Nature Materials Nature Materials is a multidisciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and technology. Nature Materials covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties and performance of materials. Nature Materials provides a forum for the development of a common identity among materials scientists while encouraging researchers to cross established subdisciplinary lines. To achieve this, Nature Materials takes an interdisciplinary, integrated and balanced approach to all areas of materials research while fostering the exchange of ideas between scientists involved in different communities. http://feeds.nature.com/nmat/rss/current Nature Publishing Group en © 2024 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Nature Materials © 2024 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. permissions@nature.com Nature Materials https://www.nature.com/uploads/product/nmat/rss.gif http://feeds.nature.com/nmat/rss/current <![CDATA[Semiconducting black phosphorus nanoribbons grown on insulating substrates]]> https://www.nature.com/articles/s41563-024-01844-w Nature Materials, Published online: 18 March 2024; doi:10.1038/s41563-024-01844-w

Single-crystal black phosphorus nanoribbons have been grown through chemical vapour transport, using black phosphorus nanoparticles as seeds. The nanoribbons orient exclusively along the zigzag direction and have good semiconductor properties that render them suitable for use as channel material in field-effect transistors.]]>
doi:10.1038/s41563-024-01844-w Nature Materials, Published online: 2024-03-18; | doi:10.1038/s41563-024-01844-w 2024-03-18 Nature Materials 10.1038/s41563-024-01844-w https://www.nature.com/articles/s41563-024-01844-w
<![CDATA[Near-room-temperature water-mediated densification of bulk van der Waals materials from their nanosheets]]> https://www.nature.com/articles/s41563-024-01840-0 Nature Materials, Published online: 15 March 2024; doi:10.1038/s41563-024-01840-0

Strong bulk van der Waals materials are fabricated by the compressive moulding of two-dimensional nanosheets near room temperature through water-mediated densification, providing an energy-efficient way for synthesizing various van der Waals materials and a potential for tailoring compositions.]]>
Jiuyi ZhuFei LiYuanZhen HouHang LiDingxin XuJunyang TanJinhong DuShaogang WangZhengbo LiuHengAn WuFengChao WangYang SuHui-Ming Cheng doi:10.1038/s41563-024-01840-0 Nature Materials, Published online: 2024-03-15; | doi:10.1038/s41563-024-01840-0 2024-03-15 Nature Materials 10.1038/s41563-024-01840-0 https://www.nature.com/articles/s41563-024-01840-0
<![CDATA[Inverse chirality-induced spin selectivity effect in chiral assemblies of <i>π</i>-conjugated polymers]]> https://www.nature.com/articles/s41563-024-01838-8 Nature Materials, Published online: 15 March 2024; doi:10.1038/s41563-024-01838-8

The authors report the inverse effect of chiral-induced spin selectivity in an organic material.]]>
π-conjugated polymers]]> Rui SunKyung Sun ParkAndrew H. ComstockAeron McConnellYen-Chi ChenPeng ZhangDavid BeratanWei YouAxel HoffmannZhi-Gang YuYing DiaoDali Sun doi:10.1038/s41563-024-01838-8 Nature Materials, Published online: 2024-03-15; | doi:10.1038/s41563-024-01838-8 2024-03-15 Nature Materials 10.1038/s41563-024-01838-8 https://www.nature.com/articles/s41563-024-01838-8
<![CDATA[Prediction of DNA origami shape using graph neural network]]> https://www.nature.com/articles/s41563-024-01846-8 Nature Materials, Published online: 14 March 2024; doi:10.1038/s41563-024-01846-8

Limited datasets hinder the accurate prediction of DNA origami structures. A data-driven and physics-informed approach for model training is presented using a graph neural network to facilitate the rapid virtual prototyping of DNA-based nanostructures.]]>
Chien Truong-QuocJae Young LeeKyung Soo KimDo-Nyun Kim doi:10.1038/s41563-024-01846-8 Nature Materials, Published online: 2024-03-14; | doi:10.1038/s41563-024-01846-8 2024-03-14 Nature Materials 10.1038/s41563-024-01846-8 https://www.nature.com/articles/s41563-024-01846-8
<![CDATA[Suppression of Dexter transfer by covalent encapsulation for efficient matrix-free narrowband deep blue hyperfluorescent OLEDs]]> https://www.nature.com/articles/s41563-024-01812-4 Nature Materials, Published online: 13 March 2024; doi:10.1038/s41563-024-01812-4

Suppressed Dexter transfer is needed to achieve efficient and stable hyperfluorescence, but complex matrices must be involved. A molecular design strategy has been proposed where Dexter transfer can be substantially reduced by an encapsulated terminal emitter, leading to ‘matrix-free’ hyperfluorescence.]]>
Hwan-Hee ChoDaniel G. CongraveAlexander J. GillettStephanie MontanaroHaydn E. FrancisVíctor Riesgo-GonzalezJunzhi YeRituparno ChowduryWeixuan ZengMarc K. EtheringtonJeroen RoyakkersOliver MillingtonAndrew D. BondFelix PlasserJarvist M. FrostClare P. GreyAkshay RaoRichard H. FriendNeil C. GreenhamHugo Bronstein doi:10.1038/s41563-024-01812-4 Nature Materials, Published online: 2024-03-13; | doi:10.1038/s41563-024-01812-4 2024-03-13 Nature Materials 10.1038/s41563-024-01812-4 https://www.nature.com/articles/s41563-024-01812-4
<![CDATA[Mobile ion confinement for better thermoelectrics]]> https://www.nature.com/articles/s41563-024-01823-1 Nature Materials, Published online: 07 March 2024; doi:10.1038/s41563-024-01823-1

Restricting the directional segregation of mobile ions via strategic local ion confinement allows remarkable thermoelectric performance with better stability.]]>
Animesh BhuiKanishka Biswas doi:10.1038/s41563-024-01823-1 Nature Materials, Published online: 2024-03-07; | doi:10.1038/s41563-024-01823-1 2024-03-07 Nature Materials 10.1038/s41563-024-01823-1 https://www.nature.com/articles/s41563-024-01823-1
<![CDATA[Highly stabilized and efficient thermoelectric copper selenide]]> https://www.nature.com/articles/s41563-024-01815-1 Nature Materials, Published online: 07 March 2024; doi:10.1038/s41563-024-01815-1

Cu2Se is of interest for thermoelectrics as it is environmentally sustainable and has a high figure of merit ZT; however, copper ion migration impacts device stability. Here a co-doping strategy that combines steric and electrostatic effects is shown to improve device stability as well as improving ZT to 3.]]>
Haihua HuYiwei JuJincheng YuZechao WangJun PeiHao-Cheng ThongJing-Wei LiBowen CaiFengming LiuZhanran HanBin SuHua-Lu ZhuangYilin JiangHezhang LiQian LiHuijuan ZhaoBo-Ping ZhangJing ZhuJing-Feng Li doi:10.1038/s41563-024-01815-1 Nature Materials, Published online: 2024-03-07; | doi:10.1038/s41563-024-01815-1 2024-03-07 Nature Materials 10.1038/s41563-024-01815-1 https://www.nature.com/articles/s41563-024-01815-1
<![CDATA[An intelligent DNA nanodevice for precision thrombolysis]]> https://www.nature.com/articles/s41563-024-01826-y Nature Materials, Published online: 06 March 2024; doi:10.1038/s41563-024-01826-y

An intelligent DNA nanodevice, composed of DNA origami nanosheets and a thrombin-responsive DNA fastener, accurately delivers the appropriate dose of tissue plasminogen activator following activation by distinct thrombosis events.]]>
Jue YinSiyu WangJiahui WangYewei ZhangChunhai FanJie ChaoYu GaoLianhui Wang doi:10.1038/s41563-024-01826-y Nature Materials, Published online: 2024-03-06; | doi:10.1038/s41563-024-01826-y 2024-03-06 Nature Materials 10.1038/s41563-024-01826-y https://www.nature.com/articles/s41563-024-01826-y