Nature Structural & Molecular Biology Nature Structural and Molecular Biology reflects the growing integration of structural and molecular studies. The journal places a strong emphasis on understanding the molecular mechanisms underlying biological processes. Specific areas include (but are not limited to) DNA replication, repair and recombination; chromatin structure and remodeling; transcription; translation; folding, processing, transport and degradation of proteins and RNA; signal transduction and membrane processes. http://feeds.nature.com/nsmb/rss/current Nature Publishing Group en © 2024 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Nature Structural & Molecular Biology © 2024 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. permissions@nature.com Nature Structural & Molecular Biology https://www.nature.com/uploads/product/nsmb/rss.gif http://feeds.nature.com/nsmb/rss/current <![CDATA[High-resolution structures of amyloid-β and tau aggregates in individuals with Down syndrome]]> https://www.nature.com/articles/s41594-024-01254-1 Nature Structural & Molecular Biology, Published online: 29 March 2024; doi:10.1038/s41594-024-01254-1

Cryo-electron microscopy of brain tissue from two individuals with Down syndrome showed amyloid-β (Aβ) and tau filaments identical to those found in individuals with sporadic or dominantly inherited Alzheimer disease (AD), but also two types of Aβ40 filaments with distinct structures different from those previously reported in AD and cerebral amyloid angiopathy.]]>
doi:10.1038/s41594-024-01254-1 Nature Structural & Molecular Biology, Published online: 2024-03-29; | doi:10.1038/s41594-024-01254-1 2024-03-29 Nature Structural & Molecular Biology 10.1038/s41594-024-01254-1 https://www.nature.com/articles/s41594-024-01254-1
<![CDATA[Cryo-EM structures of amyloid-β and tau filaments in Down syndrome]]> https://www.nature.com/articles/s41594-024-01252-3 Nature Structural & Molecular Biology, Published online: 29 March 2024; doi:10.1038/s41594-024-01252-3

Here, using cryo-EM, authors reveal that amyloid-β and tau are identical in Alzheimer disease and Down syndrome. This has implications for assessing whether adults with Down syndrome could be included in Alzheimer disease clinical trials.]]>
Anllely FernandezMd Rejaul HoqGrace I. HallinanDaoyi LiSakshibeedu R. BharathFrank S. VagoXiaoqi ZhangKadir A. OzcanKathy L. NewellHolly J. GarringerWen JiangBernardino GhettiRuben Vidal doi:10.1038/s41594-024-01252-3 Nature Structural & Molecular Biology, Published online: 2024-03-29; | doi:10.1038/s41594-024-01252-3 2024-03-29 Nature Structural & Molecular Biology 10.1038/s41594-024-01252-3 https://www.nature.com/articles/s41594-024-01252-3
<![CDATA[A personal perspective of the voltage-gated potassium channel studies]]> https://www.nature.com/articles/s41594-024-01267-w Nature Structural & Molecular Biology, Published online: 28 March 2024; doi:10.1038/s41594-024-01267-w

The identification of sodium and potassium currents as underlying action potential propagation, more than 70 years ago, opened a new avenue of research into the role of ion channels. In this Comment, we present our personal perspectives of the field, from the identification of Shaker as a potential potassium channel to the mechanistic insights available to us today.]]>
Lily Yeh JanYuh Nung Jan doi:10.1038/s41594-024-01267-w Nature Structural & Molecular Biology, Published online: 2024-03-28; | doi:10.1038/s41594-024-01267-w 2024-03-28 Nature Structural & Molecular Biology 10.1038/s41594-024-01267-w https://www.nature.com/articles/s41594-024-01267-w
<![CDATA[An oligopeptide permease, OppABCD, requires an iron–sulfur cluster domain for functionality]]> https://www.nature.com/articles/s41594-024-01256-z Nature Structural & Molecular Biology, Published online: 28 March 2024; doi:10.1038/s41594-024-01256-z

Here, four cryo-EM structures of Mtb OppABCD reveal an assembly of a cluster C substrate-binding protein and its translocator, as well as the [4Fe–4S] cluster-regulated transport mechanism of oligopeptide permeases found in bacteria.]]>
Xiaolin YangTianyu HuJingxi LiangZhiqi XiongZhenli LinYao ZhaoXiaoting ZhouYan GaoShan SunXiuna YangLuke W. GuddatHaitao YangZihe RaoBing Zhang doi:10.1038/s41594-024-01256-z Nature Structural & Molecular Biology, Published online: 2024-03-28; | doi:10.1038/s41594-024-01256-z 2024-03-28 Nature Structural & Molecular Biology 10.1038/s41594-024-01256-z https://www.nature.com/articles/s41594-024-01256-z
<![CDATA[Structural insights into the decoding capability of isoleucine tRNAs with lysidine and agmatidine]]> https://www.nature.com/articles/s41594-024-01238-1 Nature Structural & Molecular Biology, Published online: 27 March 2024; doi:10.1038/s41594-024-01238-1

Precise protein synthesis is achieved by tRNA modifications. Here the authors revealed that modified cytidines in tRNAIle use their long side chains to make additional interactions with mRNA for stable tRNA binding on the ribosome.]]>
Naho AkiyamaKensuke IshiguroTakeshi YokoyamaKenjyo MiyauchiAsuteka NagaoMikako ShirouzuTsutomu Suzuki doi:10.1038/s41594-024-01238-1 Nature Structural & Molecular Biology, Published online: 2024-03-27; | doi:10.1038/s41594-024-01238-1 2024-03-27 Nature Structural & Molecular Biology 10.1038/s41594-024-01238-1 https://www.nature.com/articles/s41594-024-01238-1
<![CDATA[Structures of the ribosome bound to EF-Tu–isoleucine tRNA elucidate the mechanism of AUG avoidance]]> https://www.nature.com/articles/s41594-024-01236-3 Nature Structural & Molecular Biology, Published online: 27 March 2024; doi:10.1038/s41594-024-01236-3

Rybak and Gagnon elucidate the mechanism of AUG codon avoidance by the minor isoleucine tRNA in Escherichia coli. The lysidinylated C34 in the anticodon loop of tRNAIle weakens interactions with the mRNA and destabilizes the EF-Tu ternary complex.]]>
Mariia Yu. RybakMatthieu G. Gagnon doi:10.1038/s41594-024-01236-3 Nature Structural & Molecular Biology, Published online: 2024-03-27; | doi:10.1038/s41594-024-01236-3 2024-03-27 Nature Structural & Molecular Biology 10.1038/s41594-024-01236-3 https://www.nature.com/articles/s41594-024-01236-3
<![CDATA[Molecular stripping underpins derepression of a toxin–antitoxin system]]> https://www.nature.com/articles/s41594-024-01253-2 Nature Structural & Molecular Biology, Published online: 27 March 2024; doi:10.1038/s41594-024-01253-2

Transcription of toxin–antitoxin modules is regulated by conditional cooperativity, where the toxin enables or disrupts antitoxin-driven repression. Here, the authors solve the structural basis for the conditional cooperativity of Salmonella TacAT3.]]>
Grzegorz J. GrabeRachel T. GiorgioMiłosz WieczórBridget GollanMolly SargenModesto OrozcoStephen A. HareSophie Helaine doi:10.1038/s41594-024-01253-2 Nature Structural & Molecular Biology, Published online: 2024-03-27; | doi:10.1038/s41594-024-01253-2 2024-03-27 Nature Structural & Molecular Biology 10.1038/s41594-024-01253-2 https://www.nature.com/articles/s41594-024-01253-2
<![CDATA[Structural basis of the histone ubiquitination read–write mechanism of RYBP–PRC1]]> https://www.nature.com/articles/s41594-024-01258-x Nature Structural & Molecular Biology, Published online: 25 March 2024; doi:10.1038/s41594-024-01258-x

Cryo-EM studies reveal that RYBP–PRC1 uses two distinct interfaces for binding unmodified and H2Aub1-modified nucleosomes. These binding modes enable the complex to generate H2Aub1 chromatin domains by a read–write mechanism.]]>
Maria CiapponiElena KarlukovaSven SchkölzigerChristian BendaJürg Müller doi:10.1038/s41594-024-01258-x Nature Structural & Molecular Biology, Published online: 2024-03-25; | doi:10.1038/s41594-024-01258-x 2024-03-25 Nature Structural & Molecular Biology 10.1038/s41594-024-01258-x https://www.nature.com/articles/s41594-024-01258-x