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Variations in DNA elucidate molecular
networks that cause disease
Yanqing Chen1*, Jun Zhu1*, Pek Yee Lum1, Xia Yang1, Shirly Pinto2, Douglas J. MacNeil2, Chunsheng Zhang1,
John Lamb1, Stephen Edwards1, Solveig K. Sieberts1, Amy Leonardson1, Lawrence W. Castellini3, Susanna Wang3,
Marie-France Champy6, Bin Zhang1, Valur Emilsson1, Sudheer Doss3, Anatole Ghazalpour3, Steve Horvath4,
Thomas A. Drake5, Aldons J. Lusis3,4 & Eric E. Schadt1

Identifying variations in DNA that increase susceptibility to disease is one of the primary aims of genetic studies using a
forward genetics approach. However, identification of disease-susceptibility genes by means of such studies provides
limited functional information on how genes lead to disease. In fact, in most cases there is an absence of functional
information altogether, preventing a definitive identification of the susceptibility gene or genes. Here we develop an
alternative to the classic forward genetics approach for dissecting complex disease traits where, instead of identifying
susceptibility genes directly affected by variations in DNA, we identify gene networks that are perturbed by susceptibility
loci and that in turn lead to disease. Application of this method to liver and adipose gene expression data generated from a
segregating mouse population results in the identification of a macrophage-enriched network supported as having a causal
relationship with disease traits associated with metabolic syndrome. Three genes in this network, lipoprotein lipase (Lpl),
lactamase b (Lactb) and protein phosphatase 1-like (Ppm1l), are validated as previously unknown obesity genes,
strengthening the association between this network and metabolic disease traits. Our analysis provides direct experimental
support that complex traits such as obesity are emergent properties of molecular networks that are modulated by complex
genetic loci and environmental factors.

A challenge in the post-genome era is deciphering the biological
function of individual genes and gene networks that drive disease.
Given the availability of low-cost, high-throughput technologies for
genotyping hundreds of thousands of DNA markers, successes are
being realized in identifying associations between DNA variants and
diseases such as age-related macular degeneration1–3, diabetes4 and
obesity5. Although these and coming discoveries from a slew of
genome-wide association studies currently under way provide a peek
into pathways that underlie disease, they are usually devoid of con-
text, so elucidating the functional role of such genes in disease can
linger for years, as has been the case for ApoE, an Alzheimer’s-
susceptibility gene identified 15 years ago6. Even when an association
to disease has been localized to a given region representing a single
gene, in the absence of experimental support the gene cannot be
definitively claimed to be the susceptibility gene. This problem is
exacerbated in experimental crosses derived from inbred mouse
strains, for which in addition to the problem of inferring the function
of positionally cloned genes from the genetic data alone, the extent of
linkage disequiliribum operating in such populations makes posi-
tional cloning a difficult and time-consuming process.

An alternative to the forward genetics approach is the construction
of molecular networks that define the molecular states of a system
that underlie disease, where such networks are constructed from
molecular phenotype data scored in populations that manifest dis-
ease. The information that defines how variations in DNA lead to
variations in complex traits flows through molecular networks.
Characterizing molecular networks that underlie complex traits such

as disease can provide a more comprehensive view, which in turn can
lead to the direct identification of genes underlying disease processes
and the functional roles of these genes with respect to disease. Recent
studies characterizing gene networks have demonstrated how genetic
loci associated with expression traits can be combined with clinical
data to infer causal associations between expression and disease
traits7–12. By leveraging DNA variations as a systematic source of
perturbations on molecular networks and clinical traits, biological
processes can be studied at the systems level, in addition to studying
gene function at the level of individual pathways13,14.

Here we report the development of an approach to uncover the
components of co-expression networks that respond to variations in
DNA associated with obesity-, diabetes- and atherosclerosis-related
traits. In contrast to a forward genetics approach, we leverage quanti-
tative trait loci (QTL) associated with disease to identify components
of the co-expression network that are perturbed by the QTL and that
in turn cause variations in disease traits. After constructing co-
expression networks from liver and adipose tissues collected from a
segregating mouse population, we identify sub-networks that are
significantly associated with a complex of linked genetic loci related
to obesity-, diabetes- and atherosclerosis-associated traits. A macro-
phage-enriched metabolic sub-network was found to be significantly
enriched for expression traits supported as having a causal relation-
ship with these metabolic traits. The connection to obesity and other
metabolic syndrome traits is confirmed by validating three genes
in this sub-network, Lpl, Lactb and Ppm1l, as previously unknown
obesity genes.
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A complex linkage to metabolic traits

A number of QTL mapping studies in experimental mouse cross
populations have identified the distal half of chromosome 1 as a
major contributor to metabolic traits such as weight, fat mass, and
plasma glucose and cholesterol levels15–18. Much effort has been
expended to map the quantitative trait genes (QTGs) underlying this
locus, and these efforts have met with some success. For example,
apolipoprotein A-II (Apoa2) and tumour necrosis factor super-
family, member 4 (Tnfsf4) have been mapped as QTGs for the cho-
lesterol, fat mass, weight, insulin and atherosclerosis QTL mapped to
the distal half of chromosome 1 (refs 19–23). However, it remains to
be shown whether other genes in this chromosome 1 region contri-
bute to these linkages beyond Apoa2 and Tnfsf4. Furthermore, how
the chromosome 1 QTL affect molecular networks in different tissues
that in turn lead to pleiotropic effects on metabolic traits has not been
characterized. An alternative to mapping QTGs for QTL is to incor-
porate molecular network data into these analyses to identify those
network components that are perturbed by the QTL and that in turn
lead to variations in disease traits. After characterizing the complexity
of the chromosome 1 genomic region associated with metabolic
traits, we implement a procedure to identify components of mole-
cular networks that respond to genetic perturbations and in turn
induce changes in metabolic traits. This procedure includes recon-
structing co-expression networks and identifying highly inter-
connected functional sub-networks constituting these networks
supported as having a causal relationship with disease traits.

In a previously described cross between C57BL6/J (B6) and
C3H/HeJ (C3H) on an Apoe2/2 background (referred to here as
the B 3 H cross)17, the importance of distal chromosome 1 as a key
driver of metabolic traits became apparent because every metabolic
trait scored in the B 3 H cross links to this region of the chromosome
(Fig. 1a). Tnfsf4 and Apoa2 are located within 10 megabases (Mb) of
one another and are proximal to the peak log likelihood ratio (lod)
score curves for the metabolic traits on chromosome 1. These two
genes were positionally cloned from the B 3 H background and vali-
dated using transgenic and knockout animals as having a causal
relationship with plasma cholesterol and high-density lipoprotein
(HDL) levels, fat mass, weight, insulin levels and atherosclerotic
lesion size19,21,22. Apoa2 was specifically identified as having a muta-
tion in C3H relative to B6 that affected Apoa2 translational efficiency,
leading to lower liver transcript and protein levels in C3H relative to
B6 (refs 22 and 24). Liver gene expression traits scored in the B 3 H
cross provide a unique opportunity to confirm Apoa2 as a QTG and
to assess its total contribution to the metabolic traits. Because the
expression of Apoa2 and its association to the chromosome 1 linkage
region and metabolic traits can be considered simultaneously on the
mixed genetic background in which the disease trait QTL were ori-
ginally mapped, the gene can be validated in the exact context in
which it was identified.

Apoa2 liver gene expression in the B 3 H cross gave rise to a sig-
nificant expression QTL (Fig. 2a) that was proximal to the Apoa2
structural gene, confirming that Apoa2 expression is significantly
perturbed between B6 and C3H mice as previously reported22.
However, of the eight metabolic traits tested (Fig. 1a), Apoa2 liver
expression levels were only modestly correlated with glucose levels
(expected P value 5 0.014), and not at all correlated with obesity
traits (Supplementary Fig. 1a). Interestingly, Apoa2 gene expression
was strongly supported as being independent of each of the metabolic
traits with respect to the chromosome 1 locus (see Fig. 2a, b for
weight). Results for Apoa2 liver protein expression in the B 3 H cross
were consistent with these gene expression results (Supplementary
Results). Although the lack of association between Apoa2 expression
and the metabolic traits cannot exclude Apoa2 as at least one of many
genes underlying the chromosome 1 metabolic trait QTL, it is con-
sistent with genes other than Apoa2 having a more dominant role in
this linkage region. Tnfsf4 was similarly examined in the B 3 H cross
but was not found to be associated with any of the metabolic traits
linked to chromosome 1 in the B 3 H cross (Supplementary Results).
However, because heart and aorta were demonstrated as the relevant
tissues for Tnfsf4 activity associated with metabolic traits21, our
failure to detect an association in this instance may be because we
have not profiled the relevant tissue.

Whereas the expression data in this specific B 3 H cross did not
support Apoa2 and Tnfsf4 as having a causal relationship with the
metabolic traits, we identified 112 liver expression traits correspond-
ing to genes located in the chromosome 1 linkage region (from 90 Mb
to the end of the chromosome) that gave rise to expression QTL
(eQTL) in this region supporting the metabolic trait QTL (Supple-
mentary Table 1). Although none of these genes completely explains
the linkage of the clinical traits to chromosome 1, the expression
levels of 54 of these genes are statistically supported as at least par-
tially explaining variation in the metabolic traits in a causal way11

(Supplementary Table 1), suggesting that there may be many genes
in this region that support the metabolic trait QTL. Figure 1b high-
lights strong liver cis eQTL for 4 of these 54 genes that are physically
located within 10 Mb of Apoa2 as well as the peak lod scores for each
of the metabolic traits. Upstream transcription factor 1 (Usf1) was
identified as a susceptibility gene for familial combined hyperlipide-
mia (FCH)25; F11 receptor (F11r) is supported as being a susceptibi-
lity gene for FCH and other inflammatory processes26,27; serum
amyloid P component (Apcs) is implicated in atherosclerotic lesion
formation28; and regulator of G-protein signalling 5 (Rgs5), a gene
involved in vessel development and physiology, can distinguish the
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Figure 1 | The distal half of chromosome 1 strongly influences metabolic
and gene expression traits. a, Lod score curves for metabolic traits scored in
the B 3 H cross demonstrate that they are all driven by one or more QTL on
chromosome 1. b, Lod score curves for expression traits corresponding to
genes mapped as QTGs for the metabolic traits in a (Apoa2 and Tnfs4) or to
genes within ten-million base pairs of Apoa2 that give rise to strong, putative
cis eQTL and that are significantly correlated with at least one of the
metabolic traits depicted in a.
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fibrous cap from other atherosclerotic plaque components29 and has
recently been associated with hypertension in humans30. Of these
four expression traits, Rgs5 is the most strongly associated with the
metabolic traits linked to the chromosome 1 genomic region (see
Fig. 2 and Supplementary Fig. 1c for weight). Therefore, unlike
Apoa2 and Tnfsf4, these expression traits are significantly correlated
with the metabolic traits, are strongly linked to the chromosome 1
locus, are physically located near the chromosome 1 linkage peaks,
and are strongly supported as having a causal relationship with the
metabolic traits.

The extensive linkage disequilibrium operating in the B 3 H cross,
the number of possible QTGs in this region, the small-to-modest
effects of each QTG and potential interactions among the QTGs
make dissecting the individual contributions of the QTGs in the
chromosome 1 region nearly impossible from the cross data alone.
However, using gene expression data scored in the B 3 H cross,
expression traits that capture the multiple genetic perturbations in
this region and that in turn lead to variations in the metabolic
traits11,31 can be more readily identified. As an example, Fig. 2a high-
lights transcript abundances for an uncharacterized gene (GenBank
accession number, BB433460) that is positioned in an intron of
intraflagellar transport 88 homologue (Ift88). The liver expression
of this gene is highly correlated with metabolic traits such as obesity
(Supplementary Fig. 1d), is significantly linked across the entire
distal half of chromosome 1 (lod score . 8 across most of the distal
half of chromosome 1) and is supported as having a large contri-
bution to the weight trait (Fig. 2a, b). Although BB433460 physically
resides on chromosome 14, it captures more of the genetic variation
driving the metabolic traits at the chromosome 1 locus than any of
the genes physically located in this region, suggesting that networks
of expression traits may be perturbed in trans by this complex of
closely linked QTL and, as a result, lead to variation in the metabolic
traits.

Network changes induce phenotypic change

Liver and adipose co-expression networks were reconstructed from
the B 3 H data to identify components of these networks that, like
BB433460, mediate the transfer of information from QTL in the
chromosome 1 region to the metabolic traits. Supplementary Fig.
3a depicts the most highly connected expression traits in this network
as an ordered connectivity matrix. The pattern of distinct clusters
or sub-networks that emerge among the highly connected nodes in
liver and adipose (Supplementary Fig. 3) are notable and support a
hierarchical structure in these networks (Supplementary Fig. 4). The
different sub-networks highlighted are seen to be enriched for a
number of biological processes (Supplementary Table 2), including
insulin signalling (sub-network 1), inflammation (sub-network 5),
muscle-related processes (sub-network 7) and cell cycle (sub-
network 9). These sub-networks represent key functional units that
make up the co-expression network and that underlie processes
specific to the different cell types that constitute each tissue. For
example, in the female liver co-expression network, sub-network 5
is enriched for genes involved in inflammatory processes, potentially
reflecting activity in Kupffer cells. Sub-network 7 is enriched for
muscle-related genes such as actin and myosin, potentially reflecting
hepatic stellate cell activity, where these cells are known to control
microvascular tone and, when activated, can turn into myofibro-
blasts and express smooth muscle actin filaments and desmin.

The sub-networks represent different sets of overlapping pathways
and are readily seen to be enriched for genes that are perturbed by
specific genetic loci. For example, 85% of the genes in liver sub-
network 1 give rise to eQTL on chromosome 1 (Supplementary
Fig. 5). To establish whether a given sub-network was supported as
having a causal relationship with the metabolic traits linked to chro-
mosome 1, we used a statistical procedure to test whether the gene
expression traits in each sub-network supported a causal, reactive or
independent relationship with each of the metabolic traits with
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Figure 2 | Genetic loci perturb molecular phenotypes that in turn lead to
variations in disease-associated traits. a, Lod score plots for weight (solid
black line), Apoa2 liver expression (solid red), Rgs5 liver expression (solid
blue) and BB433460 liver expression (solid green) traits in the B 3 H cross.
The dashed curves represent the lod score curves for weight conditional on
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liver gene expression traits. Conditioning on Apoa2 expression does not
significantly reduce the weight lod score (independent relationship),
whereas conditioning on Rgs5 or BB433460 does (causal relationship).

b, Relationships supported between the expression and weight traits
described in a: Apoa2 (top), Rgs5 (middle) and BB433460 (bottom) are
predicted to be related to weight in an independent (Apoa2) and causal (Rgs5
and BB433460) way. Percentages represent the number of times the model
shown was inferred out of 1,000 random samples drawn from the B 3 H
cross. c, Generalization of the relationship discovered between BB433460
and weight, in which genetic loci (Li) and environment perturb molecular
networks of genes (Gi) that in turn leads to disease.
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respect to the genetic loci driving metabolic traits scored in the B 3 H
cross: abdominal fat mass, weight, plasma insulin levels, free fatty
acids, total plasma cholesterol levels and aortic lesion sizes. We iden-
tified a sub-network as having a causal relationship with a given
metabolic trait if it was significantly enriched (P , 0.01) for expres-
sion traits that have been supported as having a causal association
with that trait. For liver, only five sub-networks were identified as
being enriched for at least one of the metabolic traits (Supplementary
Fig. 3c). Two of the sub-networks were weakly enriched for insulin,
fat mass, weight or cholesterol candidate causal genes (sub-networks
6 and 14), whereas sub-networks 2 and 9 were strongly enriched for
only cholesterol and weight candidate causal genes, respectively.
However, one of the sub-networks (sub-network 5) was very signifi-
cantly enriched for expression traits supported as having a causal
relationship with every metabolic trait tested, directly implicating
this sub-network as a key mediator of the genetic loci driving
variation in the metabolic traits scored in the B 3 H cross
(Supplementary Fig. 3c). This sub-network was also the most highly
conserved between the sexes and tissues in the B 3 H cross. In fact,
90% of the genes in female liver sub-network 5 overlapped a corres-
ponding male sub-network (P , 102305 by the Fisher Exact Test),
and 50% of these genes overlapped a corresponding adipose sub-
network (P , 6.47 3 102147 by the Fisher Exact Test). Further-
more, the adipose sub-network corresponding to liver sub-network
5 was the only adipose sub-network found to be significantly
enriched for expression traits supported as having a causal relation-
ship with all of the metabolic traits tested (Supplementary Fig. 3d).

A macrophage sub-network causes disease

To explore the strong pleiotropic effects of sub-network 5 on the
metabolic traits in the B 3 H cross, we formed a supermodule by
combining this sub-network with the corresponding sub-network
identified in the adipose co-expression network (Supplementary
Table 3). Compared to the individual sub-networks, this
supermodule systematically increased the fold-change enrichments
and corresponding significance scores for expression traits supported
as having a causal relationship with the metabolic traits (Table 1). In
fact, the percentage of expression traits in this supermodule sup-
ported as having a causal relationship with aortic lesions, weight or
fat mass, plasma insulin or glucose levels, total cholesterol and HDL
cholesterol were 75%, 50%, 45%, 50% and 47%, respectively (Sup-
plementary Table 4). The probability that these overlaps occurred by
chance are small. For example, the probability that 50% of the 762
expression traits supported as having a causal relationship with
obesity fall in this single supermodule (out of the 23,574 transcripts
represented on the array) is 2.30 3 102262. We also searched this

supermodule comprised of 1,406 transcribed sequences against a
body atlas of gene expression representing 60 distinct mouse tissues.
For each tissue in the atlas, gene sets were formed on the basis of
tissue-specific expression (Supplementary Methods) and these sets
were intersected with the supermodule. Bone-marrow-derived
macrophages and spleen were the two most enriched tissues
(Table 1 and Supplementary Table 4), not liver and adipose as one
might expect given the module origins. These enrichments, com-
bined with the significant enrichment of genes in inflammatory
pathways, suggest that this module reflects the significant macro-
phage populations resident in liver and adipose tissues. This
macrophage connection is further supported by a number of
known macrophage markers represented in this supermodule,
including Cd14, Cd68 and Emr1 (refs 32–34). Given the apparent
macrophage-derived origins of this supermodule and its association
with the metabolic traits in the B 3 H cross, we refer to it here as the
macrophage-enriched metabolic network (MEMN) (Fig. 3a).

The MEMN is comprised of a number of expression traits corres-
ponding to genes that we recently identified and validated as having a
causal relationship with obesity traits, including Zfp90 (ref. 11),
Tgfbr2 (ref. 11), C3ar1 (ref. 11) and Alox5ap (arachidonate 5-
lipoxygenase-activating protein)31. Because this network comprises
a highly interconnected set of expression traits supported as
having a causal relationship with the different metabolic traits, we
hypothesized that perturbing single genes in the MEMN that had
been previously validated as having a causal relationship with these
traits would significantly perturb the entire MEMN. To test this, we
constructed single gene perturbation signatures for two of the genes,
Zfp90 and Alox5, recently validated as having a causal relationship
with obesity-associated traits11,31. In addition, we constructed a single
gene perturbation signature for Pparg, a gene that also resides in the
MEMN and that has previously been validated as having a causal
relationship with obesity and diabetes traits35. In all cases, the per-
turbation signatures (Supplementary Table 4) were significantly
enriched for expression traits in the MEMN (Table 1). For example,
the Zfp90 transgenic signature comprised approximately 3,000
expression traits; 468 of these overlapped the MEMN, whereas only
179 would have been expected by chance—a greater than 2.5-fold
enrichment (Fisher Exact P value 5 4.83 3 10294). Furthermore,
genes validated as having a causal relationship with obesity were
observed in these different perturbation signatures. For example,
Pparg falls in the Zfp90 signature, whereas Tgfbr2 and C3ar1 fall in
the Pparg and Alox5 signatures, respectively. More generally, all sig-
natures are enriched for expression traits supported as having a cau-
sal relationship with the metabolic traits. Therefore, expression traits
supported as having a causal relationship with the metabolic traits

Table 1 | Gene sets significantly over-represented in the MEMN

Gene set type Gene set description Gene set count* Overlap (fold
enrichment){

Enrichment nominal P value
(corrected P value){

GO biological process categories Immune response 1,503 246 (2.6) 4.26 3 10
243 (1.94 3 10

239)
Defence response 1,565 251 (2.4) 1.97 3 10

242 (8.98 3 10
239)

Inflammatory response 584 110 (2.8) 4.66 3 10
224 (2.12 3 10

220)
Tissue-specific expression Bone-marrow-derived macrophage specific expression 289 65 (3.3) 1.10 3 10

218 (1.04 3 10
216)

Spleen-specific expression 186 47 (3.8) 7.56 3 10
215 (5.81 3 10

214)
Environmental perturbations Diet-induced obesity versus wild-type signature 1,108 415 (6.2) 5.17 3 10

2232

Causal gene sets Genes supported as causal for atherosclerotic lesions 159 119 (12.4) 3.22 3 10
2111

Genes supported as causal for obesity traits 762 375 (8.2) 2.30 3 10
2262

Genes supported as causal for diabetes 589 272 (7.7) 4.76 3 10
2176

Genes supported as causal for total cholesterol levels 245 131 (8.9) 1.01 3 10
293

Genes supported as causal for HDL levels 77 36 (7.8) 7.98 3 10
224

Single gene perturbation
experiments

Zfp90 transgenic signature 3,006 468 (2.6) 4.83 3 10
294

5-LO knockout signature 5,264 605 (1.9) 5.95 3 10
270

Rosiglitazone signature 837 118 (2.3) 3.03 3 10
218

*The number of sequences in the MEMN used to compare to these gene sets is 1,406.
{The overlap count is computed by counting the number of genes in the intersection between the indicated gene set and the MEMN. The fold enrichment is computed as the observed overlap count
divided by the expected overlap count, estimated by multiplying the MEMN transcript count (1,406) by the fraction ‘gene set count divided by total gene count (23,574)’.
{Nominal P values represent the significance of the Fisher Exact Test statistic under the null hypothesis that the frequency of the indicated gene set is the same between a reference set of all
transcripts represented on the array and the set of genes comprising the MEMN. The corrected P values represent the Bonferroni-corrected P values (nominal P value multiplied by the number of
gene sets searched).
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falling in the MEMN and moving this network when perturbed pro-
vide direct support that the metabolic traits are an emergent property
of this network, with hundreds of expression traits supported as
having a causal relationship with the metabolic traits.

Lpl and Lactb validated as obesity genes

In the MEMN, there were 375 expression traits supported as having a
causal relationship with the obesity traits linked to the chromosome 1
locus. Although many of the genes corresponding to the expression
traits in this network have been validated as having a causal relationship
with metabolic traits (Pparg, Alox5, Tgfbr2, C3ar1 and Zfp90, to name
just a few), many others have not. We used replication over multiple
studies as a way to prioritize genes for validation. Genes supported in
multiple independent experiments as having a causal relationship with
disease are more likely to be truly causal. Therefore, we intersected the
MEMN with a set of genes we previously predicted to have a causal
relationship with obesity in a completely independent experiment11.
Three of the ten genes predicted in an independent F2 intercross popu-
lation11 were represented in the MEMN: Zfp90, Lpl and Lactb. Zfp90 has
already been validated as having a causal relationship with obesity, so
we proceeded to validate the other two ‘replicated’ genes.

Lpl has previously been supported as a susceptibility gene for
atherosclerosis- and diabetes-associated traits36. However, an asso-
ciation between Lpl and obesity has not been established. To our
knowledge, Lactb has not ever been associated with any of the
B 3 H metabolic traits. Given the prediction that Lpl and Lactb have

a causal relationship with obesity, we recorded weight, fat mass and
lean mass for Lpl1/2, Lactb transgenic mice and wild-type littermate
controls every 2 weeks starting at 11 weeks of age using quantitative
NMR. As predicted, the growth curves for the Lpl1/2 and Lactb
transgenic animals were significantly different from those of controls
(Fig. 3b, c), with the fat-mass-to-lean-mass (FMLM) ratio difference
generally increasing over time. At the final quantitative NMR mea-
surement, the FMLM ratios in the Lpl1/2 and Lactb transgenic mice
were increased by 22% and 20%, respectively, over the wild-type
controls (P 5 1.09 3 1025 and P 5 4.48 3 1025, respectively).

Lpl is the principal enzyme responsible for the hydrolysis of cir-
culating triglycerides and is active in differentiated macrophages37,
consistent with its presence in the MEMN. Although Lpl has not
previously been functionally validated as a susceptibility gene for
obesity, several studies have established an inverse relationship
between Lpl activity and obesity-related traits, including a negative
correlation observed between Lpl activity and percentage body fat in
humans38. Lactb is a serine protease with high similarity to the bac-
terial lactamase gene, but very little is known about its function in
eukaryotes39,40. Lactamase metabolizes peptidoglycan in the bacterial
cell wall but neither the substrate nor the function of Lactb in eukar-
yotes is known41. Lactb has been detected in the mitochondria as part
of the mitochondrial ribosomal complex42–44. Interestingly, a strain of
rat that exhibits late-onset obesity was found to contain a mutation in
the S26 subunit of the mitochondrial ribosome, at least partially
explaining the obesity phenotype45.
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supported as causal for disease traits in the B 3 H cross. b, FMLM ratio
curves for Lpl knockout (n 5 25) and wild-type control (n 5 23) mice
(P 5 1.09 3 1025 that the difference at the last time point is significant).

c, FMLM ratio curves for the Lactb transgenic (n 5 36) and wild-type control
(n 5 27) mice (P 5 4.48 3 1025 that the difference at the last time point is
significant). d, Weight curves for the Ppm1l2/2 (n 5 18) and wild-type
control (n 5 18) mice (P 5 1.93 3 10211 that the difference at the last time
point is significant). Error bars in b–d represent 61s.d. of the indicated
measures based on replicates and signal-to-noise ratios derived from the
model applied to the weight and fat mass differences.
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Ppm1l has a causal relationship with metabolic syndrome

Given the causal association between the MEMN and many meta-
bolic traits, we rank-ordered genes on the basis of the number of
metabolic traits for which they were supported having a causal rela-
tionship with (Supplementary Table 5) as an alternative to replica-
tion as a way to prioritize genes for validation. Four genes ranked at
the top of the list: Fgd6, Mmp27, BC032204 and Ppm1l. However, not
only is Ppm1l a classically ‘druggable’ gene, but a knockout mouse for
this gene was available from Deltagen, so we selected this gene for
validation. Ppm1l is a newly discovered protein phosphatase, the
function of which is not well characterized.

Weight, fat mass, insulin and glucose levels, blood pressure and
other biochemical measures in blood were recorded in Ppm1l2/2 and
wild-type littermate controls. The growth curves for the knockout
mice were significantly different from those of wild-type controls
(Fig. 3d); at the final weight measurement, the knockout mice
weighed 19.3% more than wild-type mice (Table 2). Ppm1l2/2 mice
also exhibited increased fat mass compared to wild-type controls,
with an overall 46.7% increase in fat mass at 20 weeks of age
(Table 2). At 21 weeks of age, an oral glucose tolerance test
(OGTT) was performed on all mice. Baseline plasma glucose levels
were observed to be 11.5% higher in Ppm1l2/2 mice relative to wild-
type mice. Male knockout mice demonstrated an improved glucose
tolerance, with a 33.3% decrease in the area under the curve (AUC)
relative to male wild-type mice (Table 2). In contrast, although glu-
cose levels for females at the 60, 90 and 180 min time points were
significantly increased (P value 5 0.0077, 0.050 and 0.0043, respec-
tively), the difference in AUC was not statistically significant (P
value 5 0.11). At the 30-min OGTT time point, insulin levels in male
and female Ppm1l2/2 mice were more than 100% increased com-
pared to those of controls (Table 2). Blood was also collected in all
mice at 29 weeks of age, and total cholesterol, triglycerides and free
fatty acids were recorded. A significant decrease in free fatty acids was
recorded in Ppm1l2/2 mice relative to controls (Table 2), but no
other major changes were observed for the other parameters (data
not shown). Finally, given that the MEMN is supported as having a
causal relationship with a number of traits associated with metabolic
syndrome, and given the presence of genes such as ACE in this net-
work, non-invasive blood pressure was monitored in all mice at
25 weeks of age. Overall, the blood pressure in Ppm1l2/2 mice was
significantly increased compared to that of controls (Table 2).

Discussion

By integrating co-expression networks and genotypic data from an F2

intercross population, we identified a liver and adipose macrophage-
enriched sub-network that was associated with disease traits com-
prising the metabolic syndrome and enriched for expression traits
supported as having a causal relationship with these traits. Unlike
classic genetics approaches that aim to identify genes underlying
genetic loci associated with disease, the approach developed here
seeks to identify whole gene networks that respond in trans to genetic
loci driving disease, and that in turn lead to variations in the disease

traits. Our results demonstrate that there may in fact be thousands of
genes capable of increasing susceptibility to metabolic disease traits
such as obesity, diabetes and atherosclerosis. Because the causal pre-
dictions made in this study rely on conditional dependency argu-
ments that are statistical in nature, experimental validation is critical.
Towards that end, Lpl and Lactb were identified and validated in vivo
as previously unknown obesity genes, whereas Ppm1l was identified
and validated as a gene capable of modulating multiple obesity, dia-
betes and hypertension traits.

Network-based approaches for elucidating the complexity of dis-
ease traits cast a broad net for genes that drive disease relative to
classic genetic linkage or association studies that limit the search to
genes that harbour DNA variations that associate with disease in the
population under study. As a result, predictive networks provide the
potential to identify hundreds of genes that drive disease and that
could serve as points for therapeutic intervention. Our results sup-
port the idea that common forms of disease may be emergent pro-
perties of networks, where the networks associated with disease are
highly interconnected, with many genes in the network potentially
having a causal relationship with disease if perturbed strongly
enough. With large-scale molecular profiling, genotypic and clinical
data collected from large-scale populations, studying how a network
of gene interactions affects disease will come to complement more
strongly the classic focus of how a single protein or RNA affects
disease. The integration of genetic, molecular profiling and clinical
data has the potential to paint a more detailed picture of the particu-
lar network states that drive disease, and this in turn has the potential
to lead to more progressive treatments of disease that may ultimately
involve the targeting of whole networks as opposed to current thera-
peutic strategies focused on targeting one or two genes46.

METHODS SUMMARY

Liver and adipose tissue were extracted from 334 F2 animals in the B 3 H cross

and profiled on an Agilent custom murine gene expression microarray17. All F2

animals were genotyped at more than 1,300 single nucleotide polymorphism

markers and clinically characterized with respect to obesity-, diabetes- and

atherosclerosis-related traits17. The gene expression and genotype data were

combined to construct co-expression networks comprised of the most highly

connected nodes from each tissue and sex using previously described methods47.

Highly interconnected sub-networks were then detected from each co-

expression network using an iterative search algorithm47,48. QTL were detected

for each of the expression and metabolic traits using a forward stepwise regres-

sion procedure17,49. QTL with pleiotropic effects on expression and metabolic

traits were identified using a multivariate likelihood test11,50. The B 3 H QTL,

expression and metabolic trait data were then integrated to assess whether each

expression trait in each tissue was supported as having a causal relationship with

each of the metabolic traits, with respect to QTL detected with pleiotropic effects

on the expression and metabolic traits11. To identify sub-networks as having a

causal relationship with the metabolic traits, each sub-network was tested for

enrichment of expression traits supported as having a causal association with the

metabolic traits using the Fisher Exact Test. Genes comprising the sub-network

supported as having a causal relationship with all metabolic traits scored in the

B 3 H cross were selected for validation on the basis of one of two criteria: the

gene was supported as having a causal relationship with the metabolic traits in an

Table 2 | Comparison of metabolic traits between Ppm1l2/2 and Ppm1l1/1 mice

Ppm1l2/2 Ppm1l1/1

Trait Age of mice (weeks) Mean trait value Sample size Mean trait value Sample Size Percentage change Difference P value*

Weight (g) 21 49.69 17 41.65 18 19.3 1.93 3 10
211

Total fat mass (g) 9 3.54 17 2.54 18 39.4 0.0037

Total fat mass (g) 20 22.10 17 15.06 18 46.7 0.00030

Baseline glucose (mg ml21) 21 1.55 17 1.39 18 11.5 0.0075

OGTT area under curve (male mice only)
(min (mg ml21))

21 186 8 279 9 233.3 0.0069

OGTT insulin at 30 min (mg/l) 21 5.17 17 2.44 18 111.9 0.017

Free fatty acids (mequiv. l21) 29 0.4116 14{ 0.5457 17{ 224.6 0.00050

Non-invasive blood pressure (mm Hg) 25 90.13 17 86.07 18 4.7 0.027

*All P values reported, except weight and OGTT AUC, represent the significance of the t statistic under the null hypothesis that the difference in mean, sex-adjusted trait values between the Ppm1l
knockout and Ppm1l wild-type groups is equal to 0. For OGTT AUC, this same null hypothesis was tested but for males only. See Supplementary Methods for calculation of the P value for weight.
{By the 29 week time point, 3 male knockout mice and 1 male wild-type mouse had died.
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independent, previously published study, or the gene was supported as having a
causal relationship with the most metabolic traits scored in the B 3 H cross. The

three genes chosen for validation using these criteria were validated by construct-

ing gene-knockout mouse strains (Lpl and Pmp1l) or transgenic mouse strains

overexpressing the gene of interest (Lactb). Full Methods are provided in the

Supplementary Information.
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