Nature Cell Biology Nature Cell Biology publishes peer-reviewed original research of the highest quality in all areas of cell biology with an emphasis on studies that provide insights into the molecular mechanisms underlying cellular processes. The journal&rsquo;s scope is broad and ranges from cytoskeletal dynamics, membrane transport, adhesion and migration, cell division, signalling pathways, development and stem cells, to molecular and cellular mechanisms underlying cancer. Nature Cell Biology provides timely and informative coverage of cell biological advances. http://feeds.nature.com/ncb/rss/current Nature Publishing Group en © 2024 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Nature Cell Biology © 2024 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. permissions@nature.com Nature Cell Biology https://www.nature.com/uploads/product/ncb/rss.png http://feeds.nature.com/ncb/rss/current <![CDATA[RIPK1 and necroptosis role in premature ageing]]> https://www.nature.com/articles/s41556-024-01390-2 Nature Cell Biology, Published online: 27 March 2024; doi:10.1038/s41556-024-01390-2

Progeria, or premature ageing, is a devastating condition caused by defects in the nuclear envelope and is associated with systemic inflammation. A study now shows in animal models that inhibiting necroptosis, and particularly activity of the RIPK1 kinase, reduces inflammation and results in a meaningful extension in lifespan1.]]>
Panxue WangJohn Silke doi:10.1038/s41556-024-01390-2 Nature Cell Biology, Published online: 2024-03-27; | doi:10.1038/s41556-024-01390-2 2024-03-27 Nature Cell Biology 10.1038/s41556-024-01390-2 https://www.nature.com/articles/s41556-024-01390-2
<![CDATA[Reconstituting the dynamic steady states of actin networks in vitro]]> https://www.nature.com/articles/s41556-024-01379-x Nature Cell Biology, Published online: 27 March 2024; doi:10.1038/s41556-024-01379-x

Despite the constant renewal of their components, cellular actin networks maintain their overall appearance, through a subtle balance of filament assembly and disassembly. This balance is key to the remodelling of cellular architecture. We discuss the significance of in vitro reconstitutions in deciphering the complexity of actin regulation.]]>
Manuel ThéryLaurent Blanchoin doi:10.1038/s41556-024-01379-x Nature Cell Biology, Published online: 2024-03-27; | doi:10.1038/s41556-024-01379-x 2024-03-27 Nature Cell Biology 10.1038/s41556-024-01379-x https://www.nature.com/articles/s41556-024-01379-x
<![CDATA[A palmitoylation–depalmitoylation relay spatiotemporally controls GSDMD activation in pyroptosis]]> https://www.nature.com/articles/s41556-024-01397-9 Nature Cell Biology, Published online: 27 March 2024; doi:10.1038/s41556-024-01397-9

Xu and colleagues identify a sequential palmitoylation–depalmitoylation mechanism that controls GSDMD cleavage by caspases, plasma membrane trafficking and oligomerization, thereby triggering pyroptosis in a spatial and temporal manner.]]>
Na ZhangJian ZhangYuanxin YangHengyue ShanShouqiao HouHongwen FangMin MaZhongwen ChenLi TanDaichao Xu doi:10.1038/s41556-024-01397-9 Nature Cell Biology, Published online: 2024-03-27; | doi:10.1038/s41556-024-01397-9 2024-03-27 Nature Cell Biology 10.1038/s41556-024-01397-9 https://www.nature.com/articles/s41556-024-01397-9
<![CDATA[Defective prelamin A processing promotes unconventional necroptosis driven by nuclear RIPK1]]> https://www.nature.com/articles/s41556-024-01374-2 Nature Cell Biology, Published online: 27 March 2024; doi:10.1038/s41556-024-01374-2

Yang, Zhang et al. identify a non-canonical form of necroptosis driven by nuclear RIPK1-mediated nuclear membrane rupture as a result of ZMPSTE24 deficiency and defective prelamin A processing commonly observed in progeroid disorders.]]>
Yuanxin YangJian ZhangMingming lvNa CuiBing ShanQi SunLingjie YanMengmeng ZhangChengyu ZouJunying YuanDaichao Xu doi:10.1038/s41556-024-01374-2 Nature Cell Biology, Published online: 2024-03-27; | doi:10.1038/s41556-024-01374-2 2024-03-27 Nature Cell Biology 10.1038/s41556-024-01374-2 https://www.nature.com/articles/s41556-024-01374-2
<![CDATA[ACE2-dependent and -independent SARS-CoV-2 entries dictate viral replication and inflammatory response during infection]]> https://www.nature.com/articles/s41556-024-01388-w Nature Cell Biology, Published online: 21 March 2024; doi:10.1038/s41556-024-01388-w

Duan et al. show that ACE2-dependent and ACE2-independent entry of SARS-COV-2 in epithelial cells versus myeloid cells differentially regulates viral replication and inflammatory responses, thereby contributing to COVID-19 progression and pathology.]]>
Tianhao DuanChangsheng XingJunjun ChuXiangxue DengYang DuXin LiuYuzhou HuChen QianBingnan YinHelen Y. WangRong-Fu Wang doi:10.1038/s41556-024-01388-w Nature Cell Biology, Published online: 2024-03-21; | doi:10.1038/s41556-024-01388-w 2024-03-21 Nature Cell Biology 10.1038/s41556-024-01388-w https://www.nature.com/articles/s41556-024-01388-w
<![CDATA[Competence for neural crest induction is controlled by hydrostatic pressure through Yap]]> https://www.nature.com/articles/s41556-024-01378-y Nature Cell Biology, Published online: 18 March 2024; doi:10.1038/s41556-024-01378-y

Alasaadi et al. report the role of hydrostatic pressure in regulating embryonic competence in the developing neural crest.]]>
Delan N. AlasaadiLucas AlviziJonas HartmannNamid StillmanPrachiti MogheTakashi HiiragiRoberto Mayor doi:10.1038/s41556-024-01378-y Nature Cell Biology, Published online: 2024-03-18; | doi:10.1038/s41556-024-01378-y 2024-03-18 Nature Cell Biology 10.1038/s41556-024-01378-y https://www.nature.com/articles/s41556-024-01378-y
<![CDATA[WIPI4 loss linked to ferroptosis]]> https://www.nature.com/articles/s41556-024-01359-1 Nature Cell Biology, Published online: 07 March 2024; doi:10.1038/s41556-024-01359-1

β-propeller protein-associated neurodegeneration (BPAN) is caused by loss of functional WIPI4. A new study reports that depletion of WIPI4 induces ferroptosis via changes in mitochondrial membrane lipids, independently of the role of WIPI4 in autophagy, providing insights into the cause of neurodegeneration in BPAN.]]>
Yang LiuHongyuan Yang doi:10.1038/s41556-024-01359-1 Nature Cell Biology, Published online: 2024-03-07; | doi:10.1038/s41556-024-01359-1 2024-03-07 Nature Cell Biology 10.1038/s41556-024-01359-1 https://www.nature.com/articles/s41556-024-01359-1
<![CDATA[Loss of WIPI4 in neurodegeneration causes autophagy-independent ferroptosis]]> https://www.nature.com/articles/s41556-024-01373-3 Nature Cell Biology, Published online: 07 March 2024; doi:10.1038/s41556-024-01373-3

Zhu et al. show that loss of WIPI4, as seen in β-propeller protein-associated neurodegeneration, causes ferroptosis independently of autophagy due to an imbalance in phosphatidylethanolamine levels.]]>
Ye ZhuMotoki FujimakiLouisa SnapeAna LopezAngeleen FlemingDavid C. Rubinsztein doi:10.1038/s41556-024-01373-3 Nature Cell Biology, Published online: 2024-03-07; | doi:10.1038/s41556-024-01373-3 2024-03-07 Nature Cell Biology 10.1038/s41556-024-01373-3 https://www.nature.com/articles/s41556-024-01373-3