Nature Physics Nature Physics offers news and reviews alongside top-quality research papers in a monthly publication, covering the entire spectrum of physics. Physics addresses the properties and interactions of matter and energy, and plays a key role in the development of a broad range of technologies. To reflect this, Nature Physics covers all areas of pure and applied physics research. The journal focuses on core physics disciplines, but is also open to a broad range of topics whose central theme falls within the bounds of physics. http://feeds.nature.com/nphys/rss/current Nature Publishing Group en © 2024 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Nature Physics © 2024 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. permissions@nature.com Nature Physics https://www.nature.com/uploads/product/nphys/rss.gif http://feeds.nature.com/nphys/rss/current <![CDATA[Multiphoton quantum statistics from scattered classical light]]> https://www.nature.com/articles/s41567-024-02447-7 Nature Physics, Published online: 27 March 2024; doi:10.1038/s41567-024-02447-7

Even by shining classical light on a single opening, one can perform a double-slit experiment and discover a surprising variety of quantum mechanical multi-photon correlations — thanks to surface plasmon polaritons and photon-number-resolving detectors.]]>
Martijn Wubs doi:10.1038/s41567-024-02447-7 Nature Physics, Published online: 2024-03-27; | doi:10.1038/s41567-024-02447-7 2024-03-27 Nature Physics 10.1038/s41567-024-02447-7 https://www.nature.com/articles/s41567-024-02447-7
<![CDATA[Connecting shear flow and vortex array instabilities in annular atomic superfluids]]> https://www.nature.com/articles/s41567-024-02466-4 Nature Physics, Published online: 27 March 2024; doi:10.1038/s41567-024-02466-4

Two adjacent layers flowing at different velocities in the same fluid are subject to flow instabilities. This phenomenon is now studied in atomic superfluids, revealing that quantized vortices act as both sources and probes of the unstable flow.]]>
D. Hernández-RajkovN. GraniF. ScazzaG. Del PaceW. J. KwonM. InguscioK. XhaniC. FortM. ModugnoF. MarinoG. Roati doi:10.1038/s41567-024-02466-4 Nature Physics, Published online: 2024-03-27; | doi:10.1038/s41567-024-02466-4 2024-03-27 Nature Physics 10.1038/s41567-024-02466-4 https://www.nature.com/articles/s41567-024-02466-4
<![CDATA[Search for decoherence from quantum gravity with atmospheric neutrinos]]> https://www.nature.com/articles/s41567-024-02436-w Nature Physics, Published online: 26 March 2024; doi:10.1038/s41567-024-02436-w

Interactions of atmospheric neutrinos with quantum-gravity-induced fluctuations of the metric of spacetime would lead to decoherence. The IceCube Collaboration constrains such interactions with atmospheric neutrinos.]]>
R. AbbasiM. AckermannJ. AdamsS. K. AgarwallaJ. A. AguilarM. AhlersJ. M. AlameddineN. M. AminK. AndeenG. AntonC. ArgüellesY. AshidaS. AthanasiadouL. AusbormS. N. AxaniX. BaiA. Balagopal VM. BaricevicS. W. BarwickV. BasuR. BayJ. J. BeattyJ. Becker TjusJ. BeiseC. BellenghiC. BenningS. BenZviD. BerleyE. BernardiniD. Z. BessonE. BlaufussS. BlotF. BontempoJ. Y. BookC. Boscolo MeneguoloS. BöserO. BotnerJ. BöttcherJ. BraunB. BrinsonJ. Brostean-KaiserL. BrusaR. T. BurleyR. S. BusseD. ButterfieldM. A. CampanaK. CarloniE. G. Carnie-BroncaS. ChattopadhyayN. ChauC. ChenZ. ChenD. ChirkinS. ChoiB. A. ClarkA. ColemanG. H. CollinA. ConnollyJ. M. ConradP. CoppinP. CorreaD. F. CowenP. DaveC. De ClercqJ. J. DeLaunayD. DelgadoS. DengK. DeoskarA. DesaiP. DesiatiK. D. de VriesG. de WasseigeT. DeYoungA. DiazJ. C. Díaz-VélezM. DittmerA. DomiH. DujmovicM. A. DuVernoisT. EhrhardtA. EimerP. EllerE. EllingerS. El MentawiD. ElsässerR. EngelH. ErpenbeckJ. EvansP. A. EvensonK. L. FanK. FangK. FarragA. R. FazelyA. FedynitchN. FeiglS. FiedlschusterC. FinleyL. FischerD. FoxA. FranckowiakP. FürstJ. GallagherE. GansterA. GarciaL. GerhardtA. GhadimiC. GlaserT. GlüsenkampJ. G. GonzalezD. GrantS. J. GrayO. GriesS. GriffinS. GriswoldK. M. GrothC. GüntherP. GutjahrC. HaC. HaackA. HallgrenR. HallidayL. HalveF. HalzenH. HamdaouiM. Ha MinhM. HandtK. HansonJ. HardinA. A. HarnischP. HatchA. HaungsJ. HäußlerK. HelbingJ. HellrungJ. HermannsgabnerL. HeuermannN. HeyerS. HickfordA. HidvegiC. HillG. C. HillK. D. HoffmanS. HoriK. HoshinaW. HouT. HuberK. HultqvistM. HünnefeldR. HussainK. HymonS. InA. IshiharaM. JacquartO. JanikM. JanssonG. S. JaparidzeM. JeongM. JinB. J. P. JonesN. KampD. KangW. KangX. KangA. KappesD. KappesserL. KardumT. KargM. KarlA. KarleA. KatilU. KatzM. KauerJ. L. KelleyA. Khatee ZathulA. KheirandishJ. KirylukS. R. KleinA. KochockiR. KoiralaH. KolanoskiT. KontrimasL. KöpkeC. KopperD. J. KoskinenP. KoundalM. KovacevichM. KowalskiT. KozynetsJ. KrishnamoorthiK. KruiswijkE. KrupczakA. KumarE. KunN. KurahashiN. LadC. Lagunas GualdaM. LamoureuxM. J. LarsonS. LatsevaF. LauberJ. P. LazarJ. W. LeeK. Leonard DeHoltonA. LeszczyńskaM. LincettoY. LiuM. LiubarskaE. LohfinkC. LoveC. J. Lozano MariscalL. LuF. LucarelliW. LuszczakY. LyuJ. MadsenE. MagnusK. B. M. MahnY. MakinoE. ManaoS. MancinaW. Marie SainteI. C. MarişS. MarkaZ. MarkaM. MarseeI. Martinez-SolerR. MaruyamaF. MayhewT. McElroyF. McNallyJ. V. MeadK. MeagherS. MechbalA. MedinaM. MeierY. MerckxL. MertenJ. MicallefJ. MitchellT. MontaruliR. W. MooreY. MoriiR. MorseM. MoulaiT. MukherjeeR. NaabR. NagaiM. NakosU. NaumannJ. NeckerA. NegiM. NeumannH. NiederhausenM. U. NisaA. NoellA. NovikovS. C. NowickiA. Obertacke PollmannV. O’DellB. OeyenA. OlivasR. OrsoeJ. OsbornE. O’SullivanH. PandyaN. ParkG. K. ParkerE. N. PaudelL. PaulC. Pérez de los HerosT. PerniceJ. PetersonS. PhilippenA. PizzutoM. PlumA. PonténY. PopovychM. Prado RodriguezB. PriesR. Procter-MurphyG. T. PrzybylskiC. RaabJ. Rack-HelleisK. RawlinsZ. RechavA. RehmanP. ReichherzerE. ResconiS. ReuschW. RhodeB. RiedelA. RifaieE. J. RobertsS. RobertsonS. RodanG. RoellinghoffM. RongenA. RostedC. RottT. RuheL. RuohanD. RyckboschI. SafaJ. SafferD. Salazar-GallegosP. SampathkumarS. E. Sanchez HerreraA. SandrockM. SantanderS. SarkarS. SarkarJ. SavelbergP. SavinaM. SchaufelH. SchielerS. SchindlerL. SchlickmannB. SchlüterF. SchlüterN. SchmeisserT. SchmidtJ. SchneiderF. G. SchröderL. SchumacherS. SclafaniD. SeckelM. SeikhS. SeunarineR. ShahS. ShefaliN. ShimizuM. SilvaB. SkrzypekB. SmithersR. SnihurJ. SoedingreksoA. SøgaardD. SoldinP. SoldinG. SommaniC. SpannfellnerG. M. SpiczakC. SpieringM. StamatikosT. StanevT. StezelbergerT. StürwaldT. StuttardG. W. SullivanI. TaboadaS. Ter-AntonyanA. TerliukM. ThiesmeyerW. G. ThompsonJ. ThwaitesS. TilavK. TollefsonC. TönnisS. ToscanoD. TosiA. TrettinC. F. TungR. TurcotteJ. P. TwagirayezuM. A. Unland ElorrietaA. K. UpadhyayK. UpshawA. VaidyanathanN. Valtonen-MattilaJ. VandenbrouckeN. van EijndhovenD. VanneromJ. van SantenJ. VaraJ. Veitch-MichaelisM. VenugopalM. VereeckenS. VerpoestD. VeskeA. VijaiC. WalckY. WangC. WeaverP. WeigelA. WeindlJ. WeldertA. Y. WenC. WendtJ. WerthebachM. WeyrauchN. WhitehornC. H. WiebuschD. R. WilliamsL. WitthausA. WolfM. WolfG. WredeX. W. XuJ. P. YanezE. YildizciS. YoshidaR. YoungS. YuT. YuanZ. ZhangP. ZhelninP. ZilbermanM. Zimmerman doi:10.1038/s41567-024-02436-w Nature Physics, Published online: 2024-03-26; | doi:10.1038/s41567-024-02436-w 2024-03-26 Nature Physics 10.1038/s41567-024-02436-w https://www.nature.com/articles/s41567-024-02436-w
<![CDATA[Complexity of crack front geometry enhances toughness of brittle solids]]> https://www.nature.com/articles/s41567-024-02435-x Nature Physics, Published online: 22 March 2024; doi:10.1038/s41567-024-02435-x

Experiments probing three-dimensional crack propagation show that the critical strain energy needed to drive a crack is directly proportional to its geodesic length. This insight is a step towards a fully three-dimensional theory of crack propagation.]]>
Xinyue WeiChenzhuo LiCían McCarthyJohn M. Kolinski doi:10.1038/s41567-024-02435-x Nature Physics, Published online: 2024-03-22; | doi:10.1038/s41567-024-02435-x 2024-03-22 Nature Physics 10.1038/s41567-024-02435-x https://www.nature.com/articles/s41567-024-02435-x
<![CDATA[Protons on the line]]> https://www.nature.com/articles/s41567-023-02344-5 Nature Physics, Published online: 20 March 2024; doi:10.1038/s41567-023-02344-5

Stable regions in four-dimensional phase space have been observed by following the motion of accelerated proton beams subject to nonlinear forces. This provides insights into the physics of dynamical systems and may lead to improved accelerator designs.]]>
Giulio Stancari doi:10.1038/s41567-023-02344-5 Nature Physics, Published online: 2024-03-20; | doi:10.1038/s41567-023-02344-5 2024-03-20 Nature Physics 10.1038/s41567-023-02344-5 https://www.nature.com/articles/s41567-023-02344-5
<![CDATA[Observation of fixed lines induced by a nonlinear resonance in the CERN Super Proton Synchrotron]]> https://www.nature.com/articles/s41567-023-02338-3 Nature Physics, Published online: 20 March 2024; doi:10.1038/s41567-023-02338-3

Nonlinear resonances can cause particle loss in accelerators. Experiments confirm that a coupled nonlinear resonance traps beam particles on a four-dimensional closed curve. This finding allows the development of mitigation strategies.]]>
H. BartosikG. FranchettiF. Schmidt doi:10.1038/s41567-023-02338-3 Nature Physics, Published online: 2024-03-20; | doi:10.1038/s41567-023-02338-3 2024-03-20 Nature Physics 10.1038/s41567-023-02338-3 https://www.nature.com/articles/s41567-023-02338-3
<![CDATA[Melting of the charge density wave by generation of pairs of topological defects in UTe<sub>2</sub>]]> https://www.nature.com/articles/s41567-024-02429-9 Nature Physics, Published online: 20 March 2024; doi:10.1038/s41567-024-02429-9

A mechanism for the phase transition of charge density wave states via the generation and proliferation of topological defects with opposite phase windings is demonstrated in a heavy-fermion superconductor.]]>
2]]> Anuva AishwaryaJulian May-MannAvior AlmoalemSheng RanShanta R. SahaJohnpierre PaglioneNicholas P. ButchEduardo FradkinVidya Madhavan doi:10.1038/s41567-024-02429-9 Nature Physics, Published online: 2024-03-20; | doi:10.1038/s41567-024-02429-9 2024-03-20 Nature Physics 10.1038/s41567-024-02429-9 https://www.nature.com/articles/s41567-024-02429-9
<![CDATA[Flexoelectricity-driven toroidal polar topology in liquid-matter helielectrics]]> https://www.nature.com/articles/s41567-024-02439-7 Nature Physics, Published online: 18 March 2024; doi:10.1038/s41567-024-02439-7

Exploring and exploiting electric dipole arrangements analogously to what is possible with magnetic spin textures is an emerging prospect. Now a spontaneous toroidal polar topology is observed in ferroelectric liquid crystals.]]>
Jidan YangYu ZouJinxing LiMingjun HuangSatoshi Aya doi:10.1038/s41567-024-02439-7 Nature Physics, Published online: 2024-03-18; | doi:10.1038/s41567-024-02439-7 2024-03-18 Nature Physics 10.1038/s41567-024-02439-7 https://www.nature.com/articles/s41567-024-02439-7