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Sizing up human height variation
Peter M Visscher

Genome-wide association studies have identified many variants affecting susceptibility to disease. Now, three 
studies use this approach to study adult height variation in a combined sample size of ∼63,000 individuals and 
report a total of 54 validated variants influencing this trait.

Human height is a classical quantitative trait. 
Genetic studies, pioneered by Francis Galton 
and Ronald Fisher more than 90 years ago1,2, 
show a clear pattern of family resemblance, 
consistent with a polygenic additive model 
of inheritance. But how many is ‘poly’, and 
what are the effect sizes of individual vari-
ants? In this issue, three consortia of research 
groups report a total of 54 loci affecting 
height variation in the population, identi-
fied using genome-wide association studies 
of hundreds of thousands of genetic mark-
ers genotyped on a total of ∼63,000 people 
measured for height3–5.

Quantitative genetics of height
Height is a highly heritable trait that is easy 
to measure. It is a ‘model’ trait for quantita-
tive genetics and developmental biology, it 
is associated with disease, including cancer6, 
and it is a predictor of social outcomes in 
life. In populations of European descent, 
the average height is ∼178 cm for males and 
∼165 cm for females, with a s.d. of ∼7 cm. 
Its heritability is ∼0.8, which means that 
within a population, about 80% of the varia-
tion in height among individuals is due to 
genetic factors7. If we knew all the variants 
that are responsible for genetic variation 
and summed their effects within each per-
son, then the difference between the top 5% 
and bottom 5% of the population would be 
about 26 cm, roughly the size of an adult 
head. Mutations in certain genes can cause 
extreme short or tall stature, but such muta-
tions are rare and do not contribute to ‘nor-
mal’ variation in the population.

Genetic linkage studies look for a corre-
lation between phenotypic and genotypic 
similarity within families. Many such studies 
have been reported for height, implicating 
many (some would say all) genomic regions, 
but the resolution of these studies is low, and 
they have not resulted in the identification 
of genetic variants that explain the linkage 
signals. Past studies of candidate genes have 
also not succeeded in explaining familial 
resemblance for height. Indeed, similar 
observations can be made for the studies of 
many other complex traits, including those 
of common diseases.

Genome-wide association era
Enter the era of genome-wide association 
studies (GWAS). These studies take a sys-
tematic ‘unbiased’ approach by interrogating 
the entire genome for associations between 
common gene variants (single nucleotide 
polymorphisms or SNPs) and a phenotype. 
GWAS have been facilitated by the HapMap 
project8, which quantified the total number 
and genome locations of SNP markers that 
need to be genotyped in order to detect an 
association between common genetic vari-
ants and a trait in a hypothesis-free genome 
scan. Further, development of commercial 
‘SNP chips’ that allow rapid genotyping of 
hundreds of thousands of common SNPs 
have made this approach possible. The basic 
design of a GWAS is to associate the trait of 
interest—for example, disease susceptibility 
or a quantitative trait—with SNPs on the 
chip, usually by carrying out a statistical test 
for each SNP in turn and then following up 
on the best ‘hits’ by genotyping them in one 
or more independent samples for statisti-
cal validation. GWAS have been successful 
in finding previously unknown loci associ-
ated with a wide range of diseases9 and other 

phenotypes. Two previous GWAS, from two 
of the three groups that report findings in 
the current issue, each reported a single 
newly identified validated variant affecting 
height10,11, with each locus explaining a very 
small proportion of the phenotypic variance 
(∼0.3% to ∼0.5%).

The new studies in this issue3–5 followed 
a multistage design in which the first stage 
was used to select the most promising SNPs 
and the later stages were used for validation. 
The validation stage is important because, 
when over 500,000 variants are tested, as 
was done in the current studies, many will 
be statistically ‘significant’ by chance (about 
25,000 if a standard type I error rate of 0.05 
is used). The studies employed very large 
samples sizes, from ∼14,000–34,000 in the 
test stage to ∼6,000–20,000 in the valida-
tion stages. The total number of SNP chips 
used across these studies was over 63,000,  
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Figure 1  Statistical power of detection in GWAS 
for variants that explain 0.1–0.5% of the variation 
at a type I error rate of 5 × 10−7 (calculated using 
the Genetic Power Calculator15). Shown is the 
power to detect a variant with a given effect size, 
assuming this type I error rate, which is typical for 
a GWAS with a sample size of n = 5,000–40,000. 
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representing a total investment of roughly 
$30 million. However, much, if not most, 
of the genotyping was done by other stud-
ies investigating disease, and the research-
ers cleverly piggy-backed on these studies, 
taking advantage of the fact that many such 
studies have included measures on height.

Across the three studies, 95 SNPs were 
taken forward for validation and 54 survived 
stringent significance testing. These SNPs 
were robustly associated with height varia-
tion in the general population. Reassuringly, 
SNPs in the previously associated genes 
HMGA2 and GDF5-UQCC were again 
identified. SNPs in three genes (ZBTB38, 
HHIP, HMGA2) were found to be associ-
ated with height in all three studies, and 
a total of seven genes were implicated in 
two of the three studies. The three studies 
found an impressive total of 40 previously 
unknown variants. The average effect size 
per ‘increasing’ allele was ∼0.4 cm, or ∼0.8 
cm between the two homozygous classes. 
The reason why the overlap in loci is mod-
est is presumably because of the stringent 
significance testing used by the researchers 
and because the effect sizes are small. The 
probability (power) of detecting a variant 
of small effect when using a genome-wide 
significance threshold is far from perfect, 
even when using fairly large sample sizes 
(Fig. 1). Lowering the significance thresh-
old would increase the power but would also 
yield more false positives. It is a challenge of 
GWAS designs to get this balance right.

In the three height studies3–5, the sample 
sizes of the test stages were approximately 
14,000, 16,000 and 34,000. As shown in 
Figure 1, a GWAS with a sample size of 
10,000, with an assumed type I error rate 
of 5 × 10−7, has 29% power to detect a vari-
ant that explains 0.2% of the variance. 
Therefore, the chance that two independent 
studies of this size both detect this variant is 
only 0.292 = 0.08. For sample sizes of 20,000, 
the probability of detecting the variant in 
two studies is 0.81. Therefore, one explana-
tion for why there was only modest overlap 
in the detected loci between the studies is 
statistical power at the chosen stringent type 
I error rates. 

What have we learned about the nature of 
quantitative trait variation for height from 
these studies? At a first glance it looks quite 
simple: variation is explained by many vari-
ants of small effects, with no evidence for 
interactions between alleles, either within 
loci (dominance) or between loci (epista-
sis), and there are no strong differences in 
effects between males and females. These 
observations are consistent with patterns of 

familial resemblance for height. However, 
given the design and analysis used, there was 
little statistical power to find evidence for 
departures from this simple model. Not sur-
prisingly, given the small effect sizes found, 
there was no significant overlap between the 
location of the associated variants and pre-
viously reported loci from linkage studies. 
It remains a challenge to reconcile the find-
ings of GWAS and linkage studies, because 
the former suggest individual variants with 
small effects, whereas the latter suggest 
genomic regions with large effects within 
pedigrees.

A return to candidate genes?
The GWAS approach, in general, is set to 
identify associations with individual variants 
that are unlikely to be causal. Nevertheless, 
by looking at the genes in the vicinity of 
the associated SNPs, one can look for bio-
logical pathways that are overrepresented. 
Taking this approach, the height studies 
report that their validated SNPs are in or 
near genes involved in pathways related to 
mesoderm development, skeletal develop-
ment, mitosis, cancer, Hedgehog signaling 
and chromatin remodeling. Variants in one 
of the genes (ZBTB38) that was detected in 
all three studies were shown to be associ-
ated with gene expression of that same gene 
in blood and adipose tissue5, suggesting a 
possible biological mechanism.

The authors also found a significant 
number of the validated SNPs in genes that 
could be considered ‘candidate genes’ on 
the basis of known mutant phenotypes in 
humans or mice. But wasn’t one of the ratio-
nales of the GWAS approach that previous 
candidate gene studies hadn’t worked? One 
explanation for this (perceived) failure of 
earlier candidate gene studies is that they 
were severely underpowered, both in terms 
of experimental sample size and SNP cover-
age. It is only by performing large, unbiased 
GWAS that the relative importance of can-
didate genes can be quantified.

Looking to the future
The main conclusion emerging from the 
current studies is that GWAS are able to 
robustly identify common variants that are 
associated with height but that the effect 
sizes of individual variants are small, so that 
very large sample sizes are needed to detect 
associations reliably. Single laboratories are 
unlikely to have sufficient sample sizes to do 
powerful studies on their own, and the trend 
in human complex trait mapping has been 
to create consortia of research groups and 
even consortia of consortia.

It remains unclear at this stage how much 
genetic variation can be explained through 
the GWAS approach. However, if the sam-
ples in these three studies were combined 
together with other datasets that have been 
collected on height and genome-wide SNP 
data, then this question could be answered 
empirically. Genome-wide studies on, say, 
100,000 individuals, unthinkable only a few 
years ago, will be soon be a reality. From 
the limited amount of overlap in the genes 
reported across the three studies, and the fact 
that all three studies were very stringent in 
their hypothesis testing, it seems that much 
more variation is likely to be explained by 
common variants of small effect.

There is still a long way to go from associ-
ated SNPs to causal variants. Resequencing 
will uncover all variants in a given region, 
not just the common ones, but it will 
unearth so many that picking out the 
responsible variant(s) will be a real chal-
lenge. Statistical association alone will not 
provide the answer, and other sources of 
information, such as predicted effects of 
variants on proteins and evolutionary con-
servation12,13, may help.

Looking further to the future, if most 
genetic variation for height can be explained 
by association, even without knowing causal 
variants, how can this knowledge be used? 
Apart from gaining insights into the genetic 
architecture of continuous traits and bio-
logical pathways involved in human height, 
associations between variants and height can 
in principle be used to predict height from 
genetic data alone14, that is, without having 
observed the phenotype. Such predictions 
are useful in artificial selection programs 
in agriculture and may also prove useful in 
forensics and human medicine.
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