Nature Structural & Molecular Biology Nature Structural and Molecular Biology reflects the growing integration of structural and molecular studies. The journal places a strong emphasis on understanding the molecular mechanisms underlying biological processes. Specific areas include (but are not limited to) DNA replication, repair and recombination; chromatin structure and remodeling; transcription; translation; folding, processing, transport and degradation of proteins and RNA; signal transduction and membrane processes. http://feeds.nature.com/nsmb/rss/current Nature Publishing Group en © 2024 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Nature Structural & Molecular Biology © 2024 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. permissions@nature.com Nature Structural & Molecular Biology https://www.nature.com/uploads/product/nsmb/rss.gif http://feeds.nature.com/nsmb/rss/current <![CDATA[Musings on art and science]]> https://www.nature.com/articles/s41594-024-01266-x Nature Structural & Molecular Biology, Published online: 18 March 2024; doi:10.1038/s41594-024-01266-x

In addition to the usual dose of compelling science, our March issue features thoughtful reflections on the last 30 years from readers, as well as past and present editors. Perhaps influenced by these pieces or by our stunning cover — or maybe it is just the changing seasons — we are in an introspective mood this month.]]>
doi:10.1038/s41594-024-01266-x Nature Structural & Molecular Biology, Published online: 2024-03-18; | doi:10.1038/s41594-024-01266-x 2024-03-18 Nature Structural & Molecular Biology 10.1038/s41594-024-01266-x https://www.nature.com/articles/s41594-024-01266-x
<![CDATA[Looking back at 30 years of <i>Nature Structural & Molecular Biology</i>]]> https://www.nature.com/articles/s41594-024-01248-z Nature Structural & Molecular Biology, Published online: 18 March 2024; doi:10.1038/s41594-024-01248-z

Over the past 30 years, Nature Structural & Molecular Biology (NSMB) has covered an enormous breadth of subjects in the broad field of molecular and structural biology. Here, some of the journal’s past and present editors recount their editorial experience at NSMB and some of the more memorable papers they worked on.]]>
Nature Structural & Molecular Biology]]> Guy RiddihoughChristopher SurridgeAndreas G. LadurnerRosemary K. ClyneMaria HodgesArianne HeinrichsKatarzyna MarcinkiewiczFlorian UllrichCarolina PerdigotoSara OsmanKatarzyna CiazynskaDimitrios Typas doi:10.1038/s41594-024-01248-z Nature Structural & Molecular Biology, Published online: 2024-03-18; | doi:10.1038/s41594-024-01248-z 2024-03-18 Nature Structural & Molecular Biology 10.1038/s41594-024-01248-z https://www.nature.com/articles/s41594-024-01248-z
<![CDATA[The impact of DNA methylation on CTCF-mediated 3D genome organization]]> https://www.nature.com/articles/s41594-024-01241-6 Nature Structural & Molecular Biology, Published online: 18 March 2024; doi:10.1038/s41594-024-01241-6

In this Review, the authors present an overview of our current understanding of the relationship between DNA methylation and three-dimensional chromatin architecture, discussing the extent to which DNA methylation may regulate the folding of the genome.]]>
Ana Monteagudo-SánchezDaan NoordermeerMaxim V. C. Greenberg doi:10.1038/s41594-024-01241-6 Nature Structural & Molecular Biology, Published online: 2024-03-18; | doi:10.1038/s41594-024-01241-6 2024-03-18 Nature Structural & Molecular Biology 10.1038/s41594-024-01241-6 https://www.nature.com/articles/s41594-024-01241-6
<![CDATA[Precise and scalable self-organization in mammalian pseudo-embryos]]> https://www.nature.com/articles/s41594-024-01251-4 Nature Structural & Molecular Biology, Published online: 15 March 2024; doi:10.1038/s41594-024-01251-4

Examining artificial embryos (gastruloids), Merle et al. uncover precise gene organization and proportional growth, providing insights into fundamental principles of developmental processes in mammalian systems.]]>
Mélody MerleLeah FriedmanCorinne ChureauArmin ShoushtarizadehThomas Gregor doi:10.1038/s41594-024-01251-4 Nature Structural & Molecular Biology, Published online: 2024-03-15; | doi:10.1038/s41594-024-01251-4 2024-03-15 Nature Structural & Molecular Biology 10.1038/s41594-024-01251-4 https://www.nature.com/articles/s41594-024-01251-4
<![CDATA[A mechanistic model of primer synthesis from catalytic structures of DNA polymerase α–primase]]> https://www.nature.com/articles/s41594-024-01227-4 Nature Structural & Molecular Biology, Published online: 15 March 2024; doi:10.1038/s41594-024-01227-4

The DNA polymerase α–primase complex undergoes dramatic configurational rearrangements to synthesize chimeric RNA-DNA primers across two separate active sites while maintaining simultaneous interactions at opposite ends of the primer–template duplex.]]>
Elwood A. MullinsLauren E. SalayClarissa L. DurieNoah P. BradleyJane E. JackmanMelanie D. OhiWalter J. ChazinBrandt F. Eichman doi:10.1038/s41594-024-01227-4 Nature Structural & Molecular Biology, Published online: 2024-03-15; | doi:10.1038/s41594-024-01227-4 2024-03-15 Nature Structural & Molecular Biology 10.1038/s41594-024-01227-4 https://www.nature.com/articles/s41594-024-01227-4
<![CDATA[Author Correction: PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome]]> https://www.nature.com/articles/s41594-023-01129-x Nature Structural & Molecular Biology, Published online: 14 March 2024; doi:10.1038/s41594-023-01129-x

Author Correction: PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome]]>
Wesley K. KroezeMaria F. SassanoXi-Ping HuangKatherine LansuJohn D. McCorvyPatrick M. GiguèreNoah SciakyBryan L. Roth doi:10.1038/s41594-023-01129-x Nature Structural & Molecular Biology, Published online: 2024-03-14; | doi:10.1038/s41594-023-01129-x 2024-03-14 Nature Structural & Molecular Biology 10.1038/s41594-023-01129-x https://www.nature.com/articles/s41594-023-01129-x
<![CDATA[Structure-guided drug discovery: back to the future]]> https://www.nature.com/articles/s41594-024-01244-3 Nature Structural & Molecular Biology, Published online: 14 March 2024; doi:10.1038/s41594-024-01244-3

Over the past 30 years, the field of structural biology and its associated biological insights have seen amazing progress. In this Comment, I recount several milestones in the field and how we can apply lessons from the past toward an exciting future, especially as it relates to drug discovery.]]>
Cheryl H. Arrowsmith doi:10.1038/s41594-024-01244-3 Nature Structural & Molecular Biology, Published online: 2024-03-14; | doi:10.1038/s41594-024-01244-3 2024-03-14 Nature Structural & Molecular Biology 10.1038/s41594-024-01244-3 https://www.nature.com/articles/s41594-024-01244-3
<![CDATA[Structural basis of human U5 snRNP late biogenesis and recycling]]> https://www.nature.com/articles/s41594-024-01243-4 Nature Structural & Molecular Biology, Published online: 11 March 2024; doi:10.1038/s41594-024-01243-4

The biogenesis and recycling of the ‘heart’ of the human spliceosome, the U5 small nuclear ribonucleoprotein (snRNP), requires CD2BP2 and TSSC4. Here the authors present cryo-electron microscopy structures that reveal how these protein chaperones orchestrate the ATP-independent (re)generation of the U5 snRNP.]]>
Daria Riabov BassatSupapat VisanpattanasinMatthias K. VorländerLaura FinAlexander W. PhillipsClemens Plaschka doi:10.1038/s41594-024-01243-4 Nature Structural & Molecular Biology, Published online: 2024-03-11; | doi:10.1038/s41594-024-01243-4 2024-03-11 Nature Structural & Molecular Biology 10.1038/s41594-024-01243-4 https://www.nature.com/articles/s41594-024-01243-4