Nature Neuroscience Nature Neuroscience provides the international neuroscience community with a highly visible forum in which the most exciting developments in all areas of neuroscience can be communicated to a broad readership. A lively front half, including News &amp; Views, Reviews, Perspectives and editorials, helps place the primary research in context, providing readers with a broad perspective on the entire field. Nature Neuroscience aims to provide readers with authoritative, accessible and timely information on the most important advances in understanding the nervous system. Areas covered include molecular, cellular, systems, behavioral, cognitive and computational studies. http://feeds.nature.com/neuro/rss/current Nature Publishing Group en © 2024 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Nature Neuroscience © 2024 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. permissions@nature.com Nature Neuroscience https://www.nature.com/uploads/product/neuro/rss.gif http://feeds.nature.com/neuro/rss/current <![CDATA[Xenografted human microglia display diverse transcriptomic states in response to Alzheimer’s disease-related amyloid-β pathology]]> https://www.nature.com/articles/s41593-024-01600-y Nature Neuroscience, Published online: 27 March 2024; doi:10.1038/s41593-024-01600-y

Human microglia transplanted in the mouse brain mount a multipronged response to amyloid-β pathology, displaying unique transcriptional states. Alzheimer’s disease risk genes are differentially regulated across cell states and profoundly alter microglial function.]]>
Renzo MancusoNicola FattorelliAnna Martinez-MurianaEmma DavisLeen WolfsJohanna Van Den DaeleIvana GericJessie PremereurPaula PolancoBaukje BijnensPranav PremanLutgarde SerneelsSuresh PoovathingalSriram BalusuCatherine VerfaillieMark FiersBart De Strooper doi:10.1038/s41593-024-01600-y Nature Neuroscience, Published online: 2024-03-27; | doi:10.1038/s41593-024-01600-y 2024-03-27 Nature Neuroscience 10.1038/s41593-024-01600-y https://www.nature.com/articles/s41593-024-01600-y
<![CDATA[TREM1 disrupts myeloid bioenergetics and cognitive function in aging and Alzheimer disease mouse models]]> https://www.nature.com/articles/s41593-024-01610-w Nature Neuroscience, Published online: 27 March 2024; doi:10.1038/s41593-024-01610-w

The role of TREM1 in neurodegenerative diseases is unclear. Here the authors show that TREM1 promotes cognitive decline in aging and in the context of amyloid pathology in a mouse model of Alzheimer disease.]]>
Edward N. WilsonCongcong WangMichelle S. SwarovskiKristy A. ZeraHannah E. EnnerfeltQian WangAisling ChaneyEsha GaubaJavier A. Ramos BenitezYann Le GuenParas S. MinhasMaharshi PanchalYuting J. TanEran BlacherChinyere A. IwekaHaley CropperPoorva JainQingkun LiuSwapnil S. MehtaAbigail J. ZuckermanMatthew XinJacob UmansJolie HuangAarooran S. DurairajGeidy E. SerranoThomas G. BeachMichael D. GreiciusMichelle L. JamesMarion S. BuckwalterMelanie R. McReynoldsJoshua D. RabinowitzKatrin I. Andreasson doi:10.1038/s41593-024-01610-w Nature Neuroscience, Published online: 2024-03-27; | doi:10.1038/s41593-024-01610-w 2024-03-27 Nature Neuroscience 10.1038/s41593-024-01610-w https://www.nature.com/articles/s41593-024-01610-w
<![CDATA[Long-term in vivo three-photon imaging reveals region-specific differences in healthy and regenerative oligodendrogenesis]]> https://www.nature.com/articles/s41593-024-01613-7 Nature Neuroscience, Published online: 27 March 2024; doi:10.1038/s41593-024-01613-7

Brain region-specific oligodendrocyte population dynamics are unclear. Here the authors implement long-term in vivo three-photon imaging to determine those dynamics in the cortical and subcortical areas in the living intact and demyelinated adult mouse brain.]]>
Michael A. ThorntonGregory L. FutiaMichael E. StocktonSamuel A. BudoffAlexandra N. RamirezBaris OzbayOmer TzangKarl KilbornAlon Poleg-PolskyDiego RestrepoEmily A. GibsonEthan G. Hughes doi:10.1038/s41593-024-01613-7 Nature Neuroscience, Published online: 2024-03-27; | doi:10.1038/s41593-024-01613-7 2024-03-27 Nature Neuroscience 10.1038/s41593-024-01613-7 https://www.nature.com/articles/s41593-024-01613-7
<![CDATA[A precision functional atlas of personalized network topography and probabilities]]> https://www.nature.com/articles/s41593-024-01596-5 Nature Neuroscience, Published online: 26 March 2024; doi:10.1038/s41593-024-01596-5

The Masonic Institute for the Developing Brain (MIDB) Precision Brain Atlas is a resource of personalized brain network topographies (n = 9,900). It also provides a probabilistic atlas and integration zones across diverse magnetic resonance imaging (MRI) datasets and ages. The atlas increases the reliability of brain-wide association studies (BWAS) and improves targeting for neuromodulation.]]>
Robert J. M. HermosilloLucille A. MooreEric FeczkoÓscar Miranda-DomínguezAdam PinesAlly DworetskyGregory ConanMichael A. MooneyAnita RandolphAlice GrahamBabatunde AdeyemoEric EarlAnders PerroneCristian Morales CarrascoJohnny Uriarte-LopezKathy SniderOlivia DoyleMichaela CordovaSanju KoiralaGracie J. GrimsrudNora ByingtonSteven M. NelsonCaterina GrattonSteven PetersenSarah W. Feldstein EwingBonnie J. NagelNico U. F. DosenbachTheodore D. SatterthwaiteDamien A. Fair doi:10.1038/s41593-024-01596-5 Nature Neuroscience, Published online: 2024-03-26; | doi:10.1038/s41593-024-01596-5 2024-03-26 Nature Neuroscience 10.1038/s41593-024-01596-5 https://www.nature.com/articles/s41593-024-01596-5
<![CDATA[Pervasive environmental chemicals impair oligodendrocyte development]]> https://www.nature.com/articles/s41593-024-01599-2 Nature Neuroscience, Published online: 25 March 2024; doi:10.1038/s41593-024-01599-2

Oligodendrocytes are vulnerable to chemical toxicity during development. However, few environmental chemicals have been identified as potential hazards. Here, the authors discover chemicals in common household products as harmful to oligodendrocyte development.]]>
Erin F. CohnBenjamin L. L. ClaytonMayur MadhavanKristin A. LeeSara YacoubYuriy FedorovMarissa A. ScavuzzoKatie Paul FriedmanTimothy J. ShaferPaul J. Tesar doi:10.1038/s41593-024-01599-2 Nature Neuroscience, Published online: 2024-03-25; | doi:10.1038/s41593-024-01599-2 2024-03-25 Nature Neuroscience 10.1038/s41593-024-01599-2 https://www.nature.com/articles/s41593-024-01599-2
<![CDATA[Piezo1 regulates meningeal lymphatic vessel drainage and alleviates excessive CSF accumulation]]> https://www.nature.com/articles/s41593-024-01604-8 Nature Neuroscience, Published online: 25 March 2024; doi:10.1038/s41593-024-01604-8

The authors find that Piezo1 stimulation enhances meningeal lymphatics and boosts CSF drainage to treat hydrocephalus and ventriculomegaly, showing promise in Down syndrome and hydrocephalus models.]]>
Dongwon ChoiEunkyung ParkJoshua ChoiRenhao LuJin Suh YuChiyoon KimLuping ZhaoJames YuBrandon NakashimaSunju LeeDhruv SinghalJoshua P. ScallanBin ZhouChester J. KohEsak LeeYoung-Kwon Hong doi:10.1038/s41593-024-01604-8 Nature Neuroscience, Published online: 2024-03-25; | doi:10.1038/s41593-024-01604-8 2024-03-25 Nature Neuroscience 10.1038/s41593-024-01604-8 https://www.nature.com/articles/s41593-024-01604-8
<![CDATA[Spatial enhancer activation influences inhibitory neuron identity during mouse embryonic development]]> https://www.nature.com/articles/s41593-024-01611-9 Nature Neuroscience, Published online: 25 March 2024; doi:10.1038/s41593-024-01611-9

How genetic information in the germinal zone determines neuronal cell types is unclear. Here the authors show that MEIS2 plays an important role in determining GABAergic neuron diversity during development.]]>
Elena DvoretskovaMay C. HoVolker KittkeFlorian NeuhausIlaria VitaliDaniel D. LamIrene DelgadoChao FengMiguel TorresJuliane WinkelmannChristian Mayer doi:10.1038/s41593-024-01611-9 Nature Neuroscience, Published online: 2024-03-25; | doi:10.1038/s41593-024-01611-9 2024-03-25 Nature Neuroscience 10.1038/s41593-024-01611-9 https://www.nature.com/articles/s41593-024-01611-9
<![CDATA[A systems identification approach using Bayes factors to deconstruct the brain bases of emotion regulation]]> https://www.nature.com/articles/s41593-024-01605-7 Nature Neuroscience, Published online: 22 March 2024; doi:10.1038/s41593-024-01605-7

Two fMRI studies (n = 358) show that cognitive regulation of negative emotion alters cortical activity but not amygdala or other subcortical areas. Regulation-related activity overlaps with emotion generation systems but also involves distinct areas.]]>
Ke BoThomas E. KraynakMijin KwonMichael SunPeter J. GianarosTor D. Wager doi:10.1038/s41593-024-01605-7 Nature Neuroscience, Published online: 2024-03-22; | doi:10.1038/s41593-024-01605-7 2024-03-22 Nature Neuroscience 10.1038/s41593-024-01605-7 https://www.nature.com/articles/s41593-024-01605-7