � Cr
j

��� ������ ���2
2
þ β

X
n

DKL½Nðμn; σ2nÞjjNð0; 12Þ� ð7Þ

The first term aims to minimize the mean-squared error (MSE)
between theflattened input and output correlationmatrices (flattened into a
vector), while the second term aims to minimize the Kullback-Leibler
divergence, aligning the probabilistic distributions of {Ln} with independent
unit Gaussian distributions Nð0; 12Þ. The adjustable hyperparameter β
strikes a balance between reconstruction quality and the disentanglement of
latent variables64. We note that the binary cross entropy (BCE) can also be
used instead of MSE to formulate the loss function in Eq. 7, with a similar
performance presented in Fig. S3. More details about the β-VAE are
involved in Supplementary Information. It is important to note that the β-
VAE has the capability to determine the number of DOFs inherent in the
input data, a revelation evident through the meaningful latent variables. In
the current case, it is expected that thenumberofmeaningful latent variables
will be exactly 3. If it is larger than 3, it indicates that the network has not
been adequately trained. Conversely, if it is less than 3, it suggests that the
experimental procedure is not sufficiently designed to gather adequate

information, pointing to an upgrade of the experimental procedure.With a
properly trained β-VAE network in place, the subsequent step involves
training an additional regression network. This network is designed tomap
the extracted meaningful latent variables to the corresponding 3 DOFs

fθ jð Þ
þ

0
; θ jð Þ

�
0
; t0jg of the Jonesmatrix.The input of such a regressionnetwork is

already theminimal representation of the data,making such a network very
efficient.Overall, armedwith the successively trained β-VAEand regression
networks, the 3 DOFs of each object pixel can be extracted from their
corresponding correlation matrix.

We generate a total of 50,000 datasets, each comprising distinct con-
figurations of fθðjÞþ ; θðjÞ� ; tjg and their corresponding correlationmatrices {Cj}
via numerical simulations. Each dataset includes a total of 2,000 time frames
to ensure generality. Considering the probabilistic nature of photon arrival
and each time frame is independent of the others, wemanually permute the
sequence of time frames in {Cj} for each dataset. This permutation does not
affect the probability of coincidence events and enforces time translational
symmetry in the network. This step allows us to expand the datasets to
200,000 instances,with 81%allocated for training, 9% for validation, and the
remainder for testing. The β-VAE is designed with an input size of 8000 (4
reference pixels by 2000 time frames), and both the encoder and decoder
consist of 3 hidden linear layers (fully connected layers), capable of
extracting up to 5 latent variables. We deliberately set more than 3 latent
variables in the latent space to verify the β-VAE’s ability to extract the
number of DOFs later. In the unsupervised training process, the loss
function in Eq. 7 is employed to optimize the β-VAE. Here, to balance the
training time and the capability of DOFs extraction, β is set to 1, with
theADAMoptimizer and an initial learning rate of 0.0003.Wenote that the
other values of β around 1 (ranging from 0.3 to 1.5 in our case) can also
achieve a similar performance. Very high values of β may result in no
meaningful latent variables and very low values of β may fail to enforce
independence constraints of the latent variables68. By applying the testing
data from simulations to the trained encoder, we acquire the statistics of
distribution parameters {μn} and fσ2ng of the extracted latent variables. As
demonstrated in Fig. 2b, c, the trained β-VAE correctly identifies the
number of DOFs in the data. This is evident through the three latent vari-
ables fL1; L3; L5g with high variance (close to 1) in μn and low mean in σ2n
(close to 0)68. The threemeaningful latent variables are expected to represent
the 3 DOFs in the Jones matrix, as illustrated in Fig. S4. Conversely, the
remaining two latent variables exhibit no meaningful information, as
indicated by their distribution parameter statistics. Subsequently, a regres-
sion network, constructed with fully connected layers in a 3-50-50-50-50-4
configuration, is trained using the same training data. This network trans-

forms fL1; L3; L5g into the 3 DOFs of the Jones matrix. Given that θðjÞþ is a

cyclic variable ranging from 0 to 2π, we employ fsin θ jð Þ
þ ; cos θðjÞþ g as output

from the regression network. The loss function used to optimize the
regression network is theMSE. For additional details about the architectures
of both the β-VAE and regression networks, refer to Fig. S2. As shown in Fig.
S5, the testing results of the regression network reveal that the Pearson
correlation coefficients between the target and predicted variables average at
0.93. This outcome suggests that the extracted latent variables fL1; L3; L5g
experience little information loss and can be successfully reformulated into
the 3 DOFs of the Jones matrix. Notably, owing to the time translation
symmetry, we can apply the above trained β-VAE to Cj matrices with any
numbers of time frames (≤2000) through padding for convenience, instead
of training a series of β-VAE networks for each different number of time
frames. For instance, by replicating aCj containing a total of 100-time frames
by 20 times, we can obtain a paddedC0

j with 2000 time frames, matching the
input size of the trained β-VAE. Moving forward, in subsequent stages, we
utilize experimental datameasured from the SPADcamera to test the trained
networks and extract Jones matrix images from the samples.

It is worth noting that instead of directly training a supervised neural
network tomap the correlationmatrix into the DOFs of the Jonesmatrix as
a black-box process, our proposed DL approach offers distinct advantages,
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particularly when dealing with intricate and high-dimensional datasets. In
such scenarios, it can be challenging to determine what components are
crucial for accurate forward prediction without any prior physical insights.
In our methodology, the extensive dataset is navigated through an unsu-
pervised network (β-VAE) that automates the quest for minimal repre-
sentations of the data. This automation seeks to identify the exact number of
DOFs while a relatively simple supervised network is employed in the final
phase to revert theseminimal representations back to the correct scale of the
imaging variables. The abilities to assess the information sufficiency and to
extract DOFs achieved by the β-VAE collectively bestow a potent tool for
automatic information extraction and model development. This approach

empowers amore automated and efficient exploration of data, aiding in the
extraction of essential physical insights.

To compare our proposed DL approach with the previous fitting
algorithm (approximated analytical model), we initially showcase a single
DOF case of Jones matrix imaging in Fig. 3. In this scenario, we introduce a

variable profile for the argument of the off-diagonal elements θðjÞþ in Eq. 2,

while maintaining θðjÞ� ¼ 0 and | tjj ¼ jtref j. The target phase profile {θðjÞþ g,
color-coded as hue (H), is intentionally designed to resemble an apple shape,
as illustrated in the inset of Fig. 3c. To ensure a fair comparison, the same
experimental data is employed for both methods. By applying the

Fig. 3 | Extracted Jones matrix images and performance from the fitting algo-

rithm and DL on one DOF case. a, b Extracted images of {θ
jð Þ

þ
0
} using different

numbers of time frames of experimental data from the fitting algorithm on a, andDL
on b. cThe error of extracted images from the two differentmethods. The error from

DL is lower than that from the fitting method when the number of time frames is
small. Also, the DL approach needs fewer number of time frames to achieve con-
vergence. The target profile of {θðjÞþ } is coded into hue color and shown in the insert of
the right panel.

Fig. 4 | Extracted Jonesmatrix images and performance from the two approaches
on 3 DOFs case. a, b Extracted Jones matrix images using different numbers of time
frames of experimental data from the fitting algorithm on a, and DL on b. c The

performance between the target and extracted images from the two methods. The 3
DOFs in the Jones matrix are coded with an HSB color scheme.
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approximated analytical model from Eqs. 3 and 5 and subsequently fitting,
we present the extracted images using varying total numbers of time frames
(ranging from 10 to 100) for the fitting algorithm, as depicted in Fig. 3a. In
addressing the presence of dead pixels within the SPADcamera, these pixels
are substituted with the average value of their neighboring counterparts.

Nonetheless, the extracted images of fθ jð Þ
þ

0
g from the fitting algorithm,

utilizing limited total numbers of time frames, exhibit significant noise,
rendering it challenging to discern the object. Conversely, the images of

{θ
jð Þ

þ
0
g extracted from the DL approach using the same quantity of time

frames are showcased in Fig. 3b. Notably, these images progressively
improve in clarity and exhibit reduced noise as the time accumulation
increases.

In Fig. 3c, we draw a comparison between the performance of the two
distinct methods employed for imaging. As θ+ is a cyclic variable and is
color-coded as hue (H), we introduce the term “errorH” defined as

errorH ¼ 1
Nπ

X
x;y

min Hx;y �H0
x;y

��� ���; 2π � Hx;y � H0
x;y

��� ���� �
; ð8Þ

which can range from0 to 1. Thismetric quantifies the discrepancy between
the target (Hx,y) and extracted (H0

x;y) images, where x and y denote pixel
indices in two dimensions, and N is the total number of object pixels.
Examining the left panel of Fig. 3c, it becomes evident that, with the con-
straint of a limited total number of time frames, the image error originating
from the DL approach is notably lower than that produced by the fitting
algorithm with around 50% improvement. This observation aligns con-
sistently with the quality of the extracted images presented in Fig. 3a, b.
Additionally, the right panel of Fig. 3c illustrates the comparative perfor-
mances of the two methods based on a larger total number of time frames.
When assessing the image error convergence over time frames, the DL
approach achieves convergence around 200-time frames, yielding an error
of approximately 0.1. The extracted imagesutilizing larger quantities of time
frames of data are showcased in Fig. S6. Remarkably, the DL approach can
successfully extract the apple-shaped objectwith just 30 total time frames (at
1.5 times the converged error), equivalent tomerely 14photons collectedper
pixel during the experiment.

Taking into account its generality, we also present the application of
both approaches to Jones matrix imaging encompassing all the 3 DOFs. In

this instance, all 3 DOFs θðjÞþ ; θ
ðjÞ
� ; tj

n o
within the object region undergo

variation, and the intended Jones matrix image is encoded within an HSB
color bar, showcased in the inset of Fig. 4c. Figure 4a, b are the derived Jones
matrix images using varying total numbers of experimental time frames
(ranging from 100 to 1000) for the fitting and DL approaches, respectively.
As the total number of time frames escalates, the images obtained via the
fitting algorithm continue to exhibit some level of noise. Conversely, theDL
approach is able to deduce a clear image resembling the target with
approximately 400 total time frames of data with converged image quality.

We note that compared to the cyan background (θðjÞþ ¼ 0) in the target
image, the background of the extracted images from the DL approach has a

slight bias (θ
jð Þ

þ
0
is 1.92πonaverage for these pixels) resulting fromthe cyclic

property of θ+ (see Figs. S5 and S7). The extracted images utilizing larger
numbers of time frames of data are showcased in Fig. S6. By calculating the
distanceon apixel-by-pixel basiswithin theHSBcolor space (in a cylindrical
coordinate system) between the target ðHx;y; Sx;y;Bx;yÞ and extracted
ðH0

x;y; S
0
x;y; B

0
x;yÞ images, we introduce the following definition of error

distance:

errorHSB ¼ 1ffiffiffi
5

p
N

X
x;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sx;y � S0x;y
� �2

þ 4Sx;yS
0
x;ysin

2
Hx;y � H0

x;y

2
þ Bx;y � B0

x;y

� �2s
;

ð9Þ

which ranges from 0 to 1. It serves as an evaluativemeasure of the quality of
the extracted Jones matrix images from both methods. As illustrated in the
left panel of Fig. 4c, it is evident that the error stemming from the DL
approach is markedly smaller compared to the error originating from the
fitting algorithm. Notably, the error from the DL approach converges to be
lower than 1.5 times the converged error at around 200-time frames,
corresponding to 88 photons collected per pixel during the experiment.
Moreover, we can “decompose” the errorHSB into two components
(averaged error distance projected into a subspace up to an arbitrary
constant), each defined as follows:

errorHS ¼ 1ffiffiffi
5

p
N

X
x;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sx;y � S0x;y
� �2

þ 4Sx;yS
0
x;ysin

2
Hx;y � H0

x;y

2

s

ð10Þ

errorB ¼ 1ffiffiffi
5

p
N

X
x;y

jBx;y � B0
x;yj: ð11Þ

These components are illustrated in the middle and right panels of
Fig. 4c, respectively. The errorHS, which pertains to θ+ (H) and cosθ_ (S)
within the 2D polar coordinate system, constitutes the major portion of the
total error for both methods. However, the errorHS resulting from the DL
approach is notably smaller. Particularly significant is the observation that
the errorB, associated with tr (B), is nearly negligible in the DL approach,
distinctly smaller than in thefitting algorithm.Upon analyzing the extracted
profiles of the 3 DOFs separately, as demonstrated in Fig. S7, it becomes
evident that the noise present in the extracted images shown in Fig. 4a
predominantly originates from the tr channel. Notably, althoughwe utilized
the semi-analytic algorithm with different approximations to extract the
Jones matrix image, the proposed DL method still exhibits better perfor-
mance, as illustrated in Fig. S8. The superior performance exhibited by the
DL approach in contrast to the fitting method indicates that the latter’s
approximation possesses room for improvement for the semi-analytic
model. From this perspective, the integration of DL in algorithm formula-
tion sets an “upper bound” on the potential attainable via an analytic
algorithm, offering guidance for imaging equipment designs and algorithm
developments.Moreover, wenote that by using simulationdata for training,
there can be potential mismatches between the realistic experimental
situation and the idealized simulations69,70: dead pixels can appear occa-
sionally and some of the pixels need longer setup time in our case. We
envision that it is also possible to directly use experimental data for training
purposes to further improve the image qualities71.

Discussion
Our DL approach can assess the sufficiency of information present within
data obtained from a given experimental procedure. Such capability to
differentiate the sufficiency of information in data is beneficial for us to
distinguish between well-posed and ill-posed experimental procedures.
Here, we have applied such an approach to find theminimal representation
of photon arrival data to formulate an algorithm for Jonesmatrix imaging in
the low-light regime. As a result, less than a hundred photons per pixel are
needed toobtain anaccurate image,which is a significant improvement over
the previous algorithm. In low-light imaging where the imaging process
becomes probabilistic or noisy in nature, a DL approach is particularly
useful to obtain the optimal algorithm to get a clear imagewhen the number
of photons is limited. In other words, in benchmarking existing algorithms,
theDL approach can thus tell us whether the existing algorithms are already
optimal. As a whole, such an approach will be generally helpful for devel-
oping equipment and the associated algorithms for a wide range of imaging
applications, including low-light imaging72,73, nondestructive testing74,
ultrasound imaging66, and depth detection75.
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Methods
The sample fabrication flow utilized in this work is as follows. Before the
fabrication, the glass substrate undergoes a 24-hour immersion in con-
centrated sulfuric acid. It is then cleaned sequentially using distilled water
and acetone. Next, a 50nm-thick silver film is deposited onto the substrate
using anE-beamEvaporator (AST600EIEvaporator)with adeposition rate
of 1 Å/s. To complete the process, the designed nanoslot pattern is written
onto the silver film using a focus ion beam (FEI Helios G4 UX, 30 kV,
41 pA). At this stage, the metasurface is prepared and ready for experi-
mentation. More details about the experimental setup are discussed in
Supplementary Information.

Data availability
The datasets used and analyzed during the current study are available from
the corresponding author upon reasonable request.
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