Nature Methods Nature Methods offers a unique interdisciplinary forum for the publication of novel methods. Nature Methods focuses on the life sciences, combining practical, technique-driven subject matter with rigorous peer-review standards to ensure that readers are consistently presented with only the most valuable and highest quality methodological research. The journal offers its readers primary research papers as well as an array of opinions, reviews and short journalistic pieces to provide busy researchers with a broad, yet easily absorbed perspective of important methodological developments in the life sciences. http://feeds.nature.com/nmeth/rss/current Nature Publishing Group en © 2024 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Nature Methods © 2024 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. permissions@nature.com Nature Methods https://www.nature.com/uploads/product/nmeth/rss.gif http://feeds.nature.com/nmeth/rss/current <![CDATA[Benchmarking spatial clustering methods with spatially resolved transcriptomics data]]> https://www.nature.com/articles/s41592-024-02215-8 Nature Methods, Published online: 15 March 2024; doi:10.1038/s41592-024-02215-8

A benchmark study compares 13 spatial clustering methods on spatial transcriptomics data.]]>
Zhiyuan YuanFangyuan ZhaoSenlin LinYu ZhaoJianhua YaoYan CuiXiao-Yong ZhangYi Zhao doi:10.1038/s41592-024-02215-8 Nature Methods, Published online: 2024-03-15; | doi:10.1038/s41592-024-02215-8 2024-03-15 Nature Methods 10.1038/s41592-024-02215-8 https://www.nature.com/articles/s41592-024-02215-8
<![CDATA[Breaking up the StayGold dimer yields three photostable monomers]]> https://www.nature.com/articles/s41592-024-02223-8 Nature Methods, Published online: 14 March 2024; doi:10.1038/s41592-024-02223-8

The exceptionally photostable green fluorescent protein StayGold has been monomerized in different laboratories, which has generated three unique monomeric variants that will enable new imaging applications.]]>
Joachim GoedhartTheodorus W. J. Gadella Jr doi:10.1038/s41592-024-02223-8 Nature Methods, Published online: 2024-03-14; | doi:10.1038/s41592-024-02223-8 2024-03-14 Nature Methods 10.1038/s41592-024-02223-8 https://www.nature.com/articles/s41592-024-02223-8
<![CDATA[Unlocking cryo-EM’s multishot potential with square or rectangular beams]]> https://www.nature.com/articles/s41592-024-02224-7 Nature Methods, Published online: 14 March 2024; doi:10.1038/s41592-024-02224-7

New condenser aperture designs form square or rectangular beams that match the camera dimensions, which efficiently expands the data acquisition area in cryogenic electron microscopy.]]>
Xiaowei Zhao doi:10.1038/s41592-024-02224-7 Nature Methods, Published online: 2024-03-14; | doi:10.1038/s41592-024-02224-7 2024-03-14 Nature Methods 10.1038/s41592-024-02224-7 https://www.nature.com/articles/s41592-024-02224-7
<![CDATA[MINSTED tracking of single biomolecules]]> https://www.nature.com/articles/s41592-024-02209-6 Nature Methods, Published online: 13 March 2024; doi:10.1038/s41592-024-02209-6

MINSTED quantifies tiny movements of individual biomolecules with high spatiotemporal precision to successfully resolve the steps of the molecular motor protein kinesin-1 labeled with a single fluorophore as it switches protofilaments.]]>
Lukas ScheidererHenrik von der EmdeMira HesselinkMichael WeberStefan W. Hell doi:10.1038/s41592-024-02209-6 Nature Methods, Published online: 2024-03-13; | doi:10.1038/s41592-024-02209-6 2024-03-13 Nature Methods 10.1038/s41592-024-02209-6 https://www.nature.com/articles/s41592-024-02209-6
<![CDATA[Graphene sandwich for cryo-EM]]> https://www.nature.com/articles/s41592-024-02219-4 Nature Methods, Published online: 12 March 2024; doi:10.1038/s41592-024-02219-4

Graphene sandwich for cryo-EM]]>
Arunima Singh doi:10.1038/s41592-024-02219-4 Nature Methods, Published online: 2024-03-12; | doi:10.1038/s41592-024-02219-4 2024-03-12 Nature Methods 10.1038/s41592-024-02219-4 https://www.nature.com/articles/s41592-024-02219-4
<![CDATA[A leap for directed evolution]]> https://www.nature.com/articles/s41592-024-02221-w Nature Methods, Published online: 12 March 2024; doi:10.1038/s41592-024-02221-w

A leap for directed evolution]]>
Rita Strack doi:10.1038/s41592-024-02221-w Nature Methods, Published online: 2024-03-12; | doi:10.1038/s41592-024-02221-w 2024-03-12 Nature Methods 10.1038/s41592-024-02221-w https://www.nature.com/articles/s41592-024-02221-w
<![CDATA[Neural networks for biomechanics]]> https://www.nature.com/articles/s41592-024-02218-5 Nature Methods, Published online: 12 March 2024; doi:10.1038/s41592-024-02218-5

Neural networks for biomechanics]]>
Madhura Mukhopadhyay doi:10.1038/s41592-024-02218-5 Nature Methods, Published online: 2024-03-12; | doi:10.1038/s41592-024-02218-5 2024-03-12 Nature Methods 10.1038/s41592-024-02218-5 https://www.nature.com/articles/s41592-024-02218-5
<![CDATA[Long-term monosynaptic tracing]]> https://www.nature.com/articles/s41592-024-02220-x Nature Methods, Published online: 12 March 2024; doi:10.1038/s41592-024-02220-x

Long-term monosynaptic tracing]]>
Nina Vogt doi:10.1038/s41592-024-02220-x Nature Methods, Published online: 2024-03-12; | doi:10.1038/s41592-024-02220-x 2024-03-12 Nature Methods 10.1038/s41592-024-02220-x https://www.nature.com/articles/s41592-024-02220-x